
 
 

 

  

Abstract—Special attention is paid to the motion of the 
flexible links in the robotic configuration. The elastic 
deformation is a dynamic value which depends on the total 
dynamics of the robot system movements. The Euler-Bernoulli 
equation (based on the known laws of dynamics) should be 
supplemented with all the forces that are participating in the 
formation of the elasticity moment of the considered mode 
according to the requirements of the motion complexity of 
elastic robotic systems. This yields the difference in the 
structure of Euler-Bernoulli equations for each mode. The 
stiffness matrix is a full matrix as well as damping matrix. 
Mathematical model of the actuators also comprises coupling 
between elasticity forces. Particular integral which defined 
Daniel Bernoulli should be supplemented with the stationary 
character of elastic deformation of any point of the considered 
mode, caused by the present forces. General form of the 
mechanism elastic line is a direct outcome of the system motion 
dynamics, and cannot be described by one scalar equation but 
by three equations for position and three equations for 
orientation of every point on that elastic line. Simulation 
results are shown for a selected robotic example involving the 
simultaneous presence of elasticity of the gear and of the link 
(two modes), as well as the environment force dynamics.  

I. INTRODUCTION 
   ODELING and control of elastic robotic systems has 

been a challenge to researchers in the last four 
decades.  

Mathematical model of a mechanism with one degree of 
freedom (DOF), with one elastic gear was defined by Spong 
[1] in 1987. Based on the same principle, the elasticity of 
gears is introduced in the mathematical model in this paper, 
as well in papers [2]-[6]. However, when the introduction of 
link flexibility in the mathematical model is concerned, it is 
necessary to point out some essential problems in this 
domain.  

In our paper we do not use “assumed modes technique”, 
proposed by Meirovitch in [7] (and used from all authors 
until today [8]-[13] etc.). 

The first detailed presentation of the procedure for 
creating reference trajectory was given in [14]. 

The reference trajectory is calculated from the overall 
dynamic model when the robot tip is tracking a desired 
trajectory in a reference regime in the absence of 
disturbances as in papers [2], [3], [5], and [6]. Elastic 
deformation (of flexible links and elastic gears) is a quantity 
which is, at least, partly encompassed by the reference 
trajectory. It is assumed that all elasticity characteristics in 
the system (both of stiffness and damping) are "known" at 
least partly and at that level they can be included into the 
process of defining the reference motion.  

LMA (“Lumped-mass approach”) is a method which 
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defines motion equation at any point of considered 
mechanism. If any link of the mechanism is elastic then we 
can also define motion equation at any point of presented 
link. We don’t know exactly when this approach was stated. 
It defines dynamic equation in any point of mechanism 
during movement. The LMA [15]-[18] gives the possibility 
to analyze the motion of any point of each mode. Papers 
with this research topic (approach) were rare in robotics 
journals in the last three decades. 

EBA (“Euler-Bernoulli approach”) assumes the use of 
Euler-Bernoulli equations which appeared in 1750. EBA 
[8]-[13] etc, gives the possibility to analyze a flexible line 
form of each mode in the course of task realization.  The 
EBA is an approach that is still in the focus of researchers’ 
interest and it was analyzed most often in the last decades.  

Relationship between the LMA and EBA has been 
established in papers [2], [3], [5], [6].  

We consider that EBA and LMA are two comparative 
methods addressing the same problem but from different 
aspects.  

The Euler Bernoulli equation as well as its solution were 
used in the literature [8]-[13] etc, published until now as 
defined [7]. In the meantime, from 1750 when the Euler 
Bernoulli equation was published until today our 
knowledge, especially in the robotics, the oscillation theory 
and the elasticity theory, has progressed significantly. As a 
consequence, this paper points out the necessity of the 
extension of the Euler Bernoulli equation as well as its 
solution from many aspects. 

In the previous literature [8]-[13] etc, the general solution 
of the motion of an elastic robotic system has been obtained 
by considering flexural deformations as transversal 
oscillations that can be determined by the method of 
particular integrals of D. Bernoulli. We consider that any 
elastic deformation can be presented by superimposing D. 
Bernoulli’s particular solutions of the oscillatory character 
and stationary solution of the forced character. See papers 
[2], [3], [5], [6].  

 “Assumed modes technique” [7] was used by all authors 
in the last 40 years to form Euler Bernoulli equation of 
beam. In our paper we form Euler Bernoulli equation but we 
do not use “assumed modes technique” in contrast to our 
contemporaries.  We think that the “assumed modes 
technique” was and still can be useful in some other 
research areas but it is used in a wrong way in robotics, 
theory of oscillations and theory of elasticity.  We assume 
that the elastic deformation as well as circular frequency of 
each mode of elastic element is consequences of the overall 
dynamics motion of the robotic system. 

Let us emphasize once again that in this paper we propose 
a mathematical model solution that includes in its root the 
possibility for simultaneous analyzing both present 
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phenomena – the elasticity of gears and the flexibility of 
links and the idea originated from [18], but on the new 
principles.  

Our future work should be directed to the implementation 
of the gears elasticity and the flexibility of links on any 
model of rigid robot and also on the model of reconfigurable 
rigid robot as given in [19] or any other type of mechanism. 
The mechanism would be modeled to contain elastic 
elements and to generate vibrations, which are used for 
conveying particulate and granular materials in [20]. 

In Sections II we define a general form of the equation of 
flexible line of a complex robotic system of arbitrary 
configuration, using Euler-Bernoulli equation. We give the 
new interpretation of the Euler-Bernoulli’s equation. Section 
III analyzes the movement dynamics of a multiple DOF 
elastic robotic pair with elastic gear and flexible link in the 
presence of the second mode and environment force. Section 
IV gives some concluding remarks. 

II. INTERPRETATION OF THE EULER-BERNOULLI EQUATION  
Equation of the elastic line of beam bending is of the 

following form: 
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bending moment, )( 2
1,1 Nmβ  is the flexural rigidity.  

General solution of motion, i.e. the form of transversal 
oscillations of flexible beams can be found by the method of 
particular integrals of D. Bernoulli, that is: 

)(ˆ)ˆ(ˆ),ˆ(ˆ 1,11,11,11,11,1
tTxXtxy toto

⋅= .       (2)  

See Fig. 1. The symbol “^” denotes generally the quantities 
that are related to an arbitrary point of the elastic line of the 
mode, for example: 1,1,1,1,1,1 ˆˆˆ εxy . The same quantities that 

are not designated by “^” are defined for the mode tip, for 
example: 1,1,1,1,1,1 εxy . 

By superimposing the particular solutions (2), any 
transversal oscillation can be presented in the following 
form:  

)(ˆ)ˆ(ˆ),ˆ(ˆ
1

,1,1,1,11
tTxXtxy

j
jtojjjto

∑ ⋅=
∞

=
.           (3) 

Equations (1)-(3) were defined under the assumption that 
the elasticity force is opposed only by the inertial force 
proper. Besides, it is supposed by definition that the motion 
in (1) is caused by an external force 1,1F , suddenly added 

and then removed. The solution (2)-(3) of D. Bernoulli 

satisfies these assumptions.  

1,1ϑ  is the bending angle of the mode; 1,1ω  is the rotation 

angle of the tip of the mode, see [21]. Bernoulli presumed 
the horizontal position of the observed body as its stationary 

state (in this case it matches the position x - axis, see Fig. 
1). At such presumption, the oscillations happen just around 
the x - axis. If Bernoulli, at any case, had included the 
gravity force G  in its (1), the situation would have been 
more real. Then the stationery body position would not have 
matched the x - axis position, but the body position would 
have been little lower and the oscillations would have 
happened around the new stationery position (as presented 
in the Fig. 2). 

All marks are the same as in papers [2], [3], [5], [6]. 
Equations (1)-(3) need a short explanation that, we think, 

should be assumed, but which is missing from the original 
literature. Euler and Bernoulli wrote (3) based on ‘vision’. 
They did not define the mathematical model of a link with 
an infinite number of modes, which has a general form of 
(4), but they did define the motion solution (shape of elastic 
line) of such a link, which is presented in (3). They left the 
task of link modeling with an infinite number of modes to 
their successors. Transversal oscillations defined by (4) 
describe the motion of elastic beam to which we assigned an 
infinite number of DOFs (modes), and which can be 
described by a mathematical model composed of an infinite 
number of equations, in the form: 

∞==+ ...,...,,2,1,0ˆˆ
,1,1 jjM jj ε .         (4) 

Dynamics of each mode is described by one equation. 
The equations in the model (4) are not of equal structure as 
our contemporaries, authors of numerous works, presently 
interpret it. We think that the coupling between the modes 
involved leads to structural diversity among the equations in 

υ
=

 
Fig. 1.  Idealized motion of elastic body according to D. Bernoulli. 

 
Fig. 2.  The motion of elastic body in case of presence gravity force. 
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the model (4). This explanation is of key importance and is 
necessary for understanding our further discussion.  

Under a mode we understand the presence of coupling 
between all the modes present in the system. We analyze the 
system in which the action of coupling forces (inertial, 
Coriolis’, and elasticity forces) exists between the present 
modes. To differentiate it from “mode shape” or “assumed 
mode”, we could call it a coupled mode or, shorter, in the 
text to follow, a mode. This yields the difference in the 
structure of Euler-Bernoulli equations for each mode. 

The Bernoulli solution (2)-(3) describes only partially the 
nature of motion of real elastic beams. More precisely, it is 
only one component of motion. Euler-Bernoulli equations 
(1)-(3) should be expanded from several aspects in order to 
be applicable in a broader analysis of elasticity of robot 
mechanisms. By supplementing these equations with the 
expressions that come out directly from the motion 
dynamics of elastic bodies, they become more complex.  

As known, a flexible deformation of a body under 
consideration may be caused by: disturbance forces, which 
cause the oscillatory nature of motion, stationary forces, 
which cause the stationary nature of motion. 

By superposing the particular solution of oscillatory 
nature, and the stationary solution of forced nature, any 
flexible deformation of a considered mode may be presented 
in the following general form: 

))(ˆ)(ˆ()ˆ(ˆˆ 1,11,11,11,11,1 tTtTxXy tost +⋅= .            (5) 

1,1ŝtT  is the stationary part of flexible deformation caused 

by stationary forces that vary continuously over time. 1,1t̂oT  

is the oscillatory part of flexible deformation as in (3).  
Component )ˆ(ˆ

1,11,1 xX  describes a possible geometrical 

relation between 1,1ŷ  and 1,1x̂ . Component 1,11,1
ˆˆ
tost TT +  

describes the dependence of flexure 1,1ŷ  on force, which is 

the only time-varying quantity in expression (5). By 
combining the particular solution of the oscillatory nature of 
motion, the stationary solution of the forced nature of 
motion and the geometry of flexible line of the mode 
considered, we may obtain the general solution of the 
motion of the first mode. 

By superposing solutions (5), any flexible deformations 
of a flexible link with an infinite number of degrees of 
freedom may be presented in the following form: 

∑ +⋅=
∞

=1
,1,1,1,1,11

))(ˆ)(ˆ()ˆ(ˆ),ˆ(ˆ
j

jtojstjjj tTtTxXtxy .    (6) 

The motion of the considered robotic system mode is far 
more complex than the motion of the body presented in Fig. 
1. This means that the equations that describe the robotic 
system (its elements) must also be more complex than the 
(1)-(3), formulated by Euler and Bernoulli. This fact is 
overlooked, and the original equations are widely used in 
the literature to describe the robotic system motion. This is 
very inadequate because valuable pieces of information 
about the complexity of the elastic robotic system motion 

are thus lost. Hence, it should be especially emphasized the 
necessity of expanding the source equations for the purpose 
of modeling robotic systems, and this should be done in the 
following way:  

* based on the known laws of dynamics, (1) is to be 
supplemented by all the forces that participate in the 
formation of the bending moment of the considered mode. It 
is assumed that the forces of coupling (inertial, Coriolis, and 
elastic) between the present modes are also involved, which 
yields structural difference between (1) in the model (4), 

* Equations (2)-(3) are to be supplemented by the 
stationary character of the elastic deformation caused by the 
forces involved. 

* Damping is an omnipresent flexibility characteristic of 
real systems, so that it is naturally included in the Euler-
Bernoulli equation. 

Now 
2

1,1

1,11,11,1
2

1,11,1
ˆ

)ˆˆ(
ˆ

x

yy

∂

⋅+∂
⋅=

&η
βε  is a bending moment, 

1,1η  is a factor characterizing the share of damping in the 

total flexibility characteristic. 
Model of the elastic line of complex elastic robotic 

system is given in the matrix form by the following Euler-
Bernoulli equation (see [5], [6]): 

 0ˆˆˆˆ
2

2

=+⋅Θ⋅+⋅++⋅ εεzFjh
dt

yd
H uk

T

e
.       (7) 

The robotic system having m links (each of them 

containing in  modes). If we define mnnnk +++= ...21  

then we have that matrix characterizing the kxkRH ∈ˆ - 

inertia, 1ˆ kx
Rh ∈ - centrifugal, gravitational and Coriolis 

forces, 6kxT

e
Rj ∈ - mapping the effect of the dynamic 

contact force ukF , kxkR∈Θ - robot configuration, kxkRz ∈ - 
mutual influence of the forces of elastic modes of all the 
links. Equation (7) represents the equation of motion of the 
elastic line of the overall robotic system. It is known that the 
robot configuration can substantially influence the mutual 
position of elastic lines of particular links. Solution of the 
system (7) and dynamic motor motion, i.e. the form of its 
elastic line for all the links involved in the presence of the 
dynamics (angle) of rotation of each motor θ , as well as by 
taking into account the robotic configuration, i.e. the angle 
α  between the axes 1−iz  and iz . 
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αθ
αθ
αθ

=
=
=
=
=
=

  .                (8) 

5693



 
 

 

The equation of motion of all the forces at the point of 
each mode tip of any link can be defined from (7) by setting 
the boundary conditions. Vector equation of all the forces 
involved for each mode tip of any link is: 

 02

2

=+⋅Θ⋅+⋅++ εεzFjh
dt

yd
H uk

T

e
.         (9) 

 In order to describe the behavior of a robotic system, we 
have to add to the mathematical model of all the motors 
written in a vector form. The motor moment is opposed by 
the bending moment of the first elastic mode that comes 
after the motor, and also in part, by the bending moments of 
the other elastic modes that are connected in series after the 
given motor. All the modes after the motor, due to their 
position, influence the dynamics of motor motion. The effect 
of the first mode bending moment is defined by the factor 

02/1+ , of the second by 12/1− , of the third by 22/1+ , of 

the fourth by 32/1− , of the fifth by 42/1+ ... Mathematical 
model of all motors are: 

)( mmuM

E

zSBIiC
CiRu

εεθθ
θ

+⋅⋅−⋅+⋅=⋅

⋅+⋅=
&&&

&
.         (10) 

[ ]Ω1R  is the rotor circuit resistance; [ ]Ai1  is the rotor 

current; 
1E

C [ ])//( sradV and 
1M

C [ ]ANm /  are the 

proportionality constants of the electromotive force and 
moment, respectively; 1uB  [ ])//( sradNm  is the coefficient 

of viscous friction; 1I ][ 2kgm  is the inertia moments of the 

rotor and reducer; 1S  is the expression defining the reducer 

geometry; new structures of the matrix z  and also mz  
appear as a consequence of the coupling between the modes 
of particular links. The robot tip motion is defined by the 
sum of the stationary and oscillatory motion of each mode 
tip plus the dynamics of motion of the motor powering each 
link, as well by the included robot configuration. From (9)-
(10) we can calculate the position zxy ,,  and orientation 

ϕξψ ,,  of each mode tip, of each link, and finally, of the 
robot tip motion.  

III. EXAMPLE 
Here we have one more innovation concerning the known 

considerations. In robotics the reference trajectory is defined 
in purely kinematics way i.e. geometric and now in the 
presence of the elasticity elements we can include also the 
elastic deformation values at the reference level i.e. at the 
level of knowing the elasticity characteristics during the 
reference trajectory defining. 

There are two aspects in defining the reference trajectory 
of the motor angle (see [2], [3], [5], and [6]), viz.:  

1) Elastic deformation is considered as a quantity which is 
not encompassed by the reference trajectory.  

2) Elastic deformation is a quantity which is at least partly 
encompassed by the reference trajectory.  

A robot starts from a point "A" (Fig. 3) and moves toward 
a point "B" in the predicted time )(2 sT = . Dynamics of the 

environment force is included into the dynamics of system’s 
motion [22]. The adopted velocity profile is trapezoidal, 
with the period of acceleration/deceleration of T⋅2.0 . 

 )(000053335.0 sdt = , all other characteristics of the 
system and environment are the same as in papers [3]. 

Elastic deformation is a quantity which is at least partly 
encompassed by the reference trajectory also. The 

characteristics of stiffness [ ]radNmC /3108143.1 ⋅=ξ  and 

damping [ ])//(10 sradNmB =ξ of the gear in the real and 

reference regimes are not the same and neither are the 

stiffness [ ]mNCs /101569.6 4
1,1 ⋅= , [ ]mNCs /310873.12,1 ⋅=    

and damping [ ]msNBs /01,1 ⋅= , [ ]msNBs /62,1 ⋅=   
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Fig. 3.  Robot mechanism. 
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Fig. 4.  The tip coordinates and the position deviation from the 
reference level.
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Fig. 5.  The environment force dynamics. 
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characteristics of the link. oCC
ξξ ⋅= 2.0 , oBB

ξξ ⋅= 2.0 , 

o

ss CC
1,11,1 99.0 ⋅= , o

ss BB
1,11,1 570 += , o

ss CC
2,12,1 99.0 ⋅= , 

o

ss BB
2,12,1 99.0 ⋅= . 

The only disturbance in the system is the partial lack of 
the knowledge of all flexibility characteristics. 

As can be seen from Fig. 4 in its motion from point “A” 
to point “B” the robot tip tracks well the reference trajectory 
in the space of Cartesian coordinates. As a position control 
law for controlling local feedback was applied, the tracking 
of the reference force was directly dependent on the 
deviation of position from the reference level (see Fig. 5).  

The elastic deformations that are taking place in the 

vertical plane angle of bending of the lower part of the link 
(the first mode) mϑ  and the angle of bending of the upper 

part of the link (the second mode) eϑ , as well as elastic 
deformations taking place in the horizontal plane, the angle 
of bending of the lower part of the link (the first mode) qϑ , 

the angle of bending of the upper part of the link (the second 

mode) δϑ  and the deflection angle of gear ξ  are given in 
Fig. 6. 

The rigidity of the second mode is about ten times lower 
compared with that of the first mode, it is then logical that 
the bending angle for the second mode is about ten times 
larger compared to that of the first mode. 

A more significant lack of knowledge of damping 
characteristics of the link (the second mode) causes small 
deviations of all quantity from the reference in the course of 
robotic task realization.  

Let us show the special significance of results from Figs. 
6a. These figure exhibits the wealth of different amplitudes 
and circular frequencies of the present modes of elastic 
elements. We have oscillations within oscillations. This 
confirms that we have modeled all elastic elements as well 
as high harmonics (in this case two harmonics of considered 
link). 

IV. CONCLUSION 
Based on the Euler-Bernoulli equation, we defined the 

equation of elastic line of a complex robotic system. We 
demonstrated that the equation of motion of all the forces 
involved at any point follows directly from the Euler-
Bernoulli equation. If we define boundary conditions for the 
mode tip as the most interesting point on the elastic line, we 
obtain the equation of motion at that point, what is classical 
form of the mathematical model of the elastic robotic system 
considered. The reference trajectory depends on the level of 
knowing elasticity characteristics. The estimated elasticity 
characteristics may be included into the reference trajectory, 
and thus into the control law.  

Euler-Bernoulli equation has been expanded from several 
aspects:  

1) Euler-Bernoulli equation (based on the known laws of 
dynamics) should be supplemented with all the forces that 
are participating in the formation of the bending moment of 
the considered mode, what causes the difference in the 
structure of these equations for each mode. 

2) Structure of the stiffness (and damping) matrix must 
also have the elements outside the diagonal, because of the 
existence of strong coupling between the elasticity forces 
involved.  

3) Damping is an omnipresent elasticity characteristic of 
real systems, so that it is naturally included in the Euler-
Bernoulli equation. 

4) General form of the transversal elastic deformation is 
defined by superimposing particular solutions of oscillatory 
character (solution of Daniel Bernoulli) and stationary 
solution of the forced character (which is a consequence of 
the forces involved). 

5) General form of the elastic line is a direct outcome of 
the dynamics of system motion and cannot be represented 
by one scalar equation but three equations are needed to 
define the position and three equations to define the 
orientation of each point on the elastic line. 

Structure of the mathematical models of actuators: With 
elastic robotic systems, the actuator torque is opposed by the 
bending moment of the first elastic mode, which comes after 
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Fig. 6.  The elastic deformations. 
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the motor, and partly by the bending moments of other 
modes, which are connected in series after the motor 
considered. All modes coming after the motor, because of 
their position, exert influence on the dynamics of motor 
motion. The mathematical model of the actuators in our 
paper is connected to the rest of the mechanism via the 
equivalent elasticity moment.  

Elastic deformation is a consequence of the overall 
dynamics of the robotic system, what is essentially different 
from the method that was used until today, which purports 
usage of “assumed modes technique”.  

All this has been presented for a relatively simple robotic 
system that offered the possibility of analyzing the 
phenomena involved. Through the analysis and modeling of 
an elastic mechanism we made an attempt to give a 
contribution to the development of this area. 
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