The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

Autonomous Planning for Mobile Manipulation Services
Based on Multi-Level Robot Skills*

Martin Weser and Jianwei Zhang
TAMS - Technical Aspects of Multimodal Systems
Department of Informatics, Hamburg University
Vogt-Kolln-Strasse 30, 22527 Hamburg, Germany

{weser, zhang}@informatik.uni-hamburg.de

Abstract— General purpose service robots are expected to
deal with many different tasks in unknown environments.
The number of possible tasks and changing situations prevent
developers from writing control programs for all tasks and
possible situations. Complex robot tasks are thus accomplished
by sequential execution of less complex robot actions that are
triggered and configured by a task planner. The question of
the appropriate abstraction level of robot actions is still being
researched and not discussed conclusively. In this paper, we
address the problem of atomicity of robot actions and provide
some key properties that have to be considered while designing
plan-based robot control systems. Based on these properties,
we define and implement atomic skills of different abstraction
level for the service robot TASER. The HTN planner JShop2
is used to complete the plan-based control architecture which
is evaluated in a set of experiments.

I. INTRODUCTION

Robots are often built for specific tasks in a control-
led environment. In this case research aims at increasing
robustness, accuracy, safety and execution speed. Service
robots, in contrast, aim at flexibility and versatility. Ins-
tead of increasing the performance of single robot tasks,
researchers investigate diverse robot behaviors that are to
be executed on a single robot system. Robot mobility and
manipulation services, for example, demand for complete-
ly different control strategies. Our investigations with the
mobile service robot TASER, which is shown in Figure 1,
strive for integrating these different application areas into
one coherent system. One way to tackle this is simply to
load several task-specific programs on the system that can
be executed selectively. However, with an increasing number
of tasks this method quickly hits the wall. Maintenance of
control programs becomes laborious and development of
new behaviors requires repetitive implementation of simi-
lar subroutines. Thus, researchers in multi-purpose service
robotics rearranged robot tasks into more manageable units
that we call robot skills. Robot skills specify either atomic
robot actions or simple robot behaviors which are used
synonymously in this paper. Each robot skill is implemented
in a control program that directly accesses sensors and
actuators to achieve the expected behavior. A task-planner
combines control programs to achieve complex robot tasks.

*This work is founded by the DFG German Research Foundation (grant
1247) — International Research Training Group CINACS (Cross-modal
Interactions in Natural and Artificial Cognitive Systems)

978-1-4244-3804-4/09/$25.00 ©2009 IEEE

Fig. 1. The mobile robot TASER executing a manipulation task.

. X abstraction level
physical signals

symbolic representation

simple

reactive system X
skill

deliberative planning ‘

complex

reactive system .
skill

deliberative planning ‘

Fig. 2. Deliberative planning and reactive control communicate via atomic
robot skills. The combined complexity of both layers is independent of the
abstraction level of skills.

To ensure high reusability in a variety of robot tasks,
the control programs have become more and more basic.
Reduced complexity of robot control programs, in turn, leads
to increased complexity in the planning component. The
complexity of the overall system, which comprises both
the control programs and the planning component, remains
unchanged. Figure 2 shows the relation of robot planning
and control using simple and complex skills respectively.

The complexity of robot skills defines the abstraction level
at which the deliberative component interfaces the reactive
execution. The question on the granularity of robot skills
has to be considered in every hybrid robot architecture.
Surprisingly, to the best of our knowledge it has not been
addressed explicitly in the literature. To quote [1, p.207],

the nature of the boundary between deliberation
and reactive execution is not well understood at this
time, leading to somewhat arbitrary architectural
decisions.

1999

We find a strong affinity to the symbol grounding problem
(SGP) that deals with the right way to relate symbols with
perception and action [2]. This paper, in contrast, focus on
the question which symbols are suitable for application in a
hybrid architecture. While assuming that the SGP has little
relevance for applied robotics due to application-specific
solutions, this paper aims at increasing understanding of the
boundary between deliberative and executive control.

The contributions of this paper are 1) analyzing require-
ments for atomic skills that put constraints on their abstrac-
tion level, 2) redefining skills for a service robot scenario
according to the constraints given earlier, and 3) evaluating
the implemented robot actions in integrated experiments with
the mobile manipulator TASER. We believe these contribu-
tions help bridge the gap between symbolic planning and
reactive execution.

The rest of this paper will proceed as follows. The next
section reviews the state of the art in plan-based robot control
with focus on the boundary between deliberative and reactive
parts. The granularity of atomic robot skills is analyzed in
Section III. This section provides criteria to be considered
in the design process of robot software systems. We define
and implement a set of robot skills in Section IV. Section V
evaluates the feasibility of our approach by integrating the
symbolic planner JShop2 with the implemented skill library.
We conclude with a summary and a discussion on future
work in Section VI.

II. STATE OF THE ART IN PLAN-BASED ROBOT CONTROL

The plan based robot control paradigm can be considered
as state of the art in autonomous robot systems [3]. It
combines reactive robot control [4], [5] and deliberative
reasoning to symbolic planning systems that utilize robot
skill libraries. Plan-based robot control systems are often
realized in a layered architecture. A distinguishing feature of
these architectures is the abstraction level at which the two
layers communicate (Figure 2). The abstraction level of robot
skills is also a decision of the appropriate representational
modality for a given problem. Which problem should be
solved in continuous space (e.g. sensor data processing,
coordinate transformation, trajectory planning) and which
should be solved in symbolic terms on the planning level?
In the following we review selected hybrid robot systems
with respect to the abstraction level on which the reactive
and deliberative layer interface.

The authors of the interactive tour guide robot MINERVA
[6] distinguish four layers in its control architecture. High-
level control and human interaction constitute the deliberati-
ve layer. Their common purpose is planning and monitoring
of museum tours and user interaction. Other parts such as
localization, navigation, mapping and interactive routines
that attempt to realize a “believable social agent” can be
considered as the execution layer since they are optimized
routines with a specific purpose. The high-level interface
communicates with the rest of the software using HLI, a
component of GOLEX [7]. MINERVA operated for two
weeks in a natural and dynamic environment.

The autonomous mobile robot GRACE [8], developed
at Carnegy Mellon University and others, has attended the
AAALI robot challenge in 2002. As several research groups
were involved in the development of GRACE, they utilize
a kind of odd architecture that allows each group to use its
own deliberative component. A common symbolic planner is
not described in the literature. However, all task-dependent
modules share the use of basic robot skills that are provided
by dedicated modules. These modules together constitute
the executive layer. Perception and action routines include
localization in a dynamic environment, safe navigation in the
presence of moving people, path planning, visual tracking
of people, signs, and landmarks, gesture and face recogniti-
on, speech recognition and natural language understanding,
speech generation, and social interaction with people. The
complexity level of the actions that can be used by GRACE’s
deliberative components reaches from simple (e.g. speech
generation) to highly complex (e.g. gesture recognition).

The planning layer and the sensor-actor layer in the
robot ARMAR-III [9] is mediated via a synchronization and
coordination layer. The planning layer decomposes abstract
tasks into sets of subtasks. The middle layer then invokes the
proper robot skills sequentially or in parallel to achieve the
subtasks [10]. The reactive layer specifies control commands
for the robot’s devices as well as dedicated algorithms. The
implemented robot skill library includes visual environment
perception (3D hand and face detection and tracking), speech
recognition and attempts to manipulate objects.

The University of Munich developed an early prototype of
a mobile service robot for health care and domestic automa-
tion services named ROMAN [11]. In this semi-autonomous
system, the robot receives commands by a human instructor.
These are split up into basic task primitives that can be
executed by control programs. The reported basic primitives,
e.g. door opening, are rather coarse. However, the principle
of executing a sequence of control programs in order to
achieve complex goals is similar to the other approaches.

A discussion of all layered robot systems would clearly
go beyond the scope of this paper. The selected systems,
however, already show that the decision on the abstraction
level of the boundary between layers is a matter of design
choice, and the solutions proposed in the literature differ
significantly. In the case of complex control programs, the
planning component is rather simple [11]. If control pro-
grams become more basic, the planning component becomes
an immanent part of the system [6], [8], [9].

The following section throws light on this issue by ana-
lysing arguments for different abstraction levels leading to
some key considerations in designing layered robot architec-
tures.

III. GRANULARITY OF ATOMIC ROBOT SKILLS

Why do robot skills have to be atomic and how can
atomic skills differ in their granularity? The answer is simple:
They do not have to be atomic from the control perspective.
A robot skill does naturally implement atomicity from the
perspective of symbolic planning. At the point where the

2000

particular robot controller is called to execute an action, the
planner cannot decompose it further. If an action is composed
of two or more simpler actions, the planner does not invoke
the complex action, but the sequence of simpler actions
that together achieve the aspired behavior. Admittedly, most
actions and behaviors are parameterizable (positions, objects,
speed etc.), still the generation of sequences of motor com-
mands that lead to physical effects is invisible to symbolic
processes. Thus, the question is not whether an action is
atomic, but on what level of complexity the intersection of
symbolic planning and physical execution should be.

The decision about which problems are to be handled
using automated planning and which ones are to be ma-
naged by robot control programs is ultimately a matter of
design choice [12]. Although the question of balancing the
complexity is inherent to every plan-based robot architecture,
it has not been addressed individually in the literature. We
cannot provide a conclusive answer to that question either.
Instead this paper aims at providing arguments that have
to be considered in the design process of layered robot
architectures.

A. Arguments for simple robot skills

1) Reuse: a robot skill should be applicable in as many
scenarios as possible. The simpler the skills are, the
higher the chance to be used in different tasks.

2) Generalizability: a generic skill description on symbol
level is to be preferred to allow simple reuse of actions
in the planning process.

3) Unambiguity: an action must be unambiguous in
terms of its effect and executable without further
interpretation. How the effect will be achieved may
depend on the current external conditions.

4) Consistency: an action should provide information to
keep the symbolic representation of the world con-
sistent with reality. This requirement depends on the
sensor capabilities of the robot and holds for successful
execution as well as for all kinds of possible failures.

5) Recoverability: usually it is assumed that atomic
actions are either completed successfully or the state of
the world will be unchanged. In embodied robotics this
is hard to achieve since uncompleted actions require
opposed actions to restore the foregoing situation. For
this reason, we propose that an action has to report its
state of execution to the symbolic layer to ensure the
consistency of the symbolic world representation.

6) Verifiability: the completion of an action’s effect
should be verifiable by robot sensors.

7) Planning flexibility: in case of too complex robot
skills the planner will loose its flexibility to react to
unforeseen situations and tasks. If only a couple of
complex skills are stringed together there is no use for
complex planning.

B. Arguments for complex robot skills

1) Efficiency: implementation of robot skills can be high-
ly optimized. The larger the chunks of work to be

done in a single skill, the larger the possibility for
optimization.

2) Hardware independence: hardware independence can
only be achieved to a certain degree. However, it
becomes more difficult if skills are of low abstraction.
Grasping an object, for example, can be done with dif-
ferent grippers by executing specific motion sequences.
If the motion sequence is provided by the planning
layer, it may not be applicable to other grippers.

3) Task-specific algorithms: a general purpose problem
solver should only be used for problems that can
not be solved efficiently by task-specific algorithms.
Compared to task-specific algorithms, general purpose
planning is rather slow. Inverse kinematics and geo-
metric path planning are examples of problems that
should not be solved at planning level.

To the argument (B2) one should add that the implementation
of an action is of no relevance for the planning layer. An
action should be defined as an interface that is implemented
in robot control programs. While deciding the granularity of
atomic actions, one should keep in mind that the physical
execution may change.

C. Summary of properties for atomic robot actions

The previously discussed issues have to be considered
while designing robot actions for a layered plan-based robot
control architecture. We explicitly point out that these requi-
rements are guidelines rather than hard constraints. Actually
it is impossible to fully satisfy all of them, e.g. verifiability
(A5) excludes independence of robot hardware (B2).

The relatively few arguments for complex robot skills give
the impression that a general tendency to simple robot skills
is desirable. In fact, if we assume a perfect planner that has
the capability of coding the robot behaviors on the fly for
every robot task in every situation, we could define native
hardware commands as atomic robot skills. Obviously, such a
planner is not available. The capabilities of the deliberative
planning component are supposably the bottleneck of the
overall system, thus the arguments on efficiency (B1) and
task-specific algorithms (B3) are of major importance.

IV. DESIGN AND IMPLEMENTATION OF A ROBOT
CONTROL LIBRARY

The first implementation of plan-based robot control on
the robot TASER resulted from the need to combine several
demo-applications (i.e. control programs) to more complex
robot tasks. A simple symbolic description of the actions
performed by the control programs was sufficient to let a
symbolic planner generate sequences of actions that achieve
complex goals. A list of initially implemented robot actions
is shown in Table I.

The control programs that where implemented as initial
prove of concept were not specifically designed to be used as
atomic operations in a task planner. Hence, they potentially
violated the properties of atomic robot actions that are listed
in Section III. The demand for hardware independence (B2),
for example, has been neglected in all sensor-specific £ind

2001

TABLE I
INITIALLY IMPLEMENTED ROBOT ACTIONS. THE GRANULARITY OF THE
ACTIONS WAS CHANGED LATER ACCORDING TO SECTION III.

focus on action

focus on perception

dock on table|door|corner

pick|place rubbish can
pick|place from surface
straight mobile motion

path planning

follow person

open door
use light switch

detect and track people

find table in laser
find table in camera
tactile sensing of surface
find cup on table
find door in laser
find door in omni. camera
check if door is closed
find rubbish can
detect and track people

laser range data
2 - --- initial estimation
corrected position
—
E s
= R = '
1 N
—1.5 —1 —0.5 0 0.5 1 1.5

X [m]

Fig. 3. Perceiving the door position: the initial estimation (dashed red) is
matched to the laser range data (gray circles).

actions. Reuse of skills (A1) is not considered, as several
pick and place actions implement similar movements.

To provide a strong foundation for future research and
experiments, we redefined the set of robot actions according
to Section III, specifically we focus on reuse (Al) and
generalizability (A2). Most of the criteria cannot be verified
using numerical measurements, still we empirically follow
them as much as possible in the design process.

The robot action open_door is used in the following to
describe the process of task-decomposition into atomic robot
skills. Skills are defined in symbolic terms using a PDDL-
style syntax that does not need to be explained further.

A. Design of atomic actions for door opening

The first necessary step is to approach the door with the
mobile platform. This skill is defined in a parameterized way
(approach ?obj ?actuator), thus it can be used by
the planner in different contexts (A2) such as reaching for
objects with a manipulator. Instantiated with mobile and
doorj, this action uses a dedicated path planning algorithm
in combination with the robot’s self-localization to alleviate
the symbolic planner (B1,3).

To allow fine manipulation, it is necessary to state the
relative position of the door to the robot precisely. The gene-
ric action (specify_pose ?o0bj ?sensor) is used for
both, finding the exact position of the door in the laser range
data and finding the doorknob in camera images. The latter
requires the camera to be focused to the expected position
of the doorknob using the general action (focus_on ?0bj
?device) instantiated with a pan-tilt unit as device.

If laser range scanners are used to find objects, an EM-
based algorithm is applied that iteratively matches the 2D
shape provided by the object to a subset of measured scan
points. Figure 3 shows the estimated position of a door before
and after the algorithm was applied. If cameras are used as
sensors, several object detection methods can be applied. In
our implementation we use a color-based approach to detect
the object in image coordinates. Previous knowledge on the
surface on which the object is located (table-top, wall, door)
and the position and orientation of the calibrated camera
enables computation of the three-dimensional object position
while avoiding computationally expensive stereo analysis.

The position of the doorknob is sufficient to control the
manipulator relative to it using the (approach ?o ?a)

— y-axis 5
E 6 P
E 4l v Ww‘"ﬂn‘\ ety 0
= \ | \
.z 1 |
:
! | -
0
0 5 10 15 20
time [sec]

Fig. 4. Hand position and force values while the robot opens a door. First,
the robot measures the distance of the door (A), then it pushes the doorknob
until a force threshold is reached (B). The force measured in (C) signals
that the door is still closed, thus it is assumed that the door is locked.

skill. Using the doorknob, as a specialized action, is defined
as (open ?doorknob ?manipulator) without consi-
deration of generalizability. We decided to use a task-specific
definition rather than defining a general use action due to
low expected code reuse in the implementation and — more
importantly — to ensure unambiguity in the execution layer
(A3). Transitions among sub-trajectories are triggered by for-
ce values measured at the end effector. The relation of force
values and arm trajectory is shown in Figure 4. Success or
failure is measured using force-sensors and a comparison of
the expected and executed manipulator trajectory (A4,6). The
opening task analysed here finishes with pushing the door
to open it (push_surface ?surf ?manipulator).
Again, this definition is generic and can be used in other
contexts, such as haptic detection of a table top or other
furniture as done in [13].

The redesigned atomic robot actions can — except for
(open ?d ?m) — used in several contexts. The strongest
violation of the discussed properties from Section III may
be hardware-independence. However, if the sensors for e.g.
detecting a door are not available to the system it renders
this particular example task meaningless.

B. Relating symbols for robot skills with reactive execution

Each defined robot skill has to be implemented in a control
program, that integrates knowledge from a world model
with current sensor readings, to generate executable control
sequences for related robot actuators.

2002

force [N]

AbstractAction AbstractObject

String symbolicDescription()
void execute(AbstractObject o)
void setVelocity(float v)

etc...

String symbolicDescription()
float[] getPose()

float[] getSize()

int getColor()

etc...

Fig. 5. Symbolic and continuous representation of skills and objects is
done via shared data structures.

Since most robot skills are executed in relation to objects,
these are represented in symbolic terms as well. The problem
of relating symbols to external objects is known as the
symbol anchoring problem [14]. In the work described here,
a pragmatic approach is used that links symbols and analog
descriptions of an object’s physical properties in shared data
structures. This is schematically shown in Figure 5.

The demand for hardware independence (B2) presupposes
that the perception process for objects is bound to the
robot control program, not to the object. How an agent can
interact with a physical object is dependent on the agent’s
manipulative and perceptive capabilities rather than on the
properties of the object. For example, the recognition process
for (specify_pose 20 ?s) is defined in the sensor
implementation rather than in the object’s representation. In
this way, we allow simple exchange of robot skills without
changing the representations of the objects.

The bottom line is that physical properties attached to a
symbol have to be either specifically designed for one kind of
agent or they have to include all potentially useful informa-
tion i.e. a complete physical model. The latter is obviously
not possible. Thus, in practice symbols are enriched with
just enough information to be perceived by the targeted robot
platform.

V. INTEGRATED EXPERIMENTS AND RESULTS

In this section, we describe how we integrate the planning
system JShop2 [15] with previously defined robot skills and
report results from experiments.

A. Integrating planning and robot control

We chose JShop2 as planning component due to simple
definition of problem and domain files, its provable good
performance, and — most importantly — the possibility to
define basic actions at multiple abstraction levels. The plan-
ning process performs task-decomposition according to a
hierarchical task net, which is provided by the domain file. It
may generate short sequences of complex actions or longer
sequences of simple actions, depending on the given task.
Figure 6 depicts the implemented overall architecture of
action sequence generation and execution. In the symbolic
layer, the planner generates plans based on the current state
and an abstract task, which is provided by a human operator.
The plan consists of robot skills taken from the skill library
whose design and implementation has been discussed earlier.
To execute the plan physically, control programs are invoked
accordingly. Executed control programs access and modify
the current state of the world in symbolic terms as well as
continuous representations to ensure consistency.

Symbolic layer

replanning

Robot Skill Definition Symbolic Model

Robot Control Program
- reactive control

- task specific algorithm
- perception routines

Physical Description
- shape

- color K

- position

success failure modify world description

Executive Layer

Fig. 6. Architecture of the layered control system.
TABLE 11

ROBOT TASKS AND NUMBER OF REQUIRED ATOMIC ROBOT SKILLS.

Robot task # (skills)

pick up rubbish-can
open door
grasp cup from table
place cup on table
press light switch
change room

(SSIRY) e e e SV

Experiments showed that failures in skill execution are
mainly caused by world representations that are inconsistent
with reality. For example, if the planner lets the robot pick
up a cup that is actually not there, the skill will fail. In
such cases, the control program will change the world state
independently and cause replanning with the updated state.

The closed-world assumption is underlying every planning
process in JShop2 but cannot be guaranteed in real-world
applications. To overcome this, we introduced an atomic skill
that causes replanning explicitly. This enables the planner to
generate plans that include replanning based on deliberately
acquired additional knowledge.

B. Results

In a first line of experiments, we analysed a set of
prototypical tasks for autonomous service robots as proposed
in the literature. We defined atomic actions for six tasks
taking the arguments from Section III into account. The
domain description for the planner described only the decom-
position and execution of the prototypical tasks. To compare
the complexity of task decomposition and execution, in
the initial situation the robot was in the laboratory, clear
of other objects, and its manipulator was empty in park
position. The number of skills that are required to achieve
the tasks are shown in Table II. The “change room” task
assumed that the door is already open. This turned out to
be the simplest task, the skill sequence is: (approach
door; mobile) - (specify_pose door; laser) -
(approach roomy mobile). Accomplishment of all
tasks requires execution of 33 atomic skills. The domain
description of the symbolic planner consists of 6 skills, that
is a reuse factor of %—3 = 5.5 in the symbolic domain. Ad-
mittedly, the implementation of (approach ?o ?m) and
(specify 2o ?m) depends on the instantiated modality.
Thus, the reuse factor in the executive layer is slightly lower.

2003

Other criteria from Section III are hard to measure. Con-
sistency (A4), for example, has to be implemented in con-
trol programs. Independence of robot hardware and control
programs (B2) is supported as much as possible due to the
representation of modalities as a symbolic variable. This
initial experiment did not include ambitious tasks in complex
environments. Symbolic planning was reduced to a minimum
if present at all.

In a second line of experiments, we investigated the appli-
cability of the overall layered architecture as shown in Figure
5. We expand the symbolic domain description to complex
applications such as pick and place among rooms with closed
doors, hidden objects, and acting under incomplete or false
knowledge about the environment. The resulting plans for
such tasks easily consist of more than hundred atomic actions
of different complexity.

Experiments showed that the planned sequences of ato-
mic actions could be executed without human intervention.
Exceptions in control programs led to controlled abort of
plan execution and replanning based on the changed state of
the world. Especially in unknown environments, the robot’s
ability to actively cause replanning turned out to be fruitful.
For example, if the robot should pick up an unknown cup it
can search for it actively. If no cup was found, the planner
can decide how to behave next, e.g. search for it in another
room or change the light conditions by switching the light
on or off.

VI. CONCLUSION AND DISCUSSION

Every deliberative and reactive hybrid system has to decide
which problems are to be solved in symbolic terms and
which within reactive controllers. However, the level of
complexity of basic robot actions has rarely been addressed
in the literature. The gap between robot action execution
on the one hand, and deliberative planning systems on the
other is still an area of active research. We believe that our
discussion on these issues is an important contribution to
the development of versatile robots that possess symbolic
reasoning capabilities. The discussion on the granularity of
robot actions is certainly not conclusive, still our approach
is of practical nature and provides guidelines to efficiently
implement actions for autonomous robot systems.

We are aware that some people claim that a distinction
between deliberative and executive layer is outdated and that
integrated planning and control is to be preferred. For two
reasons we still believe that a layered system is reasonable:

1) The separation of the two layers is not strict. The
layers are coupled via object models that provide
both, symbolic descriptions as well as rich continuous
representations to be used for perception and physical
manipulation. The reactive implementation of action
and behavior is not separated from the symbolic world
description. Actions modify the symbolic representati-
on while the external world is perceived and manipula-
ted. Furthermore, the two layers are not hierarchically
organized in control of the overall system: an action

can cause the planner to generate new solutions while
the planner causes actions to be executed.

2) The focus of this work is applicability and practi-
cability. Other approaches may be cognitively more
plausible or more promising for advanced embodied
intelligence, however we achieved good results with
reasonable effort. The layered architecture effectively
supports debugging, maintenance and extension. Robo-
tics is not only a tool for Al research, it also focuses
on practical and robust solutions that will lead to
products accessible for a wide range of applications.
The approach developed in this work promises advan-
ced robot behavior and a short time to market with
technologies that are both state of the art as well as
sophisticated and robust.

The need for better understanding of the boundary bet-
ween symbol and control level is part of a higher goal to
build intelligent embodied robots. Our future work aims at
endowing the robot with more atomic skills. We consider
both hand crafted implementation and autonomous learning.

REFERENCES

[1] Ronald C. Arkin. Behavior-based Robotics. MIT Press, 2 edition,
1998.

[2] Stevan Harnad. The symbol grounding problem. Physika D, 42:335-
346, 1990.

[3] M. Ghallab, R. Alami, J. Hertzberg, M. Gini, M. Fox, B. Williams,
B. Schattenberg, D. Borrajo, P. Doherty, J. M. Morina, A. Sanchis,
P. Fabiani, and M. Pollack. A roadmap for research in robot planning,
2006.

[4] Valentino Braitenberg. Vehicles. Experiments in Synthetic Psychology.
MIT Press, Cambridge, Mass., 1984.

[5] Rodney A. Brooks. A robust layered control system for a mobile
robot. In ICRA Int. Conf. on Robotics and Automation, volume RA-2,
pages 14-23, 1986.

[6] S. Thrun, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert,
D. Fox, D. Hihnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz.
MINERVA: A second generation mobile tour-guide robot. 1999.

[71 D. Hihnel, W. Burgard, and G. Lakemeyer. Golex - bridging the gap
between logic (golog) and a real robot. In KI '98: Annual German
Conf. on Artificial Intelligence, pages 165-176, 1998. Springer-Verlag.

[8] R. Simmons, D. Goldberg, A. Goode, M. Montemerlo, N. Roy,
B. Sellner, C. Urmson, M. Bugajska, M. Coblenz, M. Macmahon,
D. Perzanowski, 1. Horswill, R. Zubek, D. Kortenkamp, B. Wolfe,
T. Milam, M. Inc, and B. Maxwell. Grace: An autonomous robot for
the aaai robot challenge. Al Magazine, 24:51-72, 2003.

[9] T. Asfour, K. Regenstein, P. Azad, J. Schrder, A. Bierbaum, N. Vah-
renkamp, and R. Dillmann. ARMAR-III: An integrated humanoid
platform for sensory-motor control. In /EEE-RAS Int. Conf. on
Humanoid Robots, 2006.

[10] T. Asfour, D.N. Ly, K. Regenstein, and R. Dillmann. Coordinated
task execution for humanoid robots. In Experimental Robotics IX,
volume 21, pages 259-267. STAR, 2005.

[11] U. D. Hanebeck, C. Fischer, and G. Schmidt. Roman: A mobile robotic
assistant for indoor service applications. In IROS Int. Conf. on Robotics
and Systems, 1997.

[12] E. Beaudry, F. Kabanza, and F. Michaud. Planning for a mobile robot
to attend a conference. In Canadian Conf. on Artificial Intelligence,
pages 48-52, 2005.

[13] Martin Weser and Jianwei Zhang. Proactive multimodal perception
for feature based anchoring of complex objects. In ROBIO Int. Conf.
on Robotics and Biometrics, 2007.

[14] Silvia Coradeschi and Alessandro Saffiotti. An introduction to the
anchoring problem. Robotics and Autonomous Systems, 43(2-3):85—
96, 2003. Special issue on perceptual anchoring.

[15] D. Nau, T. C. Au, O. Ilghami, U. Kuter, W. Murdock, D. Wu, and
F. Yaman. Shop2: An htn planning system. Journal on Artificial
Intelligence Research, 20, 2003.

2004

