
Design of semi-decentralized control laws for distributed-air-jet
micromanipulators by reinforcement learning

Laëtitia Matignon, Guillaume J. Laurent and Nadine Le Fort-Piat

Abstract— Recently, a great deal of interest has been devel-
oped in learning in multi-agent systems to achieve decentralized
control. Machine learning is a popular approach to find
controllers that are tailored exactly to the system without any
prior model. In this paper, we propose a semi-decentralized re-
inforcement learning control approach in order to position and
convey an object on a contact-free MEMS-based distributed-
manipulation system. The experimental results validate the
semi-decentralized reinforcement learning method as a way to
design control laws for such distributed systems.

I. INTRODUCTION

In recent years there has been increased interest in
decentralized approaches combined with machine learning
techniques to solve complex real world problems [1], [2],
[3]. A decentralized point of view offers several potential
advantages in scalability and robustness, and can overcome
the complexity constraints of conventional central control.
Machine learning is a popular approach to find controllers
that are tailored exactly to the system [4].

We propose to use reinforcement learning (RL) control
techniques in a semi-decentralized perspective as a way to
design control laws for distributed manipulation systems.
Distributed manipulation systems are based on MEMS1-
actuator arrays that can be used for positioning, conveying
and sorting of small parts, or as bulk-fabricated (cheap),
ultra-thin transport mechanisms, e.g. for paper in copy
machines or printers. Distributed manipulation systems can
be divided in two categories: contact systems and contact-
free systems. Contact systems simulate cilia and can mainly
perform high load capacity and accurate positioning [5],
[6]. Contact-free systems use air-flow levitation and have
several advantages including higher velocity and no friction
problems but they require a greater level of complexity for
the control [7], [8].

In this paper, we aim at controlling a distributed-air-
jet MEMS-based micromanipulator designed by Chapuis et
al. [7] as part of a research project funded by the NRA
(French National Research Agency). This project federates
five French research teams and a Japanese one from five
laboratories2. The device to control is an array of micro-
electro-valves able to produce controlled and directed micro-
air-jets (cf. figure 1). The joint action of air-jets can achieve
some positioning and conveyance tasks of a small part.

L. Matignon, G. J. Laurent and N. Le Fort-Piat are with FEMTO-
ST/UFC-ENSMM-UTBM-CNRS, Université de Franche-Comté, Besançon,
France, corresponding author: guillaume.laurent@ens2m.fr

1Micro Electro Mechanical Systems
2FEMTO-ST (Besançon, France), InESS (Strasbourg, France), LAAS

(Toulouse, France), LIFC (Besançon, France) and LIMMS (Tokyo, Japan)

Distributed

Air-Flow

Surface

Air-Jets

Object

(a) Front-Side View

(b) Back-Side View

Pneumatic

Microactuator

Nozzle

Electrode

(for micro-valve

displacement to right)
Movable

Micro-Valve

Electrode

(for micro-valve

displacement to left)

Flexure

Fig. 1. Distributed-air-jet MEMS-based micromanipulator [7].

The long-term objective is to design and develop a fully
integrated distributed micro-manipulation system, that we
call smart surface, for conveying, fine positioning and sorting
of parts at meso-scale (µm to mm). Fully integrated means
that the control must be embedded. However, a fully inte-
grated approach still remains rigid and costly in micro-scale
fabrication for research works on control. Consequently, in
this paper, we experiment our control algorithms with a
model of the distributed-air-jet micromanipulator.

There are many challenging issues concerning the motion
control and the increase of stability of the manipulated part.
Finding coherent control laws for hundreds of independent
air-jets is a complex problem. Fluidic effects are also very
hard to control and actuators are not perfectly the same
due to process dispersion factors. In the second part of
this paper, we show that the open-loop control approach,
usually proposed for contact distributed systems and called
programmable vector field [9], [5], is not satisfactory for this
purpose. That’s why we investigate decentralized RL control
techniques.

The proposed control architecture is based on RL in
cooperative multi-agent systems, where multiple agents are
cooperating to solve a joint task [10]. This framework allows
to find local control laws which joint actions are optimal at
the global level. Moreover, RL can find control laws without
prior knowledge on the system. Thanks to this property, our
approach could be applied to different distributed manipula-
tion systems.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 3277

Fig. 2. Geometric notations in case of a nozzle close to the object, normal
to ~x and orienting an air-jet with a velocity ~vair,i (top view).

II. DISTRIBUTED-AIR-JET MICROMANIPULATOR

A. Real system

Figure 1 illustrates principles of the distributed-air-jet
MEMS-based micromanipulator. It consists of an active
surface based on an array of pneumatic micro-nozzles. Air-
flow comes through electrostatic micro-valves in the back-
side of the device. Each electrostatic micro-actuator works
as a normally closed air-valve but has two opened positions,
each generating opposite directed horizontal air-jet. When the
valve is closed a slight vertical air-jet is produced to ensure
levitation. In the front-side, the active surface is simply
represented by holes where air-jets are produced. An object
can be carried by actuating air-jets independently at each
point. An overhead camera is used to get the position of
the object’s center. See [7] for more details about MEMS’s
design and working.

B. Model

The aim of this section is to state a realistic model
of the distributed-air-jet micromanipulator. A multi-domain
simulation of this distributed-parameter system is a self-
challenging task. We make here some assumptions in order
to keep only a finite set of differential equations based on
fluidic forces exerted by an air-flow on a body.

1) Fluidic forces: Each nozzle is centered on a 1mm2

square. A nozzle generates :

• either a vertical air-jet ~vair = vair~z when the micro-
valve is closed (the valve state a is 0),

• or an oriented air-jet ~vair = vair~x (nozzle normal to ~x)
or ~vair = vair~y (nozzle normal to ~y) when the micro-
valve is opened (the valve state a is ±1).

By the combined action of vertical and oriented air-jets,
forces and moments are exerted on the object. Two fluidic
forces are defined : the levitation force FL applied in the
vertical direction ~z and the thrust force FT which conveys
the object on the surface (~x, ~y). A torque also applies leading
to the object’s rotation around ~z.

Fig. 3. Geometry of the distributed-air-jet micromanipulator. The device
has a total of 96 actuators (air-jet).

2) Hypotheses: For the conveyance model in two dimen-
sions, we only model the thrust force FT so the hypotheses
are :
• the levitation force FL is not evaluated; the object is

supposed to be constantly in levitation,
• effects of vertical air-jets on the object’s motion are

neglected,
• we model only interactions between oriented air-jets and

the object’s edges. Oriented air-jets reaching the back
side of the object are thus neglected,

• air-jets are independent, i.e. there aren’t any interactions
between air-jets.

3) Thrust force: To establish a model of the thrust force,
we need some notations shown on figure 2. The object is
represented by a N -faces polygon and is conveyed in (~x, ~y).
Its center of gravity is noted G, G’s coordinates are noted
(x, y). All the air-nozzles are numbered between 1 to M .
When an air-nozzle is less than 5 mm away to the object
and when the air-jet is in the good direction, the produced
air-flow reaches a small area of the object’s edge, called wet
area. We assume that the wet area of the face is just the
normal projection of the nozzle in (O, ~y, ~z). This relation
between a face n and a nozzle i is described using the
following variables:
• ~un is the normal vector of the face n,
• si,n is the surface of the normal projection of the wet

area of the face n,
• Pi,n is the central point of the wet area of the face n,
• di,n is the distance between Pi,n and the nozzle i.
The elementary thrust force of the air-jet i on the face n

is :

~fi,n =
1
2
ρCxsi,nv

2
i,n~un (1)

where Cx is the drag coefficient, ρ the density of the air
and vi,n the relative speed of the air at the point Pi,n. Each
elementary thrust force ~fi,n is equal to 0 with a probability of
0.05 to imitate possible micro-actuator failures. The relative

3278

speed is given by :

~vi,n = (~vair(di,n, ai)− ~vobj) · ~un (2)

where ~vobj is the speed of the object and ~vair is the speed
of the air-jet. The direction of ~vair is normal to the direction
of the nozzle. The magnitude of ~vair results from a finite
element simulation [7] that gives air-jet velocity decreasing
with the distance d to the nozzle and according to the valve
state a :

vair(d, a) =

0 if a = 0

5500 sgn(a)e−
d2

3.38 if a 6= 0 and d ≥ 0

−1000 sgn(a)e−
d2

0.08 if a 6= 0 and d < 0
(3)

We can notice a negative air-jet velocity if d < 0. Indeed,
when a nozzle generates an air-jet oriented along ~x, a slight
opposite air-jet is produced along −~x. That leads an object
moving slowly along ~x to bounce of opposite air-jets.

Then, the model sums all elementary thrust forces gener-
ated by the M air-jets on the N object edges according to
the surface geometry (cf. figure 3). The resulting thrust force
FT is applied at its center of gravity G :

~FT =
M∑
i=1

N∑
n=1

δi,n ~fi,n (4)

where δi,n equals 1 if the air-jet i reaches the face n and
zero else. δi,n is also zero if the air-nozzle is under the object
(see hypotheses). The resulting torque is :

~MFT
=

M∑
i=1

N∑
n=1

δi,n(~GP i,n ∧ ~fi,n). (5)

4) Viscous force: Friction forces due to the surrounding
air are spread over the surface of the object. The resulting
force is the viscous force :

~FV = −Kη~v (6)

where K is a geometric coefficient dependent on the shape
of the object, η the coefficient of viscosity and ~v the speed
of the object.

5) Conveyance model: The object’s dynamic follows the
equations :

mẍ = ~FT · ~x−Kηẋ
mÿ = ~FT · ~y −Kηẏ
Jθ̈ = ~MFT

· ~z
(7)

where m is the mass of the object, J its inertia moment and
θ̇ its angular speed.

III. OPEN-LOOP CONTROL BY PROGRAMMABLE VECTOR
FIELD

A. Control problem

In this section, we assume that no sensor is available
(open-loop control). The problem is to address a direction
to each air-jet in order to get a specific motion of the object.

Fig. 4. Task description.

Fig. 5. Vector field.

The magnitude of an air-jet is not adjustable. For instance,
we focus here on a stabilization task; a cylinder (2 mm in
diameter, 0.25 mm in height) must be maintained at a given
place of the surface. The cylinder is modeled by a 21-faces
polygon.

We aim to regulate the position in only one direction. For
that, we use a restricted area of the active surface. This
restricted area contains 19 columns per 2 rows of nozzles
(cf. figure 4). All east-west air-jets are assigned to a constant
air-jet direction (east, middle or west). North-south air-jets
stay in middle position to ensure object’s levitation. For this
simple task, we try to use the programmable vector field
method to determine the direction of each air-jet.

B. Programmable vector field

Programmable vector field was introduced by Böhringer et
al. [9], [5] to control contact-actuator arrays and transversely
vibrating plates. Programmable vector field is sensor-less and
may be employed to orient, sort, feed, assemble parts, etc.

The principle of programmable vector field is simple:
actuators are assigned to a specific direction with regard to
their position, then, when a part is placed on the device, the
vector field induces a force and a torque upon it. Over time,
the part may come to rest in a dynamic equilibrium state.

For the generation of manipulation plans with pro-
grammable vector fields, it is essential to be able to predict
the motion of a part in the field and to determine the stable
equilibrium poses a part can reach in which all forces and
moments are balanced. To create a stable equilibrium point in
the middle of the surface, we used the vector field shown by
figure 5. The middle of the surface is located at yg = 9.5 mm.

C. Experimental results

Figure 6 shows the position of the cylinder’s center versus
the time. Three short perturbations at time 0, 5 and 10 s are
done to test the robustness of the regulation.

3279

0 5 10 15
6

7

8

9

10

11

12

13

14

Time (s)

P
o
si

ti
o
n
 (

m
m

)

Fig. 6. Position of the cylinder’s center according to the time using
programmable vector field open-loop control (solid line), the dashed line
represents the target position. Short perturbations are done at time steps 0,
5 and 10 s.

As we can see on the curve, the motion is very oscillatory
and non-harmonic. Two oscillating phases can be distin-
guished. Moreover, in some cases due to a short perturbation,
the object misses the target position and stays in another
stable position (at time step 5 s). The reason is that slight
counter-jets are produced in the opposite direction of the
air-jets as described by equation 3. This phenomena was
observed with the real system.

The first conclusion is that the vector field can create a
stable equilibrium point. But the stable area is very small
and the motion of the object is very oscillatory. The constant
programmable vector field is acting as a simple on-off
regulator with a high gain, so turning the velocity down
might get rid of some of the oscillations and overshoots
at the cost of slower convergence. This could be done
by reducing the input pressure. However, as programmable
vector field control is open-loop, it will not be able to reject
perturbations.

The second conclusion is that the control of the air-
jet micromanipulator is not obvious. So, we get a strong
benchmark to test various control approaches.

IV. CONTROL BY REINFORCEMENT LEARNING

A. Control problem

In this section, we assume that the manipulation area is
supervised by a global sensor like a camera. Thanks to this
sensor, the object’s position is known at intervals of time
T (sampling period). The position at time step k is noted
(xk, yk).

In order to reject perturbations or to control the object
trajectory, a suitable combination of air-jets must be calcu-
lated at each sampling period in accordance with the position
(xk, yk) of the part. The control signal (air-jet direction)
sent to the ith air-jet is noted ai,k (that can take one of
the three possible discrete values). To control the entire
surface, there are 96 control signals to process at each step!
A fully centralized control architecture is not suitable due
to processing complexity and the number of communication
channels required (cf. figure 7a).

(a) Centralized control

(b) Semi-decentralized control

Fig. 7. Control architectures.

Another solution is to use one controller per air-jet.
The object’s position is broadcasted to each independent
controller so as to close the loop. Then, each controller sends
a command to its associated air-jet. We call this architecture
semi-decentralized because acting and decision-making are
local but sensing is global (cf. figure 7b).

The control problem is to design local control laws that
generate a satisfactory global behavior of the part. Under
some assumptions, reinforcement learning techniques are
able to find such controllers.

B. Reinforcement learning

RL methods are inspired by dynamic programming con-
cepts and have been studied extensively in centralized frame-
work [4]. A controller, also called agent, learns by interac-
tions with its environment, using a scalar reward signal called
reinforcement as performance feedback. The studies about
reinforcement learning algorithms in multi-agent systems are
based on Markov game framework.

Definition 1: A cooperative Markov game3 is defined as
a tuple < m,S,A1, ..., Am, T,R > where : m is the number
of agents; S is a finite set of states; Ai is the set of actions
available to the agent i (and A = A1 × ... × Am the joint
action space); T : S×A×S → [0, 1] is a transition function

3also called team game.

3280

that defines transition probabilities between states; R : S ×
A→ < is the reward function.

This framework is equivalent to the semi-decentralized
architecture we presented because all agents have access to
the complete observable state s. Reinforcement function is
determined by the task to achieve (see below). The transition
function T is unknown from agent’s perspective (learning
hypothesis).

C. Think globally, act locally

The objective of the group (or the global objective) is to
find a joint policy π that maximizes for all states s in S
and joint actions a in A the expected sum of the discounted
rewards in the future,

Qπ(s, a) = Eπ

∞∑
j=0

γjrj+k+1

∣∣s, a
 (8)

Qπ(s, a) is called the joint or global action-value function.
In the multi-agent system framework, independent learners

(ILs) were introduced in [11] as agents which don’t know
the actions taken by the other agents. The objective of an IL
is then to find a local policy πi that maximizes the expected
sum of the discounted rewards in the future for its own action
ai in Ai,

Qπi
i (s, ai) = Eπi

∞∑
j=0

γjrj+k+1

∣∣s, ai
 (9)

Qπi
i (s, ai) is called the local action-value function. The IL

approach brings the benefit that the size of the state-action
space is independent of the number of agents. This choice is
pertinent for the distributed-air-jet micromanipulator in order
to avoid exponential growth of action space with the number
of agents.

It is important to notice that it is necessary for each
independent learner to find its local optimal action-value
function, in order that the group achieves the global optimum
[12].

D. Decentralized Q-Learning

Q-learning [13] is one of the most used RL algorithm in
single-agent framework because of its simplicity and robust-
ness. That’s also why it was one of the first to be applied to
multi-agent environments [14]. Despite some difficulties as
the coordination or the loss of theoretical guarantees [15], it
was successfully applied with ILs on some applications [16],
[17], [18], [19].

For an IL i, Q-Learning consists in getting a more and
more accurate estimation of the optimal local action-value
function using a recursive updating equation, that is:

Qi(sk−1, ai,k−1)← Qi(sk−1, ai,k−1) + αδ (10)

where δ = rk + γmax
b∈Ai

Qi(sk, b)−Qi(sk−1, ai,k−1), ai,k−1

is the individual action chosen by the agent i at time step
k − 1, α ∈]0; 1] is the learning rate and γ ∈ [0; 1[is the

discount factor. Qi(s, ai) is the current value of the state-
action pair (s, ai) for the agent i. Qi(s, ai) values are stored
in a |S| × |Ai| array.

We propose to combine decentralized Q-learning with
eligibility traces to obtain a more efficient method. The
eligibility trace e(s, a) is a measurement of the age of the
last visit of the state-action pair (s, a). Action-value function
is then globally updated according to eligibility trace, that is:

Qi(sk−1, ai,k−1)← Qi(sk−1, ai,k−1) + αδei(sk−1, ai,k−1)
(11)

Much more Q-values are then updated at each transition. This
method is a decentralized version for ILs of the Watkins’s
Q(λ) algorithm4 [20].

At each time step, a new action ai,k is selected according
to Qi(sk, ∗) values and to an exploration/exploitation com-
promise. We use the ε-greedy action selection method5.

V. EXPERIMENTAL RESULTS

A. Part stabilization

As illustrated on the figure 4, we aim to control columns
of east-west nozzles to regulate the position of the part in
only one direction like in the previous section. All the east-
west nozzles of a column are controlled together according to
the air-jet direction required. So the system requires as much
controllers as east-west nozzles columns, i.e. 10 controllers.
Possible actions of each controller are: directing the air-jet
on the east or on the west or closing the valve, i.e. 3 actions
(east, west, middle). So, the cardinal |Ai| of the action space
Ai of the agent i is 3.

The state of the system sk at time step k is the object’s
current and previous positions, sk = (yk, yk−1). To apply RL
in the form presented previously, time axis and continuous
state must be discretized. The sample time of our simulation
is 0.01 seconds (between step the integration method is
ODE45). For object’s position, a 41×41 spatial tile-coding is
used. So, this yields Qi tables of size 41×41×3 for each 10
controllers, to compare with a Q table of size 41× 41× 310

in a centralized view.
According to [21] and in order to stabilize the object at

the position yg with null speed, the chosen reward function
is :

R(yk, yk−1) =

1 if (yk, yk−1) ∈ [yg − ρ, yg + ρ]2

−1 if yk < ymin or yk > ymax

0 else
(12)

where ρ sets a margin, ymin the minimal abscissa and ymax
the maximal abscissa.

Independent controllers learn by decentralized Q-Learning
during 300 trials. Each trial starts with the object in a random
initial state (y0 ∈ [3, 15] mm) and runs at the most 10

4λ is the decay parameter for eligibility traces.
5The probability of taking a random action for an agent i is ε and,

otherwise, the selected action is the one with the largest Qi-value in the
current state.

3281

0 1 2 3 4 5 6

4

5

6

7

8

9

10

11

12

13

Time (s)

P
o
si

ti
o

n
 (

m
m

)

Result with the simulated air-jet micromanipulator (short perturbations are
done at time steps 0, 2 and 4 s)

Fig. 8. Position of the cylinder’s center according to the time (solid line)
after learning with the Q-Learning algorithm, the dashed line represents the
target position. The control architecture is semi-decentralized.

seconds. A trial ends if the object gets out from the restricted
area (yk < ymin or yk > ymax). All trials use α = 0.1,
γ = 0.9, ε = 0.01 and ρ = 0.5 mm.

Figure 8 shows the position of the object’s center accord-
ing to the time after learning. It takes around 0.2 seconds for
the ILs to regulate the object’s position with an oscillation
range of 0.1 mm. The perturbations at time steps 0, 2 and
4 s are quickly rejected.

Semi-decentralized RL manages to stabilize the object
with a high damp factor and with a good robustness to
perturbations. This result demonstrates the potential capacity
of RL control to regulate position and speed of a levitating
part on distributed-air-jet micromanipulator.

B. Part conveying

The objective is to convey the object to the middle of
the north border of the surface illustrated on the figure
3. The object is fed to the surface at the initial position
(x0, y0) = (7.5, 1.5)mm and with a random speed (ẋ ∈
[−50,−10]mm/s). Open-loop control by programmable
vector field is first applied to this task. The vector field shown
by figure 9 is used to convey the object. The figure 10a shows
the object’s trajectories for various initial speeds of the object
(ẋ = {−10,−20,−30,−40,−50} mm/s). As illustrated on
the figure, this vector field is not able to convey the object
to its target position for all initial speeds.

We propose to test if semi-decentralized reinforcement
learning control is robust to the different initial speeds of
the object. This time, 96 independent controllers learn by
decentralized Q(λ) during 1000 trials. Each trial starts with
the object at the initial position and with a random speed
and runs at the most 10 seconds. A trial ends if the object
gets out from the surface. All trials use α = 0.1, γ = 0.9,
λ = 0.7, ε = 0.01. The state of the system sk at time
step k is the object’s current and previous positions, sk =
(xk, yk, xk−1, yk−1). The sample time of our simulation
is 0.01 seconds (between step the integration method is
ODE45). For object’s position, a 13 × 13 × 9 × 9 spatial

Fig. 9. Vector field for the part conveying.

(a) Results with programmable vector field

(b) Results with semi-decentralized RL control

Fig. 10. Object’s trajectories for various initial speeds of the object. The
initial speed ẋ is here noted vx.

tile-coding is used.
According to [21], we incorporate prior knowledge or bias

to speed up RL. We choose to use a transient bias embedded
in initial Q values. This bias advises controllers to generate
the previous vector field (figure 9) at the beginning of the
learning process. In order to realize the part conveying, the
chosen reward function is :

R(xk, yk) =

10e−

(x− xmax
2)2

2 if y ≥ ymax
−3 if x < xmin or x > xmax or y < ymin

0 else.
(13)

3282

where (x, y) are the object’s coordinates. The reinforcement
function rewards agents when the goal is reached, and
punishes them when another border is crossed.

At the end of the learning process, some conveying
tasks with various initial speeds of the object (ẋ =
{−10,−20,−30,−40,−50} mm/s) are realized with con-
trollers following their greedy policy6. The figure 10b shows
the object’s trajectories.

Semi-decentralized RL manages to convey the object near
to the target position for all tested initial speeds. Con-
trollers adjusted the initial bias so as to fit the speed of
the object. This result confirms the potential capacity of
semi-decentralized RL methods to control such distributed
systems.

VI. CONCLUSIONS AND FUTURE WORKS

We first showed that the usual open-loop control for con-
tact distributed-manipulation system, called programmable
vector field, fails to damp object’s motion and to reject per-
turbations on the contact-free distributed micromanipulator.

Then, a semi-decentralized reinforcement learning control
approach has been investigated. This way of control has
been validated in comparison with programmable vector
field. Notably, it achieves good positioning and conveying
performance and has high control stability. This result is
a proof-of-concept of using decentralized RL control for
distributed-manipulation systems. It is also a new successful
application of decentralized Q-learning variant algorithms for
independent agents.

We made here some strong assumptions in the model
used for simulation. Although the behavior of the model is
realistic, some assumptions as the independence of air-jets
may be simplistic. Well, the purpose of this paper is precisely
to propose a control approach by learning that does not need
to state any model to find a controller. One major interest
of this approach is to adapt itself to any systems. So, there
is likelihood that decentralized RL control will achieve the
control of a real contact-free distributed micromanipulator

ACKNOWLEDGMENT

The authors gratefully acknowledge Joël Agnus and David
Guibert from the FEMTO-ST Institute for their technical
assistance. This work was supported in part by the Smart
Surface NRA (French National Research Agency) project
(ANR 06 ROBO 0009 03).

APPENDIX I
NUMERICAL DATA OF DYNAMICAL MODEL

Parameter Caption Value Unit
m object’s mass 6, 6.10−3 g
l object’s thickness 2, 5.10−1 mm
Cx drag coefficient 1, 11
ρ air density 1, 3 kg/m3

J object’s moment of inertia 0, 05 g/mm2

η air viscosity 1, 81.10−5 kg/m.s
K viscosity coefficient 2, 75

6The selected action is the one with the largest Qi-value in the current
state.

REFERENCES

[1] K. Verbeeck, A. Nowé, J. Parent, and K. Tuyls, “Exploring selfish
reinforcement learning in repeated games with stochastic rewards,”
Autonomous Agents and Multi-Agent Systems, vol. 14, no. 3, pp. 239–
269, 2007.

[2] K. Tumer and A. Agogino, “Distributed agent-based air traffic flow
management,” in AAMAS ’07: Proceedings of the 6th international
joint conference on Autonomous agents and multiagent systems. New
York, NY, USA: ACM, 2007, pp. 1–8.

[3] D. Wolpert, J. Sill, and K. Tumer, “Reinforcement learning in
distributed domains: Beyond team games,” in Proceedings of the
Seventeenth IJCAI, 2001.

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. The MIT Press, Cambridge, 1998.

[5] K.-F. Böhringer, B. R. Donald, R. Mihailovich, and N. C. MacDonald,
“Sensorless manipulation using massively parallel microfabricated
actuator arrays,” in Proc. of IEEE ICRA, San Diego, CA, May 1994,
pp. 826–833.

[6] M. Ataka, B. Legrand, L. Buchaillot, D. Collard, and H. Fujita,
“Design, fabrication and operation of two dimensional conveyance
system with ciliary actuator arrays,” IEEE/ASME Transactions on-
Mechatronics, vol. 14, pp. 119–125, 2009.

[7] Y. Fukuta, Y.-A. Chapuis, Y. Mita, and H. Fujita, “Design, fabrication
and control of mems-based actuator arrays for air-flow distributed
micromanipulation,” Journal of Micro-Electro-Mechanical Systems,
2006.

[8] S. Konishi and H. Fujita, “A conveyance system using air flow based
on the concept of distributed micro motion systems,” Journal of Micro-
Electro-Mechanical Systems, vol. 3, no. 2, pp. 54–58, 1994.

[9] K.-F. Bohringer, B. Randall, D. Noel, and C. Macdonald, “What
programmable vector fields can (and cannot) do: Force field algorithms
for mems and vibratory parts feeders,” in Proc. of IEEE ICRA, 1996,
pp. 822–829.

[10] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of
the art,” Autonomous Agents and Multi-Agent Systems, vol. 11, no. 3,
pp. 387–434, 2005.

[11] C. Claus and C. Boutilier, “The dynamics of reinforcement learning
in cooperative multiagent systems.” in Proceedings of the Fifteenth
National Conference on Artificial Intelligence, 1998, pp. 746–752.

[12] M. Lauer and M. Riedmiller, “An algorithm for distributed
reinforcement learning in cooperative multi-agent systems,” in
Proc. of the International Conference on Machine Learning.
Morgan Kaufmann, 2000, pp. 535–542. [Online]. Available:
citeseer.ist.psu.edu/lauer00algorithm.html

[13] C. Watkins and P. Dayan, “Technical note: Q-learning,” Machine
Learning, vol. 8, pp. 279–292, 1992.

[14] M. Tan, “Multiagent reinforcement learning: Independent vs. cooper-
ative agents,” in 10th International Conference on Machine Learning,
1993, pp. 330–337.

[15] L. Matignon, G. J. Laurent, and N. L. Fort-Piat, “A study of fmq
heuristic in cooperative multi-agent games,” in Proceedings of the
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS),
Workshop 10: Multi-Agent Sequential Decision Making in Uncertain
Multi-Agent Domains,, 2008.

[16] S. Sen and M. Sekaran, “Individual learning of coordination knowl-
edge,” JETAI, vol. 10, no. 3, pp. 333–356, 1998.

[17] L. Busoniu, R. Babuska, and B. D. Schutter, “Decentralized reinforce-
ment learning control of a robotic manipulator,” in Proceedings of the
9th International Conference on Control, Automation, Robotics and
Vision (ICARCV 2006), Singapore, Dec. 2006, pp. 1347–1352.

[18] Y. Wang and C. W. de Silva, “Multi-robot box-pushing: Single-agent
q-learning vs. team q-learning,” in Proc. of IROS, 2006, pp. 3694–
3699.

[19] H. Guo and Y. Meng, “Dynamic correlation matrix based multi-q
learning for a multi-robot system,” in IROS, 2008, pp. 840–845.

[20] C. J. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,
Cambridge University, Cambridge, England, 1989.

[21] L. Matignon, G. J. Laurent, and N. Le Fort-Piat, “Improving rein-
forcement learning speed for robot control,” in Proc. of the IEEE
International Conference on Intelligent Robots and Systems, Beijing,
China, Oct. 9–15 2006.

3283

