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Abstract— Autonomous mobile robots are deployed in a vari-
ety of application domains, resulting in scenario specific imple-
mentations. However these systems share common components
responsible for perception, path planning and task execution.
In order to find a formal way to identify the influence of the
environmental complexity to the used methods, an approach for
quantitative system interdependence analysis is introduced. The
coherence between several performance indicators of different
system components, as well as the influence of environmental
parameters on the system, are learned and quantitatively
evaluated. Performance evaluation of an autonomous robot
navigating in two different urban environments is conducted
and presented results demonstrate the applicability of the
proposed approach.

I. INTRODUCTION

Autonomous robotic systems are called to operate in a

wide variety of environments, which all require specific types

of capabilities in order to handle the arising complexities.

Guide or mall robots [1] are examples of robotic applications

in structured indoor environments. While navigation in such

situations can be often simplified by providing the robots

with complete environment knowledge, still challenges arise

through the interaction with people in order to provide

them with information. Gradually, the application domain

of social robots has been extended to unstructured urban

environments [2], while other robots operate in the desert [3],

where no interaction is required at all but the focus is

primarily on fully autonomous high-speed driving.

All these systems carry out tasks in partially known

or unknown environments and are constantly faced with

situations that require decision making capabilities under per-

ceptual uncertainty. In order to ensure the robustness of such

autonomous robots, it is of high interest to identify the crucial

environmental and system component performance indicators

and how they influence the overall system behavior. This way

the robots can anticipate failures, by predicting the effects

that actions would have and correctly adjust their behavior.

Most autonomous mobile robots are complex systems,

consisting of several components. Commonly, these compo-

nents can be separated into three categories according to their

purpose. Perceptual components are responsible for building

an environment representation e.g. in form of a map and also

for localizing the robot. This representation is consequently

used to calculate the trajectory of the robot by path planning

components. Finally, the chosen trajectory is executed and

the progress is monitored by task execution components. It
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is obvious that sensing, planning and motion execution are

interconnected. Although performance indicators have been

proposed for each of these components, it is still not possible

to assess the effect that environmental parameters, or changes

in performance indicators of specific system components,

have on the rest of the system.

In order to find a formal way to compare the applicability

of methods to these shared problems, the focus of this

paper is on the identification of the sensitivity of a robotic

system to the changes within its environment. In this respect,

performance is in the following expressed as system stability

against external influences. Moreover the interdependence

between system components, such as perception, planning

and execution, is learned, which enables the determination of

crucial system components with respect to robustness. This

knowledge can be helpful during system development and

even be integrated into the on-line reasoning process of the

system to enhance its autonomy.

The remainder of this paper is organized as follows: Sec. II

summarizes related work followed by a description of the

presented approach in Sec. III. In Sec. IV a set of perfor-

mance indicators is specified. Sec. V shows how Bayesian

Networks are learned to represent the coherence between

indicators and in Sec. VI information-theoretic criteria are

presented to evaluate the degree of the learned coherence.

Results based on an autonomous robot navigating in urban

environments are presented in Sec. VII.

II. RELATED WORK

The existence of literature focusing on the performance

evaluation of autonomous systems confirms the importance

of such methods. Qualitative evaluation criteria of robotic

systems have been proposed in [4]. These approaches focus

on task objective and social measures to identify both,

the efficiency of robot and human. In [5] an evaluation

framework for characterizing the autonomy of unmanned

vehicles by considering mission complexity, environmental

difficulty and HRI is presented. However in order to apply

these concepts to embodied autonomous robots and compare

their performance with other existing systems and differ-

ent environments, benchmarks and quantitative performance

evaluation criteria are required.

Benchmark scenarios, such as the DARPA Grand Chal-

lenge [6] and RoboCup@Home [7], are used to compare

the performance of autonomous systems. A similar way

to provide reproducibility of environmental conditions is

to standardize test arenas for mobile robots [8]. However,

such benchmarks do not provide the comparison of robotic

systems applied in different scenarios. For example, it is not
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possible to compare a robot which was build to operate in a

home environment [9] with autonomous vehicles, which are

supposed to navigate through an urban environment [10].

Actually, the scenario-dependence is so strong, that the win-

ning vehicle of the first DARPA Grand Challenge [3] would

not be able to take part in the second challenge, since the

scenario changed from the desert to an urban environment.

Another risk of standardized benchmark scenarios is the

resulting intensified development of robotic systems for these

specific situations. A problem in this respect might also be

the adaptation of algorithms to these specific situations for

the cost of generality.

Further approaches introduce quantitative metrics to eval-

uate robot performance and the influence of the environ-

ment on it during navigation missions. Several metrics are

proposed in [11] to characterize path quality. The entropy

and the compressibility of the environmental information are

used in [12] to estimate the complexity of an environment.

This method can be also used to identify attractor points.

The relation between the environment and the performance

of a robotic system is learned in [13] by using a Dynamic

Bayesian Network. This way the coherence among the met-

rics and also the environment is identified. To what extent

the performance of one system component influences the

quality of another is determined in [14], where the degree of

autonomy of a robot is evaluated by combining task perfor-

mance with world complexity. However, no formal method

is presented and the evaluation is based only on simulated

data assuming complete knowledge of the environment.

In the approach presented in this paper, several perfor-

mance indicators for the different system components are

discussed and a method for quantitative system interdepen-

dence analysis is introduced. The structure of a Bayesian

Network is learned from experimental data, in order to iden-

tify the coherence between external and internal indicators.

Subsequently information-theoretic criteria are used for the

evaluation of the coherence. This way, the situation and the

effect, that changes in performance indicators of specific

system components have on the rest of the system, can be

assessed. Results from the system analysis are presented,

using data gathered during field experiments with the ACE

robot [15].

III. OVERVIEW OF THE PROPOSED APPROACH

In this section a method for system interdependence anal-

ysis is proposed. It enables the measurement and evaluation

of system performance with respect to the environment

parameters and also provides means for a robot to reason

about its current state and the interdependences between

system components. The approach is illustrated in Fig. 1.

As the robot operates, system outputs are monitored and

performance indicators for each of the system components

are calculated. Their values are used to learn the structure

of a Bayesian Network (BN) off-line and train its parame-

ters. The learned structure identifies the coherence between

indicators. In order to quantitatively evaluate this coherence

between indicators from different system parts, information-

theoretic analysis is performed on the parameters of the
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Fig. 1. Flow chart of the proposed system interdependence analysis.

TABLE I

PERFORMANCE INDICATORS

Perceptual Ind.: Hm, HP, INFO

Planning Ind.: sp, nw, var(∠(w1
,φr)), cad, nv

Execution Ind.: vr , var(φr)

learned BN. In the next sections each of the steps is going

to be analyzed. The acquired quantitative relation can con-

sequently be used to adjust the on-line functionality of the

robot to the situation. This is illustrated by the dashed line

in Fig. 1. However, an analysis of how this can be achieved

reaches beyond the scope of this paper.

IV. PERFORMANCE INDICATORS

The determination of system performance requires prior

identification of adequate indicators. The proposed interde-

pendence analysis approach can handle arbitrary indicators

which can be defined by the system designer. However in

order to highlight the performance of the approach based

on the ACE robot, the ten indicators shown in Table I have

been derived empirically to describe the internal system state.

According to the system architecture in [15], the indicators

are grouped into three categories.

1) Perceptual Indicators: Perceptual indicators describe

the uncertainty of the robot about its position and its en-

vironment model. Map uncertainty can be measured by the

entropy Hm of the map. For the case of an occupancy grid

m this is given by

Hm = −r2 ∑
l∈m

−p(l)logp(l)+(1− p(l))logp(1− p(l)), (1)

where l is a cell, p(l) the occupancy probability of l and r

the resolution of m [16].

Pose uncertainty

HP = H(p(Xt |Zt ,Ut)) ≈
1

t

t

∑
j=1

H(p(xt |zt ,ut)), (2)

is given as an average over the uncertainty of the different

poses along the path as proposed in [17].

Finally, map information INFO(mt−1‖mt) is defined as the

relative entropy of mt−1 with respect to mt , where mt is the

local map at time t. The local map mt is extracted from

the occupancy grid m, by taking an area 10 m×10 m around

the robot. mt−1 is the spatially corresponding part of the

respective map at the previous time step. The relative entropy

697



Dl(pt−1(l)‖pt(l)) = pt−1(l)× log
pt−1(l)

pt(l)
, (3)

for cell l is also known as Kullback-Leibler divergence. By

taking the sum of the symmetric form

infol(mt−1‖mt) =
Dl(pt−1(l)‖pt(l))+Dl(pt(l)‖pt−1(l))

2
,

(4)
the relative quantity of information around the robot

INFO(mt−1‖mt) =
1

N
∑

l∈mt

infol(mt−1‖mt) (5)

is derived similar to [13], where N is a normalization factor.

2) Planning Indicators: In order to asses the quality of the

path planning module, its generated paths are examined with

regard to several quantitative indicators. The most simple

indicator is the path length sp. Indicators that characterize

the complexity of the planned path are the number nw of

waypoints w, the variance var(∠(w1
,φr)) of the angular

deviation

∠(w1
,φr) =

∣

∣arctan(w1
y ,w

1
x)−φr

∣

∣ ∈ [0,π] (6)

between next waypoint w1 and robot orientation φr, and the

cumulative sum of the angular deviation

cad =
nw

∑
i=1

∠(wi
,wi−1) (7)

between consecutive w in the path, where arctan(w0) = φr.

Finally, the number of waypoints nv which satisfy a maxi-

mum clearance constraint is considered. This can be acquired

by using for example distance transformation algorithms.

These metrics can be applied to any global planner which

generates paths consisting of a sequence of waypoints. The

planning module of the ACE robot [15] performs an A*

search on a hybrid graph composed of nodes extracted from

a bounding box structure and a Voronoi graph. Since Voronoi

graphs belong to the family of distance transformation algo-

rithms, the corresponding waypoints satisfy the maximum

clearance constraint.

3) Execution Indicators: The execution efficiency of a

performed navigation task can be evaluated by observing

the execution time and the consistency of the path. More

specifically, the robot speed vr and the variance of the robot

orientation var(φr).
All aforementioned indicators have been chosen to repre-

sent the internal system state. In the following it is described,

how mutual influence among indicators can be learned and

used to infer from the internal state about the external world.

V. LEARNING BAYESIAN NETWORK STRUCTURE

FROM DATA

In order to find out whether and to what extent the

above performance indicators interact with each other, a

Bayesian Network (BN) is learned from experimental data.

The topology of the network is unknown beforehand, but

the system is fully observable by the data. In order to find

the network structure that models the data best, a search

through the space of possible structures is performed using

a likelihood heuristic.

BNs are well-established tools for representing uncertain

relations between several random variables [18]. A BN is

an annotated directed acyclic graph, that encodes a joint

probability distribution over the set X = {X1, . . . ,Xn} of the

random variables described above. Formally it is a tuple

B = 〈G,Θ〉, where G is a Directed Acyclic Graph (DAG)

whose vertices correspond to the random variables. A DAG

implies conditional independence of each variable Xi and its

non-descendants, given its set of parents Pa(Xi). Θ represents

the set of parameters that define the transition between nodes.

It contains a value θi, j,k = p(Xi = ki|Pa(Xi) = ji) for each

possible value ki of Xi and each possible set of values ji of

Pa(Xi). The conditional probability distribution of each node

is represented in a Conditional Probability Table (CPT).

Since there is no a priori transition information, the space

of possible DAGs is super-exponential in n, the number of

variables described, and is given by

G(n) =
n

∑
k=1

(−1)k+1

(

n

k

)

2k(n−k)G(n− k). (8)

For the ten indicators discussed in the previous section the

search space contains 4.2 · 1018 graphs and cannot be ex-

haustively searched. Therefore a Markov Chain Monte Carlo

(MCMC) [19] search is performed. The scoring function

used for the search is the Bayesian Information Criterion

(BIC) [20], which is a function of the log likelihood of

the structure according to the training data penalized by the

complexity of the structure. The number of samples is chosen

so that the search converges to an ordering of nodes close

to the global optimum. To further improve the results of

the MCMC search the well-established local greedy search

algorithm K2 [21] is used. The local search is initialized with

the node ordering acquired by the MCMC search.

The K2 search algorithm starts from an empty set of nodes.

Parents are added incrementally and the one whose addition

increases the score of the resulting structure most, is kept.

The algorithm stops adding parents to the node, when it is

no longer possible to increase the BIC score of the structure.

In the next section, information-theoretic criteria are used

to evaluate the coherence between the indicators within the

learned network.

VI. INFORMATION THEORETIC-CRITERIA

The learned structure of the net provides a first qualitative

view on the mutual interactions among the indicators. In the

following, information-theoretic criteria [22] are applied in

order to derive also a quantitative measure. Once the structure

of the net is learned, the CPTs can be computed by using

the experimental data. For each pair of indicators Xi, X j, the

mutual information

I(Xi,X j) = ∑
j

p( j) ∑
ki

p(ki| j)log
p(ki| j)

p(ki)
(9)

is derived. Intuitively, mutual information measures the in-

formation that Xi and X j share, i.e. to what extent knowledge

about the one of these variables reduces the uncertainty about

the other. For instance, if two variables are independent then

knowledge about one of them does not give any information

about the other. Consequently their mutual information is

zero.

However, in order to make comparisons between different

pairs of variables a distance metric is required. In this respect

the conjunctional entropy
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H(Xi,X j) = H(Xi|X j)+H(X j) (10)

is additionally calculated, where H(X) =−∑k∈X p(x)logp(x)
is the entropy of the random variable X . The conjuctional

entropy measures the uncertainty about the two variables.

The final distance metric is then derived by

0 ≤ η(Xi,X j) =
I(Xi,X j)

H(Xi,X j)
≤ 1. (11)

It can be proven [22] that η satisfies all properties of a metric

such as the triangle inequality, non-negativity and symmetry.

If two variables are independent then η(Xi,X j) = 0, whereas

when the variables are fully dependent and knowledge about

the one completely reduces the uncertainty about the other

η(Xi,X j) = 1.

In the next section the outcome of a field experiment and

the application of the described methods is presented.

VII. EXPERIMENTAL RESULTS

In order to validate the proposed method, system interde-

pendence analysis has been performed by using experimental

data which was gathered during autonomous navigation in an

urban area by the Autonomous City Explorer (ACE) robot.

The objective of the experiment was for the ACE robot to

reach Marienplatz, the central square of Munich, starting

from the Technical University of Munich. This is a distance

of approximately 1.5 km in the most active part of downtown

Munich. The robot did not have prior map knowledge or

GPS and relied only on interactions with passers-by to get

directions and on its on-board sensors in order to navigate

safely. The experiment was conducted successfully on 31

August 2008. The route can be seen in Fig. 2.

The ACE robot is based on a differential drive platform.

A laser range finder is used for navigation. A SLAM module

running at 2 Hz, was used to build a large occupancy grid

map on-line. Parts of 200 m×200 m of the acquired map are

illustrated in Fig. 2 (a2)-(b2) with a resolution of 15 cm. A

part of the occupancy grid around the robot, is used for path

planning. Replanning was performed at 2 Hz. More details on

the experimental platform as well as the SLAM and planning

algorithms, can be found in [15].

In order to quantitatively evaluate the performance and

the influence of environmental variations to the system,

the presented method has been applied to two exemplary

situations encountered during the outdoor field experiment.

The first situation, illustrated in Fig. 2(a), demonstrates

navigation on a sidewalk in a less populated district. The

second situation is illustrated in Fig. 2(b) and is a typical

example of navigation in a densely populated pedestrian

zone.

Several considerable differences exist between the two

settings. In the first, which is referred to as Sidewalk, the

moving ability of the robot is constrained by the narrow

sidewalk but the dynamic characteristics of the environment

are low. In the second case, referred to as Pedestrian zone,

the environment is extensive but primarily characterized from

high dynamics and local complexity. This is already observed

from the indicator values. Part of them is shown in Fig. 3. For

example in the Pedestrian zone the map uncertainty Hm and

c

2

263 m

(a1) (b1)

(a2) (b2)

a

b

Fig. 2. Bottom: Downtown area of Munich. The route of the robot from the
Technical University of Munich to Marienplatz is indicated by the yellow
line. The blue box indicates the (a) Sidewalk situation and the yellow box the
(b) Pedestrian zone. Top: (1) Corresponding pictures and (2) the respective
maps generated by the SLAM module during navigation.
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Fig. 3. Discretized indicator (vertical axis) values extracted from exper-
imental data, for two different environments. The dashed line indicates
the transition between the environments. The horizontal axis shows the
consecutive sample number.

robot orientation variance var(φr) have mean values that are

43% and 45% higher, respectively. The same applies to their

variance which is 6.3 and 6.5 times higher in the Pedestrian

zone. Intuitively this can be explained by the lower dynamics

in the Sidewalk. Before the structure of the BN is learned, the

data must be discretized and transformed into a predefined

number of states. For the following results a discretization

of three steps was used for all indicators.

As described in Sec. V, a MCMC search – using 2000

samples to converge – was performed on the preprocessed

data to acquire the node order for the BN. The overall
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Fig. 4. Directed Acyclic Graph (DAG) learned with MCMC and K2,
showing the relations between the perceptual (yellow), planning (green)
and execution (blue) indicators.
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Fig. 6. The marginal distributions of the dependent indicators HP and
var(φr) as calculated from the learned BN, for assigned values of Hm.

best BIC scoring was -1415. Using this ordering, the K2

algorithm generated the final BN, shown in Fig. 4, which

achieves a higher BIC score of -1329. This corresponds to

an improvement of approximately 6%. The resulting BN

indicates the interdependencies between the indicators but

cannot express the intensity of these relations. For that reason

information-theoretic criteria are applied, as described in

Sec. VI.

The learned structure was utilized to train a BN with

all the data. Sequential Bayesian parameter updating was

performed and the respective CPTs were acquired for the

network. An implementation based on the Bayes Net Toolbox

for Matlab [23] was used. The distance metric given by (11)

is calculated for each possible pair of indicators. The results

are illustrated in Fig. 5 by the green solid line.

A strong interdependence of Hm on HP, cad,

var(∠(w1
,φr)) and var(φr) is observed. The relation

between Hm and HP is obvious, since without map

knowledge it is impossible for the robot to localize itself.

Also the influence of Hm on the planning indicators is

intuitive, since the path quality is directly dependent on

the used map. Map knowledge influences the planned

path and therefore the motion of the robot, as reflected

by the dependency between Hm and var(φr). Furthermore

nw is strongly interconnected to nv and sp, which can be

ascribed to the fact that both of them are indicators for the

complexity of the calculated path.

The influence of Hm to other indicators can be further

quantified by examining the marginal distributions of the

affected indicators by setting Hm to specific states. Fig. 6

illustrates the marginal distributions which are calculated

from the learned BN by applying Bayesian inference, for

all assigned values of Hm. When map uncertainty increases,

HP also increases. The motion of the robot becomes more

variable as indicated by the uniformly distributed predicted

states of var(φr).
The indicators INFO and vr show no influence from and

to other indicators. This depicts that these indicators cannot

give any information about the internal system state or the

influence of the environment on the system. The complexity

of the system and the application domain cannot be captured

by simple and purely local indicators.

In order to asses the environmental influence on the indi-

cators, two additional BNs are trained using the data from the

Sidewalk and the Pedestrian Zone respectively. A comparison

of η , which is shown in Fig. 5, reveals the differences for

the two scenes. A stronger influence of Hm on var(∠(w1
,φr))

and var(φr) in the Pedestrian zone is identified. The presence

of moving people results in higher map uncertainty, less

directed, i.e. more variable planned path and consequently

more complex robot motion. On the other hand, nv is stronger

related to nw in the Sidewalk scene. In this situation the robot

has to navigate through narrow passages, where a maximum

clearance path is desired. Consequently, the nodes of the

Voronoi graph are more often used.

In summary, the interdependence analysis of system state

indicators and the environment, identified map uncertainty

Hm as an indicator with very strong influence on the system.

Consequently, the intuitive assumption is verified that knowl-

edge of the environment – in this case map knowledge – is

a crucial factor for the robustness of an autonomous robotic

system. Also it is shown that simpler and local complexity

indicators such as vr and INFO cannot characterize the

behavior of the ACE robot. In general, by using the proposed

method for system analysis, several indicators can be tested

in respect to their representation ability. By using the learned

BN and inference techniques, predictions can be made about

the behavior of performance indicators given the values of

others as evidence. Furthermore, the method enables also

the reverse interpretation. By observing the internal robot

state conclusions about the current environmental situation

can be drawn. This way, the robot would be able to asses

the situation and the effect that changes in performance

indicators of specific system components have on the rest

of the system. Such information could be traced back into

the on-line behavior selection, used for any kind of on-line

learning techniques or at least considered during the off-line

system design.

VIII. CONCLUSIONS AND FUTURE WORKS

A method for quantitative system interdependence anal-

ysis has been introduced. The coherence between several

performance indicators of different system components, as

well as the influence of environmental parameters on the

system, can be learned and quantitatively evaluated. This

way the robot can anticipate failures, by predicting the
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Fig. 5. Learned dependency values η(Xi,X j) (vertical axis) for all indicators, where the i’th graph shows the dependencies of indicator i to all indicators
j (horizontal axis). Since η(Xi,Xi) = 1, these values were skipped for illustrative purposes.

effects that its actions would have and correctly adjust its

behavior. Performance evaluation of an autonomous robot

navigating in two different urban environments has been

conducted and results demonstrated the applicability of the

proposed approach. The presented approach is a possibility to

identify the limitations of an autonomous robotic system. The

complexity of the environment determines the requirements

to the robotic hardware and algorithms in order to perform

a given task. Conversely, the capabilities of a robotic system

define the environments where it can operate and the tasks

it can handle.

Further extensions comprise the evaluation of more indica-

tors. Incorporating the outcome of the proposed interdepen-

dence analysis to the on-line system operation, will enable

the system to reason about the current situation and adjust

its behavior accordingly.
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