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Abstract— This paper presents the design optimization of a
Delta-like robot manipulator with respect to multiple global
stiffness objectives. For this purpose, a systematic elasto-
geometrical modeling method is used to derive the analytical
manipulator stiffness models by taking into account their
link and joint compliances. The models are then involved
within a statistically sensitivity analysis of the influence of the
geometric parameters on four global indices that describe the
structure stiffness over the workspace. Multi-Objective Genetic
Algorithm, i.e. Pareto-optimization, is taken as the appropriate
framework for the definition and the solution of the addressed
multi-objective optimization problem. Our approach is original
in the sense that it is systematic and it can be applied to any
serial and parallel manipulators for which stiffness is a critical
issue.

I. INTRODUCTION

The main objective for the mechanical design of robot ma-

nipulators consists in finding the best compromise between

several properties, such as workspace, dexterity, manipula-

bility, and stiffness [1]. Stiffness is an important issue for

serial and parallel robots manipulators since their structures

are now gradually being implemented to carry out various

applications in fields such as medical, flight simulation and

high-speed machining [2]. To make these machines compat-

ible with their applications, it is necessary to model, identify

and compensate all the effects that degrade their accuracy.

These effects may be caused by errors in the geometry

tolerances of the structure associated with machining and

assembly errors of the various constituting bodies, and also

by the elastic deformations of their structures [3], [4], [5],

[6]. The main problem is that a low stiffness of links and/or

joints may lead to large compliant displacements of the

end-effector under both structure own weight and external

wrench applied at the end-effector [7]. These compliant

displacements detrimentally affect both accuracy and payload

performances, as pointed out for example in [8]. It is also

to be noted that insufficient stiffness may induce low natural

frequencies of the structure that lead to longer stabilization

times and reduced dynamic performances [9].

In the literature many efforts were recently devoted to the

design optimization of robot manipulators by considering

many competing objectives such as velocity transmission,

workspace, inertia and stiffness [10], [11], [12]. These

studies have shown the real efficiency of the evolutionary
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algorithms to solve this kind of problems. However, most of

them do not include a parametric stiffness analysis of the

optimization problem as part of the design process.

It is in this context that the presented work takes place.

Our main objective is to fulfill the industrial demands in the

preliminary design of the robots manipulators by optimiz-

ing simultaneously the stiffness over a specific workspace

and/or by minimizing the global weight of the structure for

increased dynamic performances, the whole in an acceptable

timeframe. The main originality of our work resides:

• in a systematic analytical calculation of the equivalent

stiffness matrix of the manipulator structures through

a method that we already proposed and experimentally

validated in [13], [6],

• in the use of realistic global stiffness indices derived

from the concatenation of the equivalent stiffness ma-

trices locally calculated in the manipulator workvolume

[14], [7],

• in a statistical sensibility analysis based on the t-Student

parameter [15] to find out the most important design

parameters in the optimization problem,

• in the fact to provide an interactive use of Multi-

Objective Genetic Algorithms (MOGA) in the robot

design optimization as a reliable tool from an engineer

point of view.

The paper is organized as follows. The stiffness modeling

of a 3 degree-of-freedom translational parallel manipulator

that is used to illustrate the proposed method is described

first. The definition of local stiffness performance indices

is done next. Global performance indices are then proposed

and a sensibility analysis is done using the t-Student method.

Then a practical application of the multi-objective opti-

mization procedure is presented in order to define optimal

stiffness designs of a Delta-like structure for which the

optimization results are carefully analyzed.

II. STIFFNESS MODELING OF A DELTA-LIKE MECHANISM

The Surgiscope R©1 is a hybrid structure with a position

mechanism based on a Delta-like parallel manipulator [16]

and a decoupled orientation mechanism. This structure is

used in neurosurgery to move and to place accurately a

microscope, a laser guiding system and some others surgical

tools. In the following, the Surgiscope will only designate

the position mechanism (Fig. 1).

1ISIS: Intelligent Surgical Instrument & Systems http://www.isis-
robotics.com/
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Fig. 1. The Surgiscope.

The analytical stiffness model presented in this section is

based on matrix structural analysis and has been introduced

in previous papers [6], [13]. Compared to traditional CAD-

FEA approach, this analytical modeling leads both to a

realistic stiffness description as well as a reduction of compu-

tational time that allows its use in a parametric optimization

loop.

The stiffness modeling of the Surgiscope is composed with

nodes corresponding to the characteristic points. These nodes

link some 3D flexible beams, some rigid elements and some

joints. The 6 dimensional equivalent stiffness matrix K of

the Surgiscope is defined in two steps as follows:

• definition of the equivalent substructure of each kine-

matic chain k (k = 1, 2, 3) defined by the equivalent

stiffness matrix Kk and the equivalent external wrench

(force/torque) F̂k (Fig.2);

• assembly of the three equivalent kinematic chains to the

moving platform considered as rigid. Definition of the

equivalent structure defined by the stiffness matrix K

or the compliance matrix C = K−1 and the equivalent

external wrench F̂ =
[

fT τT
]T

acting at the

center point of the moving platform (Fig. 3) and that

produces its elastic displacements given by the twist

(linear/rotational deformations) X̂ =
[

dT γT
]T

.

As a result, this modeling phase leads to the stiffness and

compliance mapping relations:

F̂ = KX̂, X̂ = CF̂. (1)

Table I shows the parameters, the boundaries and the

nominal values of the Surgiscope. Note that the genetic

algorithm used as optimization scheduler will impose to

consider the individual parameters such as discrete variables.

The steps are defined by nearly respecting the manufacturing

tolerances in order to not increase artificially the research

space. The generated solutions thereafter will largely depend

on the boundaries and the steps chosen since they define the

nature and the dimensions of the research space.

III. STIFFNESS PERFORMANCE EVALUATION

Since it has been shown in the previous part that the

configuration-dependent Cartesian stiffness and compliance

matrices K and C can be obtained analytically for a joint
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Fig. 2. Modeling of the kth kinematic chain.
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Fig. 3. Modeling of the equivalent structure.

configuration q, the stiffness performance of robot manip-

ulators can be studied in a systematic way through the

proposition of some relevant indices.

Due to the fact that stiffness and compliance mappings

are described by tensorial quantities, there is no obvious

way to give a quantification of the mechanism behavior

such as a stiffness constant of a linear spring for example

[17]. One solution consists in separating the quantity into

geometric contents such as eigenvalue problems. However,

the eigenvalue problem of equation (2) cannot be solved by

using the spatial stiffness matrix K since the eigenvalues λ
do not have a physically consistent unit and are not invariant

under a coordinate transformation [18].

KX̂ = λX̂ (2)

TABLE I

DESIGN PARAMETERS VALUES

Parameters Nominal Lower Upper Step

(Unit) Description value bound bound

L1 (m) Forearm length 0.75 0.7 0.8 1e−3

L2 (m) Parallelogram length 0.95 0.85 1.05 1e−3

(long side)

L3 (m) Parallelogram length 0.125 0.1 0.15 1e−3

(small side)

T1 (mm) Forearm thickness 2 2 10 0.5

T2 (mm) Parallelogram thickness 5 2 10 0.5

φ1 (mm) Forearm diameter 70 50 100 0.5

φ2 (mm) Parallelogram diameter 25 15 60 0.5

(long side)

φ3 (mm) Parallelogram diameter 22 10 40 0.5

(small side)

Rn (m) Moving platform radius 0.2 0.15 0.25 1e−3
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In order to overcome this unit inconsistency and coordinate

transformation dependance, the approach that is used in this

paper is to solve the alternative eigenvalue problem proposed

by Lipkin and Patterson [19] that is reminded hereafter. Its

formulation comes from the minimization of the potential

energy storage of the manipulator mechanism (initially in a

stable potential field) when a wrench applied on the Tool

Center Point (TCP) induces an elastic displacement twist.

For a unit magnitude wrench or twist, the two minimization

problems that are to be solved are:

minimize : w1 = 1
2 F̂

T CF̂

subject to : F̂T ΓF̂ = 1
(3)

and

minimize : w2 = 1
2X̂

T KX̂

subject to : X̂T ΩX̂ = 1
(4)

with : Γ =

[
I3 03

03 03

]
and Ω =

[
03 03

03 I3

]
.

This leads to the two generalized singular eigenvalue

problems given by:

cfΓF̂ = CF̂, kγΩX̂ = KX̂ (5)

where the eigenvalues cf and kγ correspond to the respec-

tive Lagrange multipliers involved to solve the optimization

problems (3) and (4). By using the fact that C = K−1,

equations (5) can be rewritten as follows:

kf F̂ = KΓF̂, cγX̂ = CΩX̂ (6)

where kf =
1

cf

and cγ =
1

kγ

. Note that this eigenvalue

problem formulation is always possible since the matrix K

(C) is positive semi-definite [19].

Solutions of the equation system (6) under the constraints

respectively F̂T ΓF̂ = 1 and X̂T ΩX̂ = 1 are:

F̂f,j =

[
fj
τj

]
, X̂f,j =

[
cf,jfj
03,1

]
, j = 1, 2, 3

X̂γ,j =

[
δj

γj

]
, F̂γ,j =

[
03,1

kγ,jγj

]
, j = 1, 2, 3

(7)

The resulting wrenches F̂f,j (j = 1, 2, 3) that cause only

pure translation displacements parallel to the force parts are

called an eigenwrenches (or wrench-compliant axes). In a

similar way, the twists X̂γ,j that produce only pure couples

parallel to the rotation parts are named the eigentwists (or

twist-compliant axes).

As a result, the first equation of (5) yields to the def-

inition of the linear compliance ellipsoid for which the

resulting translational elastic displacements are parallel to

the wrenches only along the ellipsoid axes (Fig. 4). And

in meantime the second equation leads to the definition

of the angular stiffness ellipsoid for which the couples are

Fig. 4. Linear compliance ellipsoid.

Fig. 5. Angular stiffness ellipsoid.

parallel to the twist only along the ellipsoid axes (Fig. 5).

Those ellipsoids have no dedicated location in space since

the resulting translational displacements and couples are free

vectors.

In the following, based on the geometrical properties of

those ellipsoids some indices are proposed to evaluate the

stiffness of the manipulator. Since the equation system (5)

can be rewritten as (6), four local and global indexes are

proposed through the study of the matrices K̃ = KΓ and

C̃ = CΩ in order to describe the stiffness for a manipulator

given configuration in space and in its overall workspace.

A. Local stiffness indices

1) Condition number of K̃ and C̃: Two first possible

indices are respectively the condition numbers Sk1,i and Sc1,i

of the stiffness and compliance matrices K̃ and C̃ given by

the ratio of their maximum and minimum eigenvalues:

Sk1,i =
kf max,i

kf min,i

, Sc1,i =
cγ max,i

cγ min,i

. (8)

Geometrically, the ratios Sk1,i and Sc1,i give an indication

of the excentricity of the linear stiffness and angular com-

pliance ellipsoids. For minimum values of Sk1,i and Sc1,i

that is to say for values near to 1, those ellipsoids are closer

to a sphere. As a result, minimizing those indices allows to

avoid for a manipulator configuration i a sharp linear stiffness

and angular compliance ellipsoids for which, the manipulator

would have a high stiffness along a given axis and a low

stiffness along another.

2) Minimum eigenvalue of K̃ and maximum eigenvalue of

C̃: Two other possible indices are defined as:

Sk2,i = kf min,i, Sc2,i = cγ max,i. (9)

From a geometrical point of view, the index Sk2,i conveys

the idea that for the configuration i, the shortest axis of the

linear stiffness ellipsoid should be as long as possible and

on the contrary for the index Sc2,i, the longest axis of the

angular compliance ellipsoid should be as short as possible.

5161



B. Global stiffness indices

Based upon the previously defined local indices, the four

global stiffness indices that will be used further for the

optimal design of manipulators are defined in an original

manner. For this purpose, the manipulator workspace is as

usual discretized by using a regular space grid and for each

equally spaced node Ni of the grid (i = 1, ..., nN ), the

stiffness and compliance matrices K̃i and C̃i are calculted.

Then the global equivalent stiffness and compliance matrices

K̃G and C̃G are defined by the concatenation of all the nN

matrices K̃ and C̃ as follows:

K̃G =





K̃1

K̃2

...

K̃nN





(6nN×6)

; C̃G =





C̃1

C̃2

...

C̃nN





(6nN×6)

.

(10)

In the following, based on the fact that eigenvalue problem

(6) is coordinate frame invariant, four global indices are

proposed as explained by using the Singular Value Decom-

position (SVD) of the global linear stiffness and angular

compliance matrices K̃G and C̃G:

K̃G = UG
f ΣG

f VGT

f , C̃G = UG
γ ΣG

γ VGT

γ (11)

where ΣG
f = diag(σf

1 , σf
2 , σf

3 , 0, 0, 0) with (σf
1 > σf

2 >

σf
3 > 0) and ΣG

γ = diag(σγ
1 , σγ

2 , σγ
3 , 0, 0, 0) with (σγ

1 >
σγ

2 > σγ
3 > 0).

1) Condition number of the global stiffness and compli-

ance matrices: The global indices Sk1 and Sc1 give an

indication of the eccentricities of the global linear stiffness

and angular compliance ellipsoids which have to be mini-

mized overall the manipulator workspace. Their values are

calculated as follows:

Sk1 =
σf

1

σf
3

, Sc1 =
σγ

1

σγ
3

. (12)

2) Minimum singular value of K̃G and maximum singular

value of C̃G: The global indices Sk2 and Sc2 concern the

length of the smallest semiaxis of the global linear stiffness

ellipsoid which has to be maximized and the length of the

longest semiaxis of the global angular compliance ellipsoid

which has to be minimized:

Sk2 = σf
3 , Sc2 = σγ

1 . (13)

IV. SURGISCOPE STIFFNESS ANALYSIS

A. Calculation of the global stiffness indices of the Surgis-

cope

For the calculation of all indices, the workspace is dis-

cretized by using a regular spatial grid included in a singu-

larity free area of the Surgiscope [20]. This grid is made of

some parallel and horizontal planar grids defined within a

volume described by −0.3m ≤ X ≤ 0.3m, −0.3m ≤ Y ≤
0.3 m and −1.4 m ≤ Z ≤ −0.9 m. In an attempt to solve

the optimization problem in an acceptable timeframe while

maintaining a smooth variation of the local stiffness indices

from one node to the nodes that it is connected with, a num-

ber nN = 294 nodes are regularly fixed over the Surgiscope

workspace. This includes 6 planes of 49 nodes each. For all

nodes, the linear stiffness and angular compliance matrices

K̃i and C̃i are calculated in order to derive the global Sk1,

Sc1, Sk2, Sc2 indices previously defined. Based upon this

calculation, a study of the influence of the Delta geometrical

parameter variations onto the Surgiscope global stiffness is

done.

B. Influence of the Surgiscope geometrical parameter vari-

ations onto the stiffness global indices

The main purpose of this part is to study the influence of

the variations of the Surgiscope geometrical parameters onto

its global stiffness Sk1, Sc1, Sk2, Sc2. This allows to verify

that the variations of the global stiffness indices can describe

the effects of the variations of the Surgiscope geometrical

parameters. For this analysis, the spatial grid described in

IV-A is used to calculate the global stiffness indices under

the variations of the parameters given Table I.

1) Simultaneous variation of two geometrical parameters:

For example, the Fig. 6 gives the results obtained for the

simultaneous variations of the arm length L1 and parallel-

ogram small side bar diameter φ3 which values increase

respectively from 0.7 to 0.8 m and from 0.01 to 0.04 m.

As one can see, the global stiffness of the Surgiscope

logically goes up for increasing values of φ3 when in the

meantime it remains stable when the arm length L1 varies.

On the contrary, the excentricity of the global linear stiffness

and angular compliance ellipsoids are only sensitive to the

variation parameter L1. As one can see, such parametric

analyze is interesting at a pre-design stage to study the

effects of one or two geometrical parameters onto the global

stiffness of the Surgiscope. However, this analyze is limited

since it is difficult to have a global overview of the combined

effects of all geometrical parameters [21]. A solution of

this problem is to achieve a sensibility analysis using the

t-Student method.

2) t-Student test: For the sensibility analysis of the ge-

ometrical parameters onto the global stiffness of the Sur-

giscope, the t-Student method provided by the optimization

program modeFRONTIER was used [15]. By this method, it

is possible to determine statistically if there is a relationship

between the global stiffness indices and the Surgiscope

geometrical parameters. Fig. 7 and 8 show the t-Student

analysis diagrams.

The t-Student test compares the difference between the

means of two samples of designs taken randomly in the

design space:

• M+ is the mean of the n+ values for an objective S in

the upper part of domain of the input variable,

• M− is the mean of the n− values for an objective S in

the lower part of domain of the input variable.
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Fig. 6. Evolution of the global stiffness indices Sk1, Sc1, Sk2, Sc2 under a simultaneous variations of the geometrical parameters L1 and φ3.

The t-Score for an input variable is defined according to

the formula:

t =
|M− − M+|√

V 2
G

n−

+
V 2

G

n+

(14)

where:

• V 2
G =

(n− − 1)V 2
− + (n+ − 1)V 2

+

(n+ + n− − 2)
is the general vari-

ance,

• V 2
+ =

∑
(S+ − M+)2

(n+ − 1)
is the variance of the population

for the objective S in the upper part of the domain of

the input variable,

• V 2
− =

∑
(S− − M−)2

(n− − 1)
is the variance of the population

for the objective S in the lower part of the domain of

the input variable,

The Effect parameter, expressed as a percentage of the

maximum absolute value of all differences between M−

and M+, shows how strong is the relationship between an

objective and an input parameter. An Effect value greater

than zero attests a direct relationship with the input variable,

a value less than zero indicates that the relationship is

inverse. For this reason, this parameter creates a ranked list

of important factors. Low values indicate that there is no

relationship between input and output variables so, probably,

it is possible to ignore that variable in the optimization loop.

Another important parameter, the Significance, is calcu-

lated based on the value of t-Score (14) and the comparison

of this value with a built-in table that determines the confi-

dence level on the hypothesis that the mean values of the two

samples are the same. Low value of Significance parameter

indicates that the previous result (the value of Effect) is

probably true. Consequently, a low value of significance

does not necessarily mean that the input is highly important,

but that the effect parameter is probably reliable. In fact,

t-Student method is helpful only with well-sized data sets.

With low sampling information tend to be unusable.

All the following statistical consideration has been taken

by the comparison of 2000 designs generated by a quasi-

random sequence (SOBOL algorithm), filling in a uniform

manner the design space given in Table I.

Fig. 7 and 8 show that the relationships are more reliable

in the diagram Sc1 than in the others. In fact, all the

design variables have a Significance value near zero in the

Sc1 diagram except the variable L3. In the Sk1 diagram 5

variables have no reliable relationships (φ1, φ2, T1, T1, and

L3). An explanation possible is that the Sk1 indice was more

non-linear than the others and/or the size of the data set was

not big enough to describe it.

Another interesting observation that can be done from Fig.

7 and 8 concerns the direction of the relationships. In fact,

there are many variables that have opposite effects on the

stiffness performance values. We can see for example that

the relationship between the L1 variable and the performance

indice Sk1 that is to be minimized is very reliable and strong.

On the other hand, the relationship between that variable and

the performance indice Sc1, which also is to be minimized,

is inverse and quite as reliable. The conflict between the two

indices Sk1 and Sc1 and the uncertainty of the Sk1 indice
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Fig. 7. T-Student diagrams for Sk1 and Sk2.

Fig. 8. T-Student diagrams for Sc1 and Sc2.

will reduce the possibility of finding solutions which result

in extreme improvements on these objectives.

V. DESIGN OPTIMIZATION OF THE SURGISCOPE

A. Problem formulation

The optimization program FRONTIER and the technical

computing software MATLAB R© are used to set up the

framework of the multi-objective design optimization study

of the Surgiscope. As emphasized below, an optimal stiffness

design of a robot manipulator can only be achieved by

considering four global indices over the workspace. The

objective of the optimization is to maximize Sk2 while

simultaneously minimizing Sk1, Sc1 and Sc2. With reference

to the Surgiscope mechanism under investigation, 9 design

variables are tuned (Table. I). In addition to these main

performances indices, a constraint on the mass is to be set.

The mass of the Surgiscope must not exceed the nominal

threshold value of 21 kg. An indirect geometrical constraint

is that all designs whose workspace does not include the

nominal workspace defined in IV-A are automatically con-

sidered as invalid and excluded from the optimization flow.

1) Global optimization process: The Multi-objective Ge-

netic Algorithm (MOGA), implemented first by Fonseca and

Fleming [22], is used to perform the optimization problem.

The algorithm will attempt a number of evaluations equal to

the size of the initial population for the MOGA multiplied

by the number of generation. A rule of thumb would suggest

possibly to accumulate an initial population possibly more

than 2 ∗ number of variables ∗ (number of objectives +
number of constraints). Thus, the initial population is

generated by a random sequence of 90 designs (9 design

variables, 4 objectives, 1 constraint).

The major disadvantage of the MOGA is mainly related

to the number of evaluations necessary to obtain satisfactory

solutions. The search for the optimal solutions extends in

all the directions from design space and produces a rich data

base and there is not a true stop criterion. But the uniformity

and the richness of the data base are very useful for the

capitalization and the statistical analysis of the results. In

the context of pre-stage design, the numerical evaluation

of the performances calls upon MATLAB codes is not so

expensive in terms of computing time (about 8 s). In an

attempt to solve the optimization problem in an acceptable

timeframe, the number of generations evaluated is almost 30,

i.e. 2770 designs in all. The required computation time for

the global optimization process is about 6 hours (2.0 GHz /

2.0 Gb RAM). Integrating a Response Surface Methodology

to reduce the computation time could be an interesting

extension of our work.

B. Numerical Results

1) Algorithm convergence: Fig. 9 highlights the MOGA

convergence toward the maximization of the global index

Sk2. Of the 2770 designs analyzed, 8 generate an error

since they do not respect the required workspace, and 565

are unfeasible designs since they do not respect the mass

constraint fixed at 21 kg. These unfeasible designs are

represented with a grey rhomb on Fig. 9. In spite of an initial

population largely dominated by individuals exceeding the

mass constraint, the algorithm allows a good and rather fast

convergence.

Fig. 10 shows the projection of the resulting Pareto-

optimal sets onto the Sk2/Sc2 domain, stressing the improve-

ment that can be obtained for the two objectives respecting

the mass constraint. The most interesting characteristic of

this figure is the shape of the Pareto-front on these objectives.

The Pareto-front is very wide. The two indices are conflicting

as it was suggested by the t-Student diagrams analysis (Fig.

7 and 8). The influence of φ3 is important and opposite for

these two objectives. The left-up region of the Fig. 10 is

characterized by a non-feasibility against the mass constraint.

2) Tradeoffs decision using multiple criteria: By defini-

tion, the MOGA will articulate design preference information

after generating solutions. The MOGA defines a posteriori

method which generates a set of solutions, with the decision

marker’s selecting a preferred solution afterwards. They can

be regarded as a means of generating information for the

user to base preference information on.

If the number of solutions is large, it will not even be

obvious which of the designs are Pareto-optimal with respect

to this particular set. So a filter needs to be provided to

identify the non-dominated members of the set. These can

then be listed numerically or displayed graphically. Various

methods have been used to display sets of solutions in a

multiple dimensional objective space. When there are many
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Fig. 9. Iteration history of Sk2.

objectives and constraints, a main diagrammatic tool to assist

understanding is parallel coordinates [23]. The selection of

the optimal structure inside the Pareto-set designs can be

done easily by using an interactive filter on the parallel

coordinates chart of the global stiffness indices and the

mass constraint (Fig. 11). The design engineer balances these

factors off against each others to arrive at what he thinks is

the best combination of properties in the final design. There

is no a unique solution. It is clear that in broad terms design

is a creative process involving the use of knowledge and

experience of the designer.

3) Optimal stiffness design: Of the 2770 designs ana-

lyzed, 269 were Pareto-optimal with respect to the others.

Of these, the design ID 2667 is identified as being a

good candidate for best overall design. The improvement

of the optimal stiffness solution with respect to the nominal

design is discussed in detail and shown in Table. II. The

comparison of the stiffness performances of the candidate

optimal solution with those of the nominal structure stresses

the sensible improvement that can be obtained for all the

objectives with an identical mass. The average improvement

on the global stiffness performance indices Sk2 and Sc2 is

about 30% while the performance indices Sk1 and Sc1 prove

to be 12% better than the corresponding of the reference

structure. Maybe the weak relationship between geometrical

parameters and objectives characterizing the excentricity of

the stiffness hyperellipsoid reduces the possibility of finding

Fig. 10. Scatter chart of Sk1 versus Sk2.

solutions which result in extreme improvements on perfor-

mance indices Sk1 and Sc1. For this reason, the indices Sk1

and Sc1 were not judged completely satisfactory and can

be replaced by simple constraints fixed by the nominal de-

sign. The geometrical modifications obtained for the optimal

design ID 2667 confirm the conclusions advanced in IV-B

(Table. III). The optimal values stay closed to the initial ones

since the optimization is done under the constraint that the

initial workspace remains always reachable.

In order to show the stiffness improvement, we have

computed the value of the maximal and the mean of the

resulting TCP elastic displacements for a payload of 800 N
(Table. IV). By considering the optimal stiffness design

ID 2667, the improvement is about 45% on the mean as on

the max of the resulting TCP elastic displacement δzi. The

angular deflections are also optimized in almost the same

proportion that those in translation for the design ID 2667
(Table. IV). Fig. 12 illustrates the distribution of the resulting

TCP elastic displacements δzi at the altitude Z = −1.2m for

the optimal and nominal designs. It can be observed that the

improvement obtained for the design ID 2667 is uniformed

all over the workspace, and one can note that the excentricity

is also reduced.

4) Optimal weight design: The search for the optimal

stiffness provides solutions that preserve identical stiffness

properties to the nominal design, while minimizing the mass.

The design ID 2430 performs a reduction of almost 25% on

the mass while conserving, or even while improving global

stiffness indices (Table. II).

Fig. 11. Parallel coordinates chart of the Pareto-optimal designs.
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Fig. 12. δzi for a 625 node planar grid set at the altitude Z = −1.2 m.

VI. CONCLUSION

Design optimization of robots manipulators must be done

in a short period of time and, as a result, an automated

procedure for finding an optimum stiffness structure is

proposed. The presented optimization, based on an origi-

nal and systematic elasto-geometrical modeling, fulfills the

industrial demands in the preliminary design of the robot

manipulators: optimizing simultaneously the stiffness over a

specific workspace and minimizing the global weight of the

structure for dynamic performances increased, the whole in

an acceptable timeframe. The interactive use of evolutionary

multi-objective algorithm in the robot design optimization

is very attractive from the engineering viewpoint. Pareto-

optimization may be considered as a tool providing a set of

efficient solutions among different and conflicting objectives,

under different constraints. The final choice remains always

subjective and is left to the designer responsibility.
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