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Abstract— This paper presents a predictive force control
approach to compensate for the physiological motion induced
by both respiratory and heart beating motions during cardiac
surgery. It focuses on the design and implementation of the
control algorithm in the context of robotized minimally invasive
surgery. The controller is based on a linear predictive control
loop using the force information applied on the heart by the in-
strument. Experimental evaluation highlights the performance
of the algorithm for compensating 3D physiological motion.

I. INTRODUCTION

To perform a cardiac operation such as a Coronary Artery
Bypass Graft (CABG), the main procedure is to perform
a large incision (of about 20 cm) to access the heart and
replace blood circulation and respiration by an external
system (on-pump surgery). However, the use of a heart-lung
machine implies more risks and a longer recovery time for
the patient [1]. Minimally invasive beating-heart robotized
surgery aims at minimizing the size of the incision and
removing the cardiopulmonary bypass machine.

Nevertheless, during off-pump surgery, physiological mo-
tions such as respiration and heartbeat, give rise to new
problems. Respiration is the most important source of distur-
bances. It yields large cyclic displacements of several organs,
mainly in the abdomen and thorax. Heartbeat motion involves
high acceleration displacements. The sum of these motions
is very disturbing for the surgeon during the operation espe-
cially for surgical procedures requiring good precision (e.g.,
needle insertion or suturing). Indeed, the gesture accuracy
strongly depends on his/her ability to compensate for these
motions. Manual tracking of the complex heartbeat motion
cannot be achieved by a human without phase and amplitude
errors [2].

A. Related Work in the Literature

As a first approach to limit disturbances due to heartbeat
motion, a mechanical device, also known as stabilizer, may
be used to constrain the motion of a small area on the surface
by suction or pressure. Despite many improvements since the
first version in the early 90′s, stabilizers still have several
drawbacks. In [3] and [4], the residual cardiac motion was
evaluated through experiments on pigs using commercially
passive stabilizers. In both works the results show that the
residual motion is too large to realise heartbeat surgery.

Moreover the suction device may damage the myocardium
tissue and it is not well suited for interventions that are
located behind the heart.

To efficiently circumvent theses disturbances (breathing
and heartbeat motion) with lower risks and better accuracy,
robotized surgery offers another alternative through the use
of computer vision and/or a force control. Vision system,
firstly developped for motion planning or guidance of a
manipulator [5], is used to track and compensate for the
physiological motion. Recently in [6], the authors developped
an active piezo-actuated compliant cardiac stabilizer, called
Cardiolock. The stabilizer is controlled in one dimension
using a high speed vision feedback.

In a recent work presented in [7], the control algorithm
fuses information from multiple sources: mechanical motion
sensors that measure the heart motion and biological signals
such as electrocardiogram (ECG). The control algorithm
identifies the salient features of the biological signals and
merges these informations to predict the feedforward refer-
ence signal. This is intended to improve the performance
of the system since these signals result from physiological
processes that causally precede the heart motion.

A force feedback control allows to manage the interaction
forces between the tool and the environment. In [8], the
authors proposed a force feedback control (based on a PI
scheme) coupled with an Iterative Learning Control where
the error signal is filtered with varying cut-off frequency.
The algorithm supposes that the perturbation is periodic and
the period is known. Since respiration is controlled by an
external ventilator device, the motion induced by respiration
may be considered as periodic. This hypothesis may however
be too restrictive for the random and chaotic nature of cardiac
motion [9]. Tests performed on an artificial moving target
with a very simple periodic movement showed large errors.

In [10] two independent Active OBservers are used for
force control and motion compensation. The AOB refor-
mulates the Kalman filter based on a desired closed loop
behavior (reference model) and on an extra state enclosing
an equivalent disturbance referred to the system input. First
AOB is reponsible for model-reference adaptative control to
guarantee a desired closed loop dynamics for the force. The
second AOB performs control actions to compensate phys-
iological motions. Simulations realised, with non sinusoidal
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Fig. 1. Experimental platform: Robot_Tool, Robot_Heart and the target.
A frame in attached at the Robot_Tool tip.

disturbance force, highlights good performances of the ap-
proach.

B. Motivation and Methodology

In minimally invasive cardiac surgery, the workspace avail-
able during the operation is limited. Therefore, heart motion
compensation should be performed with instruments already
available in conventional minimally invasive surgeries, thus
discarding the use of additional markers or sensors placed
on the heart surface.

Using, for instance, only vision systems may present
two major drawbacks. First, the operation is performed in
a cluttered environment. The instruments must remain in
the visual field of view of the camera, often occluding the
region of interest. This results in a deterioration of the track-
ing efficiency and consequently disturbs the overall motion
compensation. A possible solution is the introduction of
additional sources of information such as electrocardiogram
signal, in addition to the visual feedback. Second, the visual
motion compensation does not take into account the effect
of the gesture performed by the surgeon on the heart surface.
Contact tasks deform the surface of soft tissues locally which
may modify dramatically the natural heart motion. Moreover,
during a contact task, physiological motions induce distur-
bance forces that can hardly be appreciated and compensated
with vision data.

During free heart beating, individual points on the heart
move in the range of 7-10 mm. Although the dominant mode
of the heart motion is in the order of 1-2 Hz, the measured
motion of individual points on the heart during normal beat-
ing yields significant energy up to frequencies of 20 Hz [11].
In our approach, we consider simultaneously the two main
sources of physiological motion, breathing movement and
heartbeat, as disturbances. Extending the approach proposed
in [12] to compensate for perturbations along one dimension,
the results presented in this paper are based on a predictive
controller using the measured force applied on the heart by
the instrument along the three directions. Section II describes
then the experimental platform and the modeling of the
global system. Control algorithm used for the compensation

Fig. 2. Decoupled system in the Cartesian space (DGM: Direct Geometric
Model)

problem is explained in the section III. The experimental
results are presented in section IV. Finally, our conclusions
are drawn in section V.

II. PLATFORM

A. Experimental Setup
The experimental platform is composed of two 6-DOF

Viper s650 robots and a target in foam (Fig. 1). The first
robot, Robot_Heart, controlled in position, is used to animate
the target with real 3D physiological motion recorded on
a pig (cardiac and respiration motions). The second one,
Robot_Tool controlled in force, holds the surgical instrument
and applies a force on the moving target. An ATI Mini-
45 force sensor is attached to its end-effector to measure
the applied force. An ATI Nano-17, attached to the tool,
may be used for minimally invasive surgery. The controllers
are implemented on a 2.4 GHz Intel Core Duo processor
running on Windows XP and communicate with the robots
via a MotionBlox-60R from Adept and a FireWire con-
nection. The MotionBlox-60R verifies the integrity of the
robots using protections such as Watchdog functions, testing
maximal velocity, joint position limits and tracking errors.
The closed loop sampling time of the controller is Ts = 1ms
and 125 µs for the protection functions.

B. Modeling
The dynamic model of the robot holding the tool

(Robot_Tool) is given by

Mq̈ + v(q, q̇) + g(q) = τ (1)

where q, q̇ and q̈ are the vectors of respectively joint po-
sitions, velocities and accelerations; M is the mass matrice;
v(q, q̇) is the vector of Coriolis and centrifugal torques; g(q)
is the vector of gravity torque and τ is the generalized torque
acting on the joints.

Using the operational space formulation, (1) can be written
as

ΛxẌs + Vx(q, q̇) + gx(q) = Fc (2)

where Λx, Vx(q, q̇) and gx(q) are respectively the mass
matrix, the Coriolis and centrifugal torque vector and the
gravity torque vector written in Cartesian coordinates [13],
[14]; Fc denotes the commanded force. Further details in-
cluding numerical data useful for the implementation may
be found in [15].

Assuming1

Λ̂x = Λx V̂x = Vx ĝx = gx (3)

1The expression of form "Â" means "an estimation of the variable A"
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Fig. 3. Global control scheme with the linear predictive force controller, the
linearized Robot_Tool and the model of the contact (environment) animated
by recorded 3D physiological motion data.

and choosing

Fc = V̂x(q, q̇) + ĝx(q) + Λ̂xf
? (4)

we obtain

Ẍs = f? (5)

Equation (5) represents the dynamics of a unitary mass.
f? is homogeneous to an acceleration. The decoupled system
in the Cartesian space is shown in Fig. 2.

Introducing K2 (damping loop) and a basic contact model2

represented by Ks (environment stiffness), the global model
represented in Fig. 3 becomes

Fm

u
= G(s) =

Ks

s(s+K2)
(6)

The transfer function G(s) represents the decoupled sys-
tem Robot_Tool and the model of the contact (a simple
stiffness Ks) animated with recorded physiological motion
data acting as a disturbance. u is the command calculated by
the predictive force controller whose inputs are the reference
which may be the desired surgeon force obtain through an
haptic interface and Fm, the forces applied by the instrument
(tip of the Robot_Tool) on the target.

The equivalent representation of G(s) in time domain is
given by

ÿ(t) +K2ẏ(t) = Ksu(t) (7)

where y(t) is the plant output (Cartesian torque at the tip of
the instrument), and u is the plant input (torque).

2A model more complex, taking into consideration the viscoelactic
and anisotropic behavior of the myocardial tissue, may be used. For our
experimentations the target used a spring modelise.

III. LINEAR PREDICTIVE CONTROLLER

A. Model Predictive Control Strategy

The methodology of the Model Predictive Control (MPC)
is characterized by the following strategy (Fig. 4):

• the future outputs for a determined horizon N , called the
prediction horizon, are predicted at each instant t using
the process model. These predicted outputs ŷ(t+ k|t)3,
for k = 1 . . . N , depend on the known values at the
instant t (past inputs and outputs) and on the future
control signals u(t+ k|t), k ∈ [0 . . . N − 1], which will
be sent to the system and then calculated.

• the reference trajectory w(t + k|t) defines an ideal
trajectory that the plant output should follow to reach
the setpoint. Starting at the current output, it defines the
dynamic behaviour of the controlled plant.

• the set of future control signals is calculated by optimiz-
ing a determined criterion to keep the process as close as
possible to the reference trajectory. This criterion takes
the form of a quadratic function of the errors between
the predicted output signal and the reference trajectory.
The control effort is included in the objective function.
An explicit solution may be calculated if the model is
linear.

• only the first element of the calculated control sequence
u(t|t) is sent to the process. The horizon is translated
in the future and the algorithm is repeated with updated
values.

Fig. 4. MPC strategy

B. Formulation of MPC

The internal model, G(s) (6), is used to predict the future
plant output. It is based on the past and current states of the
system and on the proposed optimal future control actions.
This model includes the Robot_Tool and the environment.

3The notation indicates the value of the variable at the instant t + k
computed from intant t
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Defining the state variables x1(t) = y(t) and x2(t) = ẏ(t),
(7) can be written as[

ẋ1(t)
ẋ2(t)

]
=
[

0 1
0 −K2

] [
x1(t)
x2(t)

]
+
[

0
K̂s

]
(8)

where K̂s represents an estimation of the contact stiffness.
Discretizing (8) with sampling time Ts, the equivalent

discrete time system is:{
x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) (9)

The predictions along the horizon are given by

ŷ = Ψx(k) + Υu(k − 1) + Θu (10)

with

Ψ =


CA
CA2

· · ·
CAN

 Υ =


CB

...
N−1∑
i=0

CAiB



Θ =



B · · · 0
C(AB + B) · · · 0

...
. . .

...
N−1∑
i=0

CAiB · · · B

 (11)

The prediction (10) is composed of three terms: the first
two depend on the past and current states and are known at
instant k. They represent the free response of the plant. The
third term depends on the vector of future control actions
and is the key variable to be calculated. Θ represents the
response of the model to a unit step input.

The control sequence u is calculated by minimizing the
objective function

J = δ(Θu+Ψx̂(k)−w)T (Θu+Ψx̂(k)−w)+λuT u (12)

Thus the analytical solution is given by

u = (δΘT Θ+λI)−1δΘT (w−Ψx̂(k)−Υu(k−1)) (13)

where δ and λ are respectively the error and effort control
weights.

The reference trajectory w approaches the set-point ex-
ponentially from the current output value. The "time con-
stant" Tref of the exponential defines the speed of the
response. If the current error between setpoint s(k) and
output plan y(k) is:

ε(k) = s(k)− y(k) (14)

then the reference trajectory is chosen such that the error i
steps later would be:

ε(k + i) = λiε(k) (15)

where
λ = e−Ts/Tref (16)

The reference trajectory is defined by:

w(k + i|k) = s(k + i)− λiε(k) (17)

with 0 < λ < 1.
Since receding horizon strategy is used, only the first

element of the control sequence is sent to the plant and then
all the computation is repeated in the next sampling time.

Fig. 5. Recorded physiological motion data (top). blue (solid line): X-axis,
green (dashed line): Y-axis and red (dash-dot line): Z-axis. FFT spectrum
of the X-axis motion (bottom). The main peaks related to the respiratory
and cardiac motions are highlighted.

IV. EXPERIMENTAL RESULTS

Experimentations have been performed in order to evaluate
the performance, along the three axes, of the compensation
algorithm with the Force Predictive Controller presented in
the previous section. The motion data used to move the
target in three dimensions are shown in Fig. 5. These signals,
representing the cardiac and breathing motions in 3D, are
recorded on a pig and last 15 s. A frequential analysis of
these physiological motion data has been performed and
futher details can be found in [12].

A. Predictive Controller Tuning

Four parameters are used to tune the predictive controller:
the horizon value N , the "time constant" Tref and the weight
parameters δ and λ.

Even though tuned intuitively, we may give some guideline
for tunning the horizon that may influence greatly the perfor-
mance. Indeed a longer horizon results in more accuracy of
the tracking reference trajectory while the calculation time
of the control sequence is increased. Therefore, a horizon
must be chosen so that the control sequence can be calculated
within one cycle of the control loop. For the experimentations
presented below, a good trade-off appears to be a constant
horizon value of N = 8 ∗ Ts.
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Fig. 6. No compensation - Forces applied (along X, Y and Z directions)
on an moving target for a fixed desired force (−2 N for X-axis, 1 N for
Y-axis and −10 N for Z-axis)

Through the exponential "time constant" Tref , the refer-
ence trajectory defines the speed of the plant response. If
Tref is decreased, the reference trajectory tends to a step (a
large Tref does not allow the system to reach the set-point).
For the trajectory, to reach the set-point over the prediction
horizon N , the value λi (16) must be close to 0 while i = N .

The weight parameters δ and λ are used to modify the
accuracy and the control effort respectively. An increase in δ
implies an increase of both accuracy and control effort. More
time is consequently needed to stabilize the robot nearby the
reference trajectory. Futher details for tuning parameters can
be found in [12].

B. Physiological Motion Compensation

Figs. 6 and 7 represent the forces applied in the three
directions by the Robot_Tool on the environment with and
without compensation. The target is moving in 3D with the
Robot_Heart following the physiological motion shown in

Fig. 7. With compensation - Forces applied (along X, Y and Z directions)
on a moving target, for a fixed desired force (−2 N for X-axis, 1 N for
Y-axis and −10 N for Z-axis)

Fig. 5. The desired force is set to −2 N for X-axis, 1 N for
Y-axis and −10 N for Z-axis.

Without compensation, the peak to peak error is more than
7 N on X-axis, 10 N on Y-axis and 20 N on Z-axis and the
RMS error is 1 N , 1.6 N and 3.5 N along X, Y and Z axis
respectively.

With compensation the maximal and RMS errors are less
than 2 N and 0.5 N respectively along X-axis, 1.5 N
and 0.4 N respectively along Y-axis and 1 N and 0.3 N
respectively along Z-axis.

C. Discussion

Considering the two main sources of physiological motion
as disturbances, compensation was achieved simultaneously
along the three axes. Compared to the non-compensated case
(Fig. 6), the maximal and RMS errors are decreased by 50 %
for X-axis, 75 % for Y-axis and 95 % for Z-axis (Fig. 7).
Even if the result on the Z-axis shows a good rejection of
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the disturbance, the errors on the other axis are still too large
for cardiac surgery.

We also expect to improve the performance of the con-
troller in two ways. Firstly by improving the quality of
the Robot_Tool dynamic parameters identification. These
parameters, determined experimentally, are used to decouple
and linearize the system (by the computed torque formulation
presented in section II-B). Identification uncertainties may
introduce axes coupling and/or non-linearities in the system.
Therefore improving the quality of the identification should
consequently improve the decoupling. Secondly replacing the
ATI Mini-45 force sensor (resolution: 0.2 N ), by an ATI
Nano-17 will increase the sensor resolution (3 mN ) and
therefore the force measure precision.

V. CONCLUSIONS

This paper has presented experimental validations of the
predictive force control to compensate for physiological
motion. Taking into consideration the breathing and heart
beat motion along the three axes, the experimental results
along Z-axis prove the efficency of the force feedback for
the compensation problem.

Dynamic parameters more precise and an upgrade of the
force sensor will improve the global performance of the
system.

In future work, the predictive force controller will be
included in the global teleoperation scheme used in [16].
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[7] O. Bebek and M. C. Çavuşoğlu, “Intelligent control algorithms for
robotic assisted beating heart surgery,” IEEE Transactions on Robotics,
vol. 23, pp. 468–480, June 2007.

[8] B. Cagneau, N. Zemiti, D. Bellot, and G. Morel, “Physiological motion
compensation in robotized surgery using force feedback control,” in
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA),
Roma, Italy, April 2007, pp. 1881–1886.

[9] Y. Nakamura, K. Kishi, and H. Kawakami, “Heatbeat synchronization
for robotic cardiac surgery,” in Proc. of the IEEE Int. Conf. on Robotics
and Automation (ICRA), vol. 2, Seoul, Korea, May 2001, pp. 2014–
2019.

[10] R. Cortesão and P. Poignet, “Motion compensation for robotic-assisted
surgery with force feedback,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), Kobe, Japan, May 2009.
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