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Abstract— This paper introduces an approach that reduces
the size of the state and maximizes the sparsity of the in-
formation matrix in exactly sparse delayed-state SLAM. We
propose constant time procedures to measure the distance
between a given pair of poses, the mutual information gain
for a given candidate link, and the joint marginals required for
both measures. Using these measures, we can readily identify
non redundant poses and highly informative links and use
only those to augment and to update the state, respectively.
The result is a delayed-state SLAM system that reduces both
the use of memory and the execution time and that delays
filter inconsistency by reducing the number of linearization
introduced when adding new loop closure links. We evaluate
the advantage of the proposed approach using simulations and
data sets collected with real robots.

I. INTRODUCTION

The first available solutions in the SLAM literature were

based on the Extended Kalman Filter (EKF) and formulated

the problem as the probabilistic estimation of the robot pose

and the location of static landmarks in the environment,

modelled as a multivariate Gaussian parametrized with the

state mean and its covariance matrix [1], [2]. However,

maintaining the covariance matrix has memory and time

complexities that scale quadratically with the number of

landmarks, which limits this approach to relatively small

environments.

This computational cost can be alleviated using the

Extended Information Filter (EIF) and its alternative

parametrization of Gaussian distributions based on the infor-

mation vector and the information matrix. The information

matrix in landmark-based SLAM is approximately sparse

with very small matrix entries for distant landmarks [3].

These entries can be removed, compacting the map and

speeding up the filter. If instead of only estimating the last

robot pose, the whole robot trajectory is included in the

state together with the landmarks, an approach typically

referred to as full SLAM [4]–[6], a sparse information matrix

is obtained without using approximations. Furthermore, in

delayed-state SLAM [7]–[10] only the trajectory of the robot

is included in the state and the landmarks are only used to

derive relative motion constraints between poses. The result

is an exactly sparse information matrix which grows with

the number of poses and that only has non-null entries for

those poses directly related by an observation. Therefore,
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delayed state SLAM only requires a moderate memory use

even when mapping large areas.

However, adding all robot poses to the state vector has

the cost of a representation that grows even when revisiting

already traversed areas. Furthermore, adding all possible

loop closure links reduces the sparsity of the information

matrix, slows down the execution, and contributes to produce

overconfident estimates due to the linearizations introduced

with each new link, which in the long run lead to filter

inconsistency [11], [12].

Heuristic strategies have been used in the delayed-state

SLAM approach either to restrict the number of links [8]

or to reduce the size of the state by keeping only poses

every few meters [10]. In the context of landmark-based

SLAM, principled information-based approaches have been

proposed to reduce the state representation size and to delay

inconsistency incorporating only highly informative observa-

tions to the filter [13], [14]. Following this line of thought,

our previous work [9] pointed out that the computational

complexity of delayed-state SLAM can be reduced by con-

sidering only highly informative links between nearby poses.

The problem is that computing the distance between poses

and the mutual information gain for links requires access

to the joint marginals, which are computationally expensive

to recover from the information parameterization. Therefore,

in our previous work, we only provide approximations for

these two measures. However, these approximations assume

the poses to be independent which is not the case in delayed

state SLAM. In this paper, we show that while in open

loop, when the system searches for informative links, the

joint marginal covariances of a given pair of poses can be

recovered in constant time. Exploiting this contribution, we

propose a method to compute the distance between poses

and the mutual information gain for each link in exact

form. Finally, we extend the use of the distance and the

information measures to identify not only relevant links but

also redundant poses that are not worth to be added to the

state.

The rest of the paper is structured as follows. In Section II

we formalize delayed-state SLAM and define the problems

to be addressed. Then, Section III describes the strategy to

control the size and the fill in of the information matrix and

the metrics used to compute the informative load of links and

poses. Section IV details how to recover the joint marginal

covariance of a given pair of poses in constant time and

Section V evaluates the method using synthetic and real data

sets. Finally, Section VI summarizes the contributions of this

work and points out ideas for further development.
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II. DELAYED-STATE SLAM FORMULATION

In delayed-state SLAM, the trajectory of the robot at

time t, xt = {x0, . . . , xt}, with xi the robot pose at time

i, i ≤ t, is estimated from the trajectory at time t − 1, a

motion command ut, and a set of observations, yt, of relative

displacements between the current robot pose and previous

poses along the path

p(xt|ut,yt,xt−1) ∝ p(yt|xt) p(xt|ut,xt−1). (1)

The estimation problem in (1) corresponds to the typical

SLAM operations of augmenting the state when computing

p(xt|ut,xt−1) and updating the robot path using relative

observations when computing p(yt|xt).

Assuming Gaussian distributions, the probabilities in (1)

can be parametrized either in terms of their mean and

covariance x ∼ N (µ,Σ) or in terms of the information

vector and the information matrix x ∼ N−1(η,Λ), where

η = Λµ, Λ = Σ−1, and the estimation workhorses are

the extended Kalman and information filters, respectively. As

mentioned, this second case is advantageous since its state

representation is exactly sparse [8].

The motion ut is tipically given by odometric sensors and

it can be integrated to the filter during state augmentation.

Augmenting the state in information form introduces

shared information only between the new robot pose, xt,

and the previous one, xt−1, resulting in a naturally sparse

information matrix, Λ, with a tridiagonal block structure [8].

Assuming the state mean to be available, this operation can

be performed in constant time. In the incremental form of

delayed-state SLAM, adding all the poses results in a state

which increases in size even when re-traversing areas. To

avoid this unnecessary growth of the state size, redundant

poses must be identified and not added.

Integrating the observations in yt into the filter is more

problematic since it involves solving the data association

problem. In the context of delayed-state SLAM, data asso-

ciation is the process of determining relative displacements

between the current robot pose and previous poses in the

trajectory by registering the corresponding sensor readings.

When establishing a link between pose t and pose i using

the information filter, the update operation only modifies the

diagonal blocks t and i of the sparse information matrix,

Λ, and introduces new off-diagonal blocks at locations t, i

and i, t. This operation can also be executed in constant

time, assuming the state mean to be available [8]. When

establishing a link between an uncertain pose and a more

certain one, the estimation of the entire path is revised

reducing the accumulated error. But recovering the state

after an update has worst case quadratic cost, dwindling the

advantage of constant time predictions and updates in the

information form of delayed-state SLAM. If only few loops

are closed, this high cost is amortized over long periods.

For this reason there must be a trade off between reducing

uncertainty and keeping the number of links low.

III. REDUCING THE STATE REPRESENTATION IN

DELAYED-STATE SLAM

The strategy we propose to maintain a reduced state size

and to speed up the execution of delayed-state SLAM is

based on considering only highly informative links and non

redundant poses.

The mutual information gain of a link measures the

contribution of the link to the correction of the state. For

low informative links, the state hardly changes and the

linearization effects associated with the link dominate. On

the contrary, for highly informative links, the linearization

effects are small in comparison with the change in the state.

Thus, we propose to measure the information gain for the

links and to update the state using only those informative

enough.

As far as poses are concerned, it seems reasonable to

keep only non-redundant poses. The redundancy of a pose

should be measured in the information space and not only

in the Euclidean space, as it has been previously done in

the literature [10]. The distance in the information space

of a pose with respect to the poses already in the state

can be measured from the information carried by the links

established between them. If these links are not informative

enough, there is no need to include the new pose in the state

representation since its contribution is equivalent to poses

already in the state.

The mutual information gain can be computed by actu-

ally checking the contribution of all possible observations

obtained from sensor registration. If at least one of the links

is very informative, both the link and the new pose are added

to the state. On the other hand, if no much information is

gained for any link, the pose is considered redundant and it

is not added to the state.

However, the process of registering the current sensor

reading with all the previous ones is slow and prone to

perceptual aliasing. Since only poses that are within the

sensor range are likely to be successfully registered with

the current pose, we limit sensor registration only to the

set of neighboring poses. Moreover, we can evaluate the

expected mutual information gain before actually registering

the sensor readings. Thus, we can further constrain the set

of poses to be considered to those that are close enough

and whose expected information gain when linked to the

current pose is potentially high. When using the expected

information instead of the actual one, we can keep not only

the poses that close a loop but also those that are good

candidate to do so.

The use of the information-based selection criterion as a

previous step to sensor registration leads to restrictive data

association tests that avoid computational expensive sensorial

matching as much as possible. The result in a reduced state

representation with the corresponding computational savings.

A. Distance Between Poses

The relative displacement, d, from the current robot pose

xt ∼ N (µt,Σtt) to any other previous pose in the trajectory
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xi ∼ N (µi,Σii) can be estimated as a Gaussian with

parameters

µd = h(µt, µi),

Σd = [Hi Ht]

[

Σii Σit

Σ⊤

it Σtt

]

[Hi Ht]
⊤

where h(xt, xi) gives the relative displacement from xi to xt

in the frame of reference of xi, Ht and Hi are the Jacobians

of h with respect to the two poses, and Σit is the cross

correlation between poses i and t.

Marginalizing the distribution of the displacement, d, for

each one of its dimensions, r, we get a one-dimensional

Gaussian distribution N (µr, σ
2
r) that allows to compute the

probability of pose xi being closer than vr to pose xt along

such dimension

pr =

∫ +vr

−vr

N (µr, σ
2
r)

=
1

2

(

erf

(

vr − µr

σr

√
2

)

− erf

(−vr − µr

σr

√
2

))

. (2)

If for all dimensions, pr is above a given threshold s, then

pose xi is considered to be close enough to the current robot

pose, xt.

If we set vr = 0 for all dimensions, then pr gives the

probability of the displacement d to be null. In [9] we

approximated this probability using a Mahalanobis distance

and assumed independence between the two involved poses.

We will see in Section IV, that the marginal covariances

needed to build Σd can be recovered efficiently, allowing to

exactly compute this distance in constant time for any given

pair of poses.

B. Mutual Information Gain of Candidate Links

When integrating the information of a new link between

poses i and t into the state, the information matrix posterior

is given by

Λ′ = Λ + H⊤Σ−1

y H (3)

where Σy is the expected measurement noise covariance and

H the corresponding Jacobian

H = [0 . . . 0 Hi 0 . . . 0 Ht] . (4)

For Gaussian distributions the mutual information gain pro-

duced by the candidate link is computed as [15]

Iit =
1

2
ln

|Λ′|
|Λ| . (5)

If (5) is above a given threshold, g, the link between the

two poses is considered relevant enough to reduce the state

uncertainty, and the corresponding observations are regis-

tered. When the registration succeeds we obtain a measure

of the displacement between poses i and t that can be used

to update the filter.

A straightforward evaluation of the global entropy reduc-

tion in (5) is computationally expensive since it requires the

computation of the determinants of the prior and all possible

posterior information matrices resulting from each tentative

updates. Therefore, in [9] we heuristically approximated (5)

using the second term of the Bhattacharyya distance that

provides a test to distinguish classes with close means but

different covariances, i.e., to identify poses that are close but

have significantly different uncertainty and whose linkage

might result in a significant change in the state. However,

this test assumes the poses to be independent and only

considers the effect of the candidate link on the two directly

linked poses, whereas when closing a loop, the whole state

potentially changes. The test in (5) takes into account the

effect of the candidate link in all the poses in the state

and considers the cross-correlations between them. In the

following we show that algebraic manipulation allows exact,

constant-time computation of the information gain.

Using (3), (5) becomes

Iit =
1

2
ln

|Λ + H⊤Σ−1

y H|
|Λ|

=
1

2
ln

|Σy| |Λ + H⊤Σ−1

y H|
|Σy| |Λ| .

Since the determinant of block matrix can be defined as

A B

C D
= |A| |D − C A−1 B| = |D| |A − B D−1 C|

we have that

Iit =
1

2
ln

Σy −H

H⊤ Λ

|Σy| |Λ|

=
1

2
ln

|Λ| |Σy + H Λ−1 H⊤|
|Σy| |Λ|

=
1

2
ln

|Σy + H Λ−1 H⊤|
|Σy|

=
1

2
ln

|Σy + H Σ H⊤|
|Σy|

=
1

2
ln

|S|
|Σy|

(6)

with S = Σy +HΣH⊤ the Kalman innovation matrix that,

taking into account (4), is

S = Σy + [Hi Ht]

[

Σii Σit

Σ⊤

it Σtt

]

[Hi Ht]
⊤.

The matrices involved in the final expression for Iit have

constant size; the size of the underlying pose space. There-

fore, the mutual information gain can be computed in con-

stant time independent of the size of the state, assuming the

joint marginal covariance for poses i and t to be available

to compute S.

IV. COMPUTATION OF JOINT MARGINALS

The proposed solution to reduce the state size relies on

an efficient computation of both, the distance in (2) and the

mutual information gain in (6). The measures require the

state mean and the joint-marginal between the current pose,

xt, and any pose from the history, xi. Although representing

the state in information form is more memory efficient than
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in covariance form, it does not offer direct access to state

means and marginal covariances.

Efficient approximations of cross covariances can be

computed in logarithmic time by subsampling poses and

performing relaxation over multiple spatial resolutions [16],

or in constant time by considering only first order relations

via Markov blankets [3] or by implementing partial state up-

dates [17]. Optimistic approximations of joint marginals in-

crease the number of data association candidates, something

that is especially sensitive after long periods of open loop

traverse. Thus, exact joint marginal covariances are preferred

for the accurate identification of neighboring poses. Exact

joint marginals can be recovered by augmenting the sparse

system of equations needed for state recovery [8] or by ex-

ploiting the sparseness of factorized forms of the information

matrix with QR [6] or Cholesky factorizations [18]. These

algorithms have in average linear computational complexity

for band diagonal matrices, but they are worst case quadratic

for matrices encoding many loops.

Capitalizing on the idea that only few links are added to

the state representation, we now show how exact computation

of joint marginals can be achieved in constant time during

open loop.

Suppose a loop closure occurs at time l. At that point, and

thanks to the sparsity of the information matrix, the state

mean, µ, and the covariance matrix, Σ, can be recovered

either by QR or Cholesky factorization [6], [18]. In our

implementation, we make use of supernodal sparse Cholesky

factorization [19]. Finally, the exact marginal covariances

Σii, and the cross covariances Σil with 1 ≤ i ≤ l, can

be readily extracted from Σ.

After loop closure, when the robot moves to a new pose,

xi, i > l, the mean for this new pose can be computed from

the previous robot pose, xi−1, and the motion ut

µi = f(µi−1, ut)

and its marginal covariance can be computed as

Σii = Fi Σi−1 i−1 F⊤

i + Wi Σu W⊤

i

with Fi and Wi the Jacobians of f with respect to xi−1 and

ut, respectively, and Σu the motion noise. These marginal

covariances can be computed once and stored since they do

not change until the next loop closure occurs.

The cross correlation between the last robot pose and the

previously stored ones can be factorized as

Σit = Φi F⊤

with

Φi =

{

Σil i ≤ l

Σii (F⊤

l+1
. . .F⊤

i )−1 i > l

and where F⊤ = F⊤

l+1
. . . F⊤

t is the accumulated Jacobian

from the last loop closure to the current time slice. Ob-

serve that F can be updated in constant time as the robot

moves. Moreover, all the information needed to define Φi

is available at time slice i and can be computed in constant

time since the term (F⊤

l+1
. . .F⊤

i )−1 is the inverse of the

aggregated Jacobian, F⊤, at time i.

V. EXPERIMENTS AND RESULTS

Fig. 1 shows a comparison of different strategies for

delayed-state SLAM, illustrating the effect of adding only

informative links and non-redundant poses. All three plots

simulate a robot circling a 6 m radius circle and then

circunscribing an ellipse with semiaxes 6 m and 8 m. The

simulated robot has an odometric sensor whose error is

5% of the displacement in x and y and 0.00175 rad in

orientation and a second sensor able to link any two poses

closer than ±3 m, ±3 m, ±0.26 rad, in x, y, and orientation,

respectively. This sensor has a noise covariance of Σy =
diag(0.22, 0.22, 0.0092).

Fig. 1(a) shows the result of the simulation for the standard

delayed-state SLAM that incorporates all possible poses and

links to the state representation. The distance test in (2)

with range v = (3, 3, 0.26) and threshold s = 0.1 is used

to determine neighboring poses using (2). The simulation

takes about 32 s and at the end of the execution the filter

includes 170 poses and 895 loop-closure links. Results

correspond to a Matlab implementation running under Linux

on a Intel Core 2 at 2.4 Ghz.

Fig. 1(b) shows the result of the same simulation but

including only links that have a value of (6) higher than 1.

In this simulation, only 36 loop-closure links are established

instead of 895 and this results in a significant saving in the

execution time (25 s vs. 32 s ).

Finally, Fig. 1(c) shows the outcome of the experiment

where only informative links and relevant poses are added to

the state. As discussed in Sec. III, a pose is considered rele-

vant only if it establishes at least one sufficiently informative

link with any other pose already in the state. In this case, the

simulation takes only 9 s and the resulting state includes 49

poses and 34 loop-closure links. We can conclude that the

approach introduced in this paper significantly reduces the

state size and, consequently, the computation time. As it

can be appreciated in Fig. 1(c), since only low informative

links and redundant poses are discarded, the final trajectory

estimation is equivalent to that estimated by the original

delayed-state SLAM approach in Fig. 1(a).

To test the proposed system on real data, a Segway robotic

platform was manually driven to collect dead reckoning

readings and stereo images with a Bumblebee2 stereo rig.

The images are used to find constraints between the corre-

sponding poses triangulating SIFT features [20].

The Segway dead reckoning readings and the vi-

sual pose constraints are modeled with noise covari-

ances Σu = diag(0.012, 0.0052, 0.032), and Σy =
diag(0.22, 0.22, 0.032), respectively, and the uncertainty of

the initial pose is set to Σ11 = diag(0.12, 0.12, 0.092).

Experimentally, we observed that images taken in poses

farther away than ±2.5 m in x, ±2 m in y or ±0.26 rad

in orientation can not be safely matched and, consequently,

those are the thresholds used to detect nearby poses using

(2) with a neighboring probability threshold s = 0.1.

We drove the robot for 700 s for about 400 m along

two loops around a couple of buildings in the Barcelona
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Fig. 1. Simulations to exemplify the strategies proposed in the paper a) The
standard approach that incorporates all poses and all links to the filter; b)
Incorporating all poses but only highly informative links; c) Incorporating
only relevant poses and highly informative links.
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Fig. 2. Filtered trajectory (in red) using encoder and visual odometry on a
dataset collected at the UPC Campus Nord. Loop closure links are displayed
in green and the blue arrow indicate the final pose of the robot and the black
ellipse the associated covariance at a 95% confidence level.

Robot Lab located at the UPC Campus Nord (see Fig. 2).

Due to the repetitive structure of the UPC Campus Nord,

this trajectory included many portions prone to perceptual

aliasing. When all possible loops are closed we end up with

368 poses and 317 loop-closure links and the execution time

is 296 s, without considering the vision related processes.

When limiting the links to those that produce an information

gain above 3, the simulation runs in 92 s and only 3 loop-

closure links are established. Finally, if we only retain non-

redundant poses we end up with a filter with 147 poses

and 3 loop-closure links. In this case, the execution time

is only 62 s, about one sixth of the original execution time.

Finally, to test the performance in a sequence with a

much larger number of constraints we used the Intel dataset

from [21]. The dataset includes 26915 odometry readings

and 13631 laser scans. The laser scans are used to gen-

erate an alternative odometry and to assert loop closures

aligning them using an ICP scan matching algorithm [7].

In this case, only poses closer than ±1 m in x and y

and ±0.35 rad in orientation are considered reliable. The

robot odometry and the laser scan match are modeled

with noise covariances Σu = diag(0.052, 0.052, 0.032)
and Σy = diag(0.052, 0.052, 0.0092), respectively. Fi-

nally, the covariance of the initial pose is set to Σ00 =
diag(0.12, 0.12, 0.092). Using the algorithm introduced in

this paper with g = 6, we end up with a state including

only 1218 poses and 103 links (see Fig. 3). This data set

has been used in many other SLAM related works and, due

to its large size, it is often pre-processed and reduced to

about 1000 poses with about 3500 loop closure links [6]. The

system we propose automatically selects the optimal subset

of poses in the sense of the information gain and allows for

a more efficient selection of the loop closure links.
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Fig. 3. Filtered trajectory using encoder and laser odometry of the Intel
dataset.The blue arrow indicate the final pose of the robot and the black
ellipse the associated covariance at a 95% confidence level.

VI. CONCLUSIONS AND FUTURE WORK

This paper offers efficient solutions to reduce the state

representation in delayed-state SLAM by adding only non-

redundant poses and informative links. This is achieved by

computing two measures, the relative distance between poses

and the mutual information gain for each candidate link. In

our previous work [9], we introduced these measures and

methods to approximate them. In contrast, in this paper, we

described how to exactly compute these two measures in

an efficient way. The main problem to overcome has been

that of obtaining the cross correlation between the current

robot pose and previously visited poses. We have shown

that these cross-correlations can be factorized and computed

on demand allowing an exact, constant-time computation of

both the relative distance and the information gain.

The presented experiments with real data show that the

number of poses in the state can be reduced up to 10%, the

number of links drops up to 1%, and the execution time is

reduced up to 16% compared with the standard delayed-state

SLAM algorithm, where all poses and links are included in

the filter, without compromising the quality of estimation.

With the proposed strategy, the robot operates most of the

time in open loop and the cost of updating the entire state

after a loop closure is amortized over long periods. With this,

the bottleneck for real time execution is not state recovery,

but detecting neighbring poses for which feature matching

is likely. Currently, this process is implemented as a linear

search. In the near future, we plan to explore the possibility

to organize the poses in a tree-like structure to speed up this

search.
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