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Abstract— This paper describes a new methodology for de-
signing bilateral controllers based on transparency that applies
a modified scheme of control by state of convergence. The
design is based on modelling the behavior of the master and
slave which regard state space equations, and also taking
into account that perfect transparency cannot be reached.
This methodology allows designing the controllers in order to
obtain the convergence between the state of the master and the
slave. Furthermore, it consequently provides a higher degree
of transparency to the operator. The paper explains criteria in
achieving convergence between the master and the slave, and so
as with transparency on a steady state. A set of equations that
calculate controller gains have been obtained by applying such
criteria. In order to verify this new methodology, a master-slave
system of 3 DoF have been used.

I. INTRODUCTION

The main goal of bilateral controllers is to link the
behavior of two devices, usually called master and slave,
so that the master guides the slave and reproduces its haptic
interactions [1], [2], [3]. The slave represents a robot that
executes the remote task such as manipulation or movement.
The master is handled by a user in order to control the slave
in the remote environment. Master-slave interaction is carried
out by exchanging movements and forces. Therefore, the
corresponding controllers have to be designed in order to
guarantee stability and transparency for the bilateral systems
[4]. The classic control theory approach is very suitable for
simple controllers such as position-position or force-position
when communication time delays can be disregarded [5].
More complex techniques must be applied when communi-
cation time delay is significant. In these cases, the passivity
theory and wave variables approach are usually applied [6],
[7], [8], [9]. These techniques are based on the concepts of
storing and dissipating power.

The state convergence methodology represents an alterna-
tive approach for designing bilateral controllers. It was firstly
introduced in [10] and [11]. This methodology is based on
modelling the master and slave devices according to their
space state equations. The design equations of the controllers
are obtained in order to assure the convergence between
the master and the slave, and to establish the dynamics of
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Fig. 1. Modified bilateral control scheme by state convergence

the teleoperation system. However, the transparency condi-
tions are not considered in this design method. Therefore,
the transparency of the teleoperation system is drastically
reduced when this methodology is applied.

This paper is focused on imposing transparency conditions
in the state convergence methodology in order to design a
bilateral control system where the slave follows the master
and a high degree of transparency is achieved. Considering
the state convergence and transparency conditions, a set of
design equations to calculate the control gains are obtained.
The paper is organized as follows. Section II shows the
conditions required for complying the state convergence
between the master and slave. Section III describes the
conditions to achieve the transparency on steady state. The
experimental results obtained when a teleoperation system
of 1 DoF has been controlled using this new methodology
are shown in Section IV. Finally, conclusions from this work
are pointed out and discussed in the last section.

II. DESIGN OF BILATERAL CONTROLLERS USING THE
STATE CONVERGENCE METHODOLOGY

A. Bilateral System Modelling

A new version of the bilateral control scheme by state
convergence [10] [11] is shown in Fig. 1.

These scheme considers all the possible interactions that
could appear in the operator-master-slave-environment set.
Different from [10] [11], this new version of the control
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scheme includes G1 and Ze matrixes: G1 is a scalar that
feedbacks the slave-environment interaction to the master,
and Ze is a matrix that represents the remote environment
impedance.

The signals included in Fig. 1 are defined as follows:
• Fm(t) represents the force applied to the master by the

operator.
• Um(t) and Us(t) represent the forces (torques) applied

to the master and slave devices.
• Xm(t) and Xs(t) represent the master and slave state

vectors.
• Ym(t) and Ys(t) represent the master and slave outputs.

The following matrixes of Fig. 1 represent the master and
slave dynamics:

• Am(n×n) and As(n×n) are the master and slave system
matrixes.

• Bm(n×1) and Bs(n×1) are the master and slave input
matrixes.

• Cm(1×n) and Cs(1×n) are the master and slave output
matrixes.

And the next six matrixes of Fig. 1 represent the control
gains of the bilateral system:

• G1(1×1): Influence in the master of the interaction force
of the slave with the environment.

• G2(1×1): Influence in the slave of the force that the
operator applies to the master.

• Km(1×n): Master state feedback matrix, which allows
adjusting the master dynamics.

• Ks(1×n): Slave state feedback matrix, which allows ad-
justing the slave dynamics.

• Rm(1×n): Master to slave state feedback matrix.
• Rs(1×n): Slave to master state feedback matrix.
According to the control scheme, the state equations of a

bilateral system are:[
ẋm(t)
ẋs(t)

]
=

[
A11 A12
A21 A22

][
xm(t)
xs(t)

]
+

[
B11
B21

]
fm(t) (1)

where:

A11 = Am +BmKm

A12 = Bm(Rm +G1Ze)
A21 = BsRs (2)
A22 = As +Bs(Ks +Ze)
B11 = Bm

B21 = G2Bs

It is considered that the master and slave are represented
by mathematical models of dimension n. Therefore, to define
the bilateral controllers it is required to calculate 4n + 2
parameters, since Km,Ks,Rm and Rs have dimension n, and
G1 and G2 have dimension 1. To calculate these control
gains, a set of design equations must be obtained. The
procedure to obtain these design equations is explained in
the following sections. This procedure considers the state
convergence and transparency conditions to obtain the design
equations. The designed bilateral control system will allow

that the slave follows the master, and the transparency will
be achieved on steady state.

B. State Convergence Methodology

The state convergence methodology has been applied to
get the design equations that assure the convergence between
the master and slave states. This way, the slave will follow
the master.

If the next linear transformation is applied to the system
(1):

x̃(t) =
[

xm(t)
xm(t)− xs(t)

]
=

[
I 0
I −I

][
xm(t)
xs(t)

]
(3)

the following state equation is obtained:

˙̃x(t) = Ãx̃(t)+ B̃ fm(t) ⇒[
ẋm(t)
ẋe(t)

]
=

[
Ã11 Ã12

Ã21 Ã22

][
xm(t)
xe(t)

]
+

[
B̃11

B̃21

]
fm(t) (4)

where:
xe(t) = xs(t)− xm(t) (5)

Ã11 = Am +Bm(Km +Rm +G1Ze) (6)

Ã12 = −Bm(Rm +G1Ze) (7)

Ã21 = Am +Bm(Km +Rm +G1Ze)−
As −Bs(Rs +Ks +Ze) (8)

Ã22 = As +Bs(Ks +Ze)−Bm(Rm +G1Ze) (9)

B̃11 = Bm (10)

B̃21 = Bm −G2Bs (11)

Let xe(t) be the error between the slave and the master.
From (4), the error state equation between the slave and the
master is:

ẋe(t) = Ã21xm(t)+ Ã22xe(t)+ B̃21 fm(t) (12)

If Ã21 = B̃21 = 0 then (12) represents an autonomous
system. In this case, the error can be eliminated, and the
slave will follow the master in any condition. The matrix Ã22
determines the bilateral system stability, therefore it requires
that their eigenvalues be located in the left half of the s-plane.

Design Condition �1: Error state as an autonomous system
I.

The first condition to achieve the evolution of the error as
an autonomous system is that Ã21 = 0. Therefore, according
to (8), the next condition must be verified:

Am +Bm(Km +Rm +G1Ze) =
As +Bs(Ks +Rs +Ze) (13)

This equation can be satisfied for any environment if:

BmG1 = Bs (14)

In this case, (13) can be expressed as:

Am +Bm(Km +Rm) = As +Bs(Ks +Rs) (15)
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The equation (13) provides n conditions to calculate the
bilateral controllers. However, if condition (14) is satisfied,
then n+1 conditions are obtained.

Design Condition �2: Error state as an autonomous system
II.

The second condition to achieve the evolution of the
error as an autonomous system is that B̃21 = 0. Therefore,
considering (11), the following condition must be satisfied:

Bm = G2Bs (16)

The equation (16) provides 1 additional condition to
calculate the control gains.

III. CONDITIONS OF TRANSPARENCY IN STATE
CONVERGENCE

This section describes the transparency conditions that
must be verified in order to achieve the transparency of
the teleoperation system on steady state. These conditions
provide additional design equations to obtain the control
gains.

The ideal transparency implies that impedance reflected to
operator is equal to impedance of the remote environment,
i.e.:

fm(s)
vm(s)

= Ze(s) (17)

The equation (17) does not appear in the control scheme as
shown in Fig. 1, but transparency conditions can be obtained
applying some transformations. Fig. 2 shows a simplified
version of the control scheme shown in Fig. 1 that includes
the design conditions �1 and �2. From this control scheme,
the transfer functions between the input and the different
outputs is given by:

G(s) = C̃[sI − Ã]−1B̃+ D̃ (18){
C̃ = I

D̃ = 0

}
⇒ G(s) = I[sI − Ã]−1B̃ (19)

Therefore G(s) can be expressed as:

G(s) =
[ad j(sI − Ã)]t

Δ

[
Bm

0

]
(20)

where:
Δ =

∣∣sI − Ã
∣∣ =

∣∣sI − Ã11
∣∣ ∣∣sI − Ã22

∣∣ (21)

G(s) represents a matrix of transfer functions among the
master state and the user force (input of the system). Δ
represents the G(s) characteristic polynomial, so the stability
and poles of the G(s) transfer functions are defined by Δ.
Regarding its order, it can be calculated from (21) as the
sum of the dimension of both determinants. Therefore the
dimension of Δ is 2n.

The transparency condition can be applied to G(s). How-
ever, it is required to take into account that ideal transparency
cannot be obtained, because it derives from non-causal sys-
tems. Therefore, transparency conditions have been softened.
It is considered that the transparency is achieved if the stiff
and viscous components of the environment are perceived by

the operator on steady state. This definition allows obtaining
the following additional design condition.

Design Condition �3: Transparency based design.
For environments that are predominantly elastic, the trans-
parency of the teleoperation system can be redefined by using
the next condition:

lim
t→∞

xm(t)
fm(t)

=
−1
ke

(22)

where ke represent, the stiffness of the environment.
If the user input is modelled as an unit step, then the

previous condition can be transform as:

lim
t→∞

xm(t)
fm(t)

= lim
s→0

sG1(s)
1
s

= G1(0) =
−1
ke

(23)

where G1(s) represent, the relation between master position
(first state variable) and user force. Note that these transfer
functions do not have any relation to the control gains G1
and G2.

The expressions (23) define four new design conditions.
Therefore, n+5 design conditions have been obtained: (13),
(16) and (23). If condition (14) is satisfied then n + 6
conditions are defined. These conditions provide a set of
design equations to calculate the gains of the control scheme.
These conditions assure the state convergence between the
master and slave, and the transparency on steady state.

The number of parameters that can be assigned without
any constraint depends on the dimension of the system.
Following section shows the application of this methodology
for a system of second order. Higher orders can be solved
in a similar way.

IV. STATE CONVERGENCE METHODOLOGY FOR SECOND
ORDER SYSTEMS

A. Design Equations and Control Gains

In a teleoperation system of 1 DoF, the master and the
slave can be modelled using the following second order
simplified linear model:

u(t) = Jθ̈(t)+bθ̇(t) (24)

where J is the inertia of the element, b is the viscous friction
coefficient, u(t) is the torque applied, and θ(t) is the rotation
angle.

If the angular position and angular velocity are chosen as
the state variables for both devices, then:

x1(t) = θ(t) (25)

ẋ1(t) = θ̇(t) = x2(t) (26)

ẋ2(t) = θ̈(t) =
−b

J
x2(t)+

1
J

u(t) (27)

Therefore, the equations on the state space for the master
and slave are:[

ẋm1
ẋm2

]
=

[
0 1
0 −bm

Jm

][
xm1
xm2

]
+

[
0
1

Jm

]
um(t) (28)
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Fig. 2. Diagram of the state convergence control including design conditions 1 and 2

[
ẋs1
ẋs2

]
=

[
0 1
0 −bs

Js

][
xs1
xs2

]
+

[
0
1
Js

]
us(t) (29)

and:

Am =
[

0 1
0 −bm

Jm

]
Bm =

[
0
1

Jm

]
(30)

As =
[

0 1
0 −bs

Js

]
Bs =

[
0
1
Js

]
(31)

If the master and slave are similar, the next equation is
obtained from (14):

G1 = 1 (32)

In this case, the design condition �1 is simplified to:

Km +Rm = Ks +Rs (33)

On the other hand, if the master and slave are similar,
from the design condition �2, it is obtained:

G2 = 1 (34)

The design condition �3 is more complex to apply since:

G1(s) = xm(s)
fm(s) = (35)

bm2(s2−s(am22+bm2km2−bs2rs2)−bm2km1+bs2rs1)
(s2−s(am22+bm2(g1be+km2+rm2))−bm2(km1+rm1+g1ke))

· · ·
(s2−s(am22+bm2km2−bs2rs2)−(bm2km1−bs2rs1))

According to these equations, stability of G1(s) implies that:

am22 +bm2(g1be + km2 + rm2) = −δ1 < 0 (36)
bm2(km1 + rm1 +g1ke) = −δ2 < 0 (37)

am22 +bm2km2 −bs2rs2 = −δ3 < 0 (38)
bm2km1 −bs2rs1 = −δ4 < 0 (39)

The equation (23) for a second order system is:

−1
ke

=
−1

km1 + rm1 +g1ke
(40)

Analyzing (40) further, the following equation is derived:

km1 + rm1 = 0 (41)

Substituting (41) to (37), it can be deduced that δ2 depends
on the physical parameters of the robot

δ2 =
−ke

Jm
(42)

Master

Slave

Environment

Fig. 3. Testbed used for the experiments

Therefore, considering δ1,it is then possible to vary the mas-
ter dynamics (according to the value of δ2). The dynamics
of the error between the master and the slave is defined
completely by δ3 and δ4.

Therefore, there are 8 design equations: (32), (33) (2
scalar equations), (34), (41) , (36), (38) and , (39). On the
other hand, there are 10 control gains: Km, Ks, Rm, Rs , G1
and G2. Therefore, 2 gains must be assigned according to
the suitability for the control system. In our case Am = As

and Bm = Bs, then the simplest solution to comply with
the Design Condition �1 according to (33) is to set Rm =
[ 0 0 ]. This case does not imply that the slave state is not
feedback, since the slave interaction force is feedback to the
master and this information depends on the slave position and
velocity. Solving the design equations, the following control
gains are obtained:

g1 = bs2
bm2

= 1 (43)

g2 = bm2
bs2

= 1 (44)

Rm =
[

0 0
]

(45)
Km =

[
0 (−δ1Jm +bm −be)

]
(46)

Rs =
[

(δ4Js) (−δ1Jm −be +δ3Js)
]

(47)
Ks =

[
(−δ4Js) (bm −δ3Js)

]
(48)

The effects of δ1, δ3 and δ4 are important to take into
account, since it represents the poles of (35). It thereby δ1,
δ3 and δ4 establishes dynamics of the master and determines
the velocity of state error to converge to zero.

B. Experimental Results

The new methodology for designing bilateral controllers
has been tested on a teleoperated system, Fig. 3. The master
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robot is a haptic device (Phantom Omni - Sensable). It
was programmed to have the same mechanical characteristic
of the slave manipulator using virtual constrains [12]. The
slave manipulator is a serial robot of 3 DoF. It is controlled
by a board PC104 (TS-5600) with a real time operative
system (QNX) and EPOS controller (Maxonmotors). The
Communication between the master and the slave is via LAN
(UDP).

The performed control task is aimed to applying operators
force over the master in order to guide the slave in the
environment. In the experiment, the last link of the slave
has the same orientation at all times (vertical orientation),
hence the motor that corresponds to the third joint does not
change in position due to its movement transmission system.

The master and slave joint parameters are represented by
the table I.

TABLE I
JOINTS PARAMETERS

Parameter Joint I Joint II

Jm (Kgm2) 0.0276 0.054

bm 0.05 0.05

δ2 362.32 185.19

Therefore, for the first joint, the master and slave state
equations are represented by the following matrixes:

As =
[

0 1
0 −1.812

]
Bs =

[
0

36.23

]
(49)

and for the second joint, the master and slave state equations
are represented by the following matrixes:

As =
[

0 1
0 −0.926

]
Bs =

[
0

18.52

]
(50)

Am and Bm were taken with the same values of As and Bs

respectively, as the haptic device is servocontrolled to have
these characteristics.

An environment that is predominantly elastic has been
considered to verify the performance of the bilateral control
scheme. The remote environment impedance that have been
considered for each joint is the following:

Ze =
[

ke be

]
(51)

where ke = −10Nm/rad and be = −1Nm/(rad/s) in both
environments.

Considering δ1 = 38.313, δ3 = 46 and δ4 = 529 for the
first joint, the obtained poles are -17, -21.3 (master dynamics
poles) and -23, -23 ( error dynamics poles). Considering δ1 =
27.2, δ3 = 10 and δ4 = 21 for the second joint, the obtained
poles are -14, -13.2 (master dynamics poles) and -3, -7 (
error dynamics poles).

Solving the equations of design: (43) to (48), control gains
of table II are obtained.

The figures 4 and 5 show the position evolutions of the
master and slave joints when the slave interacts with the
environment. It can be observed that the slave follows the

TABLE II
CONTROL GAINS

control gain Joint I Joint II

g1 = g2 1 1

Km [0 -0.0074353] [0 -0.42029]

Ks [-14.6004 -1.2196] [-1.134 -0.49]

Rm [0 0] [0 0]

Rs [14.6004 1.2122] [1.134 0.069714]
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Fig. 4. Position of the first joint

master. The minor errors in the second joint is probably due
to a more complex system present in movement transmission.

Figures 6 and 7 show the torques of the joints correspond-
ing to the environment and master forces.

Finally, figures 8 and 9 show the relation between the
position and the force of the joints. A very similar relation
for both cases can be observed.

V. CONCLUSION

A novel methodology for designing bilateral controllers
based on transparency has been presented in this paper. The
methodology uses state of convergence framework so as to
obtain a set of equations of design that calculate control
gains.
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The design method assures the state convergence between
the master and the slave. It obtains transparency on a
steady state. The parameter δ2 is defined by the transparent
condition, δ1 defines the dynamics of the master. δ3 and δ4
define the dynamics of the error convergence.

The methodology has been verified in a master-slave sys-
tem of 3 DoF. The experimental results have been successful
since controllers made the slave follow the master. They also
provide the operator a higher degree of transparency.

The methodology has been tested considering a second
order system for the master and the slave. Moreover, this
methodology can also be applied in higher order systems of
teleoperation models.
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