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Abstract— Robot vision has a lot to win as well with wide field
of view induced by catadioptric cameras as with redundancy
brought by stereovision. Merging these two characteristics in
a single sensor is obtained by combining a single camera and
multiple mirrors. This paper proposes a 3D model tracking
algorithm that allows a robust tracking of 3D objects using
stereo catadioptric images given by this sensor. The presented
work relies on an adapted virtual visual servoing approach, a
non-linear pose computation technique. The model take into
account central projection and multiple mirrors. Results show
robustness in illumination changes, mistracking and even higher
robustness with four mirrors than with two.

I. INTRODUCTION

Robot localization is a complex task and vision has shown
its interests along last decades. Whatever the kind of camera
is, several works have been done to do self-localization using
vision. The choice of the sensor is critical for the targeted
application. Each of them has pros and cons but some,
such as omnidirectional sensors, have interesting advantages.
Their major interest is to allow landmarks observation during
a long period of time, all around the robot, which is synonym
of precision. Nevertheless, the problem of depth estimation,
if required, is still present. Stereovision sensors have the
interesting property of allowing estimation of the depth. They
are, for instance, composed by two perspective cameras, as
human vision system. Knowing the geometry of the sensor,
one can recover a point depth.

An interesting idea is thus to use a sensor that merges
stereovision and omnidirectional vision. This is one of these
sensors (a small review of them can be found in [1]) we
used for the work presented in this paper. The sensor was
designed by Mouaddib et al. in [2]. It is a catadioptric sensor
composed by a unique camera and four parabolic mirrors
placed in a square at the same distance from the camera
(Fig. 1).

Our aim is to do self-localization using this sensor since
its potential in terms of robustness and precision is high. We
propose to investigate the visual servoing approach to do this
task.

Visual servoing aims to move a camera usually mounted
on the robot end-effector in order to reach a desired pose
using image information. For our problem, one can imagine
to virtualize the camera, starting from an initial pose and
moving to reach the real pose of the camera, still using
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Fig. 1. Our sensor: orthographic camera, parabolic mirrors, 90 cm height

image information. This is the Virtual Visual Servoing (VVS)
framework introduced by Sundareswaran et al. in [4] and
then by Marchand et al. in [5], a full scale non-linear opti-
misation technique which can be used for pose computation.
Some works have been done, for perspective camera [6],
stereo perspective rig [7] and even for monocular omnidi-
rectional vision [8]. These works also deal with corrupted
data, which is frequent in image feature extraction, using the
widely accepted statistical techniques of robust M-estimation
[9]. The goal in this paper is to develop robust VVS for
omnidirectional stereovision to recover the camera pose and
to show qualities and contributions of the presented sensor
for this kind of application.

We first present sensor modelling before developping the
pose estimation approach. After that, the chosen feature type
will be tackled as well as image tracking used method.
Finally, experimental results will be presented.

II. SENSOR DESCRIPTION AND MODEL
A. The Sensor

Even if the tracking and pose estimation method presented
in this paper can be used with any omnidirectional stereo-
vision system, we used a particular one. It is composed by
a unique camera equipped with a telecentric lens and four
parabolic mirrors placed in a square at the same distance
from the camera, so that their axes are parallel to the camera
optical axis (Fig. 1). For more details about the design of this
sensor, see [3].

Using parabolic mirrors and a telecentric lens, giving an
orthographic projection, allows to keep a central projection
for each mirror. So each individual part of the stereo sensor
can be modelled using the equivalent sphere projection
model.
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B. Unified Central Projection Model

Since the work of Barreto et al. [10], a unified projec-
tion model for central projection cameras was designed.
This model describes a family of cameras from perspec-
tive to catadioptric ones with particular shape mirrors. The
paraboloidal mirror we use is one of them.

According to this model, a central projection camera
can be modelled by a first projection on a sphere with
coordinates (0, 0, ξ) in the camera frame followed by a
perspective projection on the image plane. Such a model can
be defined using parameter ξ which depends intrinsically of
the catadioptric camera mirror parameters.

Knowing intrinsic parameters γ = {px, py, u0, v0, ξ}, a 3D
point X = (X,Y, Z) is first projected on a unitary sphere
and then in the image plane as x = (x, y, 1). The relationship
between X and x can be expressed as:

x = prγ(X) with


x =

X

Z + ξ
√
X2 + Y 2 + Z2

y =
Y

Z + ξ
√
X2 + Y 2 + Z2

(1)
x is the point on the virtual normalized plane and the image
point in pixellic coordinates is obtained by:uv

1

 =

px 0 u0

0 py v0
0 0 1

xy
1

 (2)

C. Stereo Model

We chose to model our stereo sensor including one
camera and four parabolic mirrors as four cameras, one
for each mirror. Each of these cameras handles a set of
intrinsic parameters γi. To model our rig, we fix the first
camera/mirror as the camera frame origin. Hence, the three
other cameras are placed relatively to the first one. We note
c2Mc1 , c3Mc1 , c4Mc1 these relative poses which are part of
the full calibrated stereo system. One can note this model is
expendable with more cameras, knowing each cj Mc1 .

III. POSE ESTIMATION APPROACH

A. Overview

The proposed approach is an extension of [7], [8] where
the pose computation problem is defined as a virtual visual
servoing one. This virtual servoing process is similar to a full
scale non-linear estimation method of the pose. This method
assumes the stereo system calibration parameters are known.

B. Method

The virtual monocular camera is defined by its projection
function prγ() and its position in the object frame by an
homogeneous matrix cMo. A 3D object have several features
oP defined in its own frame. The method will estimate the
real pose by minimizing the error ∆ between the observed
data, or detected features, s∗ and the position s of the same

features computed by forward-projection according to the
current pose. So with k features, we have

∆ =
k∑
i=1

(prγ(cMo,
oPi)− s∗i )2 (3)

With this formulation, a virtual camera with inital pose
c0Mo, is moved using a visual servoing control law to
minimize the error ∆. At convergence, the virtual camera
reaches the pose c∗Mo which minimizes ∆. Assuming this
non-linear estimation process converges, this pose is the real
camera pose.

C. Stereo Extension

As stated before, we want to apply this method to an
omnidirectional stereovision sensor considered as a rig of
four catadioptric cameras. Dionnet et al. in [7], modelled
the virtual visual servoing problem for a two perspective
cameras stereo rigid system saying that knowing the system
calibration (two sets of intrinsic parameters and the second
camera pose w.r.t. the first), we can rewrite the ∆ criterion
to take into account two cameras. It can be generalized to
N cameras knowing each of N sets of intrinsic parameters
and each N −1 relative camera poses w.r.t. the first one. So,
we can write

∆ =
N∑
j=1

kj∑
i=1

(prγj
(cj Mc1

c1Mo,
oPi)− cjs∗i )

2 (4)

with c1Mc1 = I4×4. With this formulation, only 6 pa-
rameters have to be estimated, as for the monocular pose
estimation problem. For instance, if N = 2, we retrieve the
two cameras case. In our four “cameras” stereo case, N = 4.
Anyway, assuming that r is a vector representation of the
pose c1Mo, this remains to minimize a residual ∆ defined
as

∆ =
k∑
i=1

(si(r)− s∗i )2 = ||s(r)− s∗||2 (5)

The error to be regulated is hence e = s(r)− s∗. The
primitives motion is linked to the virtual camera velocity
by ė = −λe, only depending of ṡ which can be written as

ṡ =
ds
dt

=
∂s
∂r

dr
dt

= Lsv. (6)

Ls is called the interaction matrix and links the feature
motion in the image to the camera velocity v.

D. Robust Stereo Pose Estimation

In order to have a precise estimation, s∗ must have a
sufficient precision. So, as in [7], we use a M-estimator [9]
to deal with outliers. A lot of functions have been proposed
in the literature. They allow uncertain measures to be less
likely considered and in some cases completely rejected. To
add robust estimation to our objective function, it is modified
by

∆R =
k∑
i=1

ρ(si(r)− s∗i ), (7)

5229



where ρ(u) is a robust function that grows subquadratically
and is monotonically non-decreasing with increasing |u|.
Iterative Re-Weighted Least Squares is a common method
of applying the M-Estimator. Thus, the error to be regulated
to 0 is defined, in a matricial form, as:

e = D(s(r)− s∗), (8)

where D is a diagonal weighting matrix given by
D = diag(w1, ..., wk). Each wi is a weight given to specify
the confidence in each feature location. The computation of
these weights is described in [11].

A simple control law that allows to move a virtual camera
can be designed to try to ensure an exponential decoupled
decrease of e. It is given by:

v = −λ(DLs)+D(s(r)− s∗), (9)

where v = (v, ω) is the virtual camera velocity with v, the
instantaneous linear velocity and ω the intantaneous angular
camera velocity. The interaction matrix Ls is defined in
equation (6) and λ is a gain that tunes the convergence rate.
The computation of interaction matrix will be discussed in
section IV.

Considering the minimisation of equation (4), with N = 4,
since we know the relation between mirrors poses (cj Mc1 ),
we can operate a frame change of the pose velocity vector,
in order to express it in each mirror frame. For instance,
mirror 1 has a velocity vector v1 and mirror j, a velocity
vector vj . We can express vj w.r.t. v1:

vj = cj Vc1v1, j = 2..4 (10)

where cj Vc1 is the twist transformation matrix:

cj Vc1 =
[
cj Rc1 [cj tc1 ]×

0 cj Rc1

]
. (11)

So the feature velocity in “image” j can be related to the
motion of camera 1 by

ṡj = Ljvj = Ljcj Vc1v1, (12)

and, for four cameras, we have:
ṡ1

ṡ2

ṡ3

ṡ4

 =


L1

L2
c2Vc1

L3
c3Vc1

L4
c4Vc1

v1. (13)

Finally, we get the following control law, with only six
parameters to estimate:

v1 = −λ


D1L1

D2L2
c2Vc1

D3L3
c3Vc1

D4L4
c4Vc1


+ 

D1

D2

D3

D4




s1(r1)− s∗1
s2(r2)− s∗2
s3(r3)− s∗3
s4(r4)− s∗4

 . (14)

The pose c1Mo is then updated using the exponential map
of se(3) (see [12] for details)

c1Mt+1
o = c1Mt

oe
[v1], (15)

and poses of the three other cameras are then updated
using estimated stereo rig calibration parameters cj Mc1 :

cj Mo = cj Mc1
c1Mo and will be used in equation (14) to

compute sj(rj) and cj Vc1 .
The feature type choice and hence the interaction matrix

expression is a key point of this algorithm and is described
in section IV.

E. Pose And Calibration Parameters Estimation

In equation (6), the system is supposed to be calibrated but
it is possible to relax this knowledge adding the calibration
parameters to the estimation process with

ṡ =
ds
dt

=
∂s
∂r

dr
dt

+
∂s
∂γ

dγ
dt
. (16)

This time, there are two velocity vectors, still the pose one
but the intrinsic parameters velocity vector too, meaning it is
possible to vary the intrinsic parameters in the same optimi-
sation process. Following the same idea, it is possible to relax
relative poses cj Mc1 between cameras and inserting them
in the optimisation process to have a full stereo calibration
method. This method is used to calibrate our stereo rig offline
using points.

IV. VISUAL FEATURES

A. Feature Type

The tracked object is defined as a 3D model made of 3D
lines. So as it has been done in [8] and other papers, we
consider as visual features the distance between a point p,
detected in the image and the projection of a line, a conic
c(r) in the image plane, for a given pose. The vector s(r)
will therefore be defined by:

s(r) =


...

si(r)
...

 with si(r) = da(x, c(r)) (17)

where da() defines the algebraic distance (detailled in section
IV.D.) between point x and the projection c(r) of the 3D line.

B. Projection of a 3D Straight Line

As in [8], we modelled a 3D straight line by the inter-
section of two planes, one including the equivalent sphere
center and the other perpendicular to the first. This is not
the only possible 3D line representation, Pluker coordinates
or a 3D point and a vector are other possible representations.

These two planes P1, P2 are defined by:

P1 : A1X +B1Y + C1(Z − ξ) = 0
P2 : A2X +B2Y + C2Z +D2 = 0 (18)

with the following constraints on the 3D parameters: A2
1 +B2

1 + C2
1 = 1

A2
2 +B2

2 + C2
2 = 1

A1A2 +B1B2 + C1C2 = 1
(19)

so that the two planes with unit normals N1 = (A1, B1, C1)
and N2 = (A2, B2, C2) are orthogonals.

Following the projection model defined by equation (1),
the projection of a straight line in the image is the perspective
projection of the circle defined as the intersection between
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the plane P1 and the unitary sphere S centered in (0, 0, ξ).
Following the process presented in [8], it is possible to define
the conic equation with P1, P2 and S parameters by:

Q(x, y) = a0x
2 + a1y

2 + 2a2xy + 2a3x+ 2a4y + 1 (20)

with
a0 = A2

1
C2

1
(1− ξ2)− ξ2 a1 = B2

1
C2

1
(1− ξ2)− ξ2

a2 = A1B1
C2

1
(1− ξ2) a3 = A1

C1

a4 = B1
C1

(21)

C. Interaction Matrix for a Line

To compute the interaction matrix, [8] show it is possible
to rewrite a0, a1 and a2 using a3 and a4 so that their
time derivative are functions of ȧ3 and ȧ4. Hence, deter-
mining interaction matrices La3 and La4 will lead to the
three others. Following [13], and defining α = −A2

D2
+ C2

D2
a3,

β = −B2
D2

+ C2
D2
a4, we obtain for a line and one camera:

La4 =
[
βa3 βa4 β 1 + a2

4 −a3a4 −a3

]
La3 =

[
αa3 αa4 α a3a4 −1− a2

3 a4

]
La2 = (1− ξ2)(a3La4 + a4La3)

La1 = 2a4(1− ξ2)La4

La0 = 2a3(1− ξ2)La3

(22)

D. Interaction Matrix for Point-Conic Distance Feature

The chosen feature is the distance between a point and the
projection of a 3D line, a conic in the used projection system.
We decided to use the algebraic distance. Considering a point
(x, y), its algebraic distance from a conic is:

da = Q(x, y) (23)

with Q(x, y) defined in equation (20). The interaction matrix
Lda

related to this distance is given by [8], considering the
time derivative of da,

ḋa = ȧ0x
2 + ȧ1y

2 + 2ȧ2xy + 2ȧ3x+ 2ȧ4y (24)

we immediately obtain:

Lda =


x2

y2

2xy
2x
2y


T 

La0

La1

La2

La3

La4

 (25)

So there will be four Lda
, one for each camera and they

will be combined as shown in equation (14).

V. IMAGE PROCESSING

To find corresponding edges, we use the moving edge al-
gorithm [14]. The idea is to sample contours at a regular step
and to use an oriented gradient mask to find corresponding
contour by convolution maximization along a range search
(see [8] for an explanation of this process).

To sample contours, it is possible to sample regularly the
3D straight line and then project these 3D sample points in

the image. But it is more efficient to directly sample the
conic. Sturm et al. [15] expressed a relationship between
a conic and a circle by an eigendecomposition of a conic
matrix. Conic parameters are known from equation (20). So
we can form its matrix representation,

C =

a0 a2 a3

a2 a1 a4

a3 a4 1

 (26)

and decompose it
C = RΣRT . (27)

Then, using Σ and R, the conic to unitary circle transfor-
mation T is given by

T = Σ−1R−1 (28)

which first rotates the conic to fit the standard 2D frame and
then normalizes its axes to fit the unitary circle. Starting and
ending points of the edge are also known so that the range to
sample is known. The inverse transformation T−1 is finally
applied to each sample to come back on the conic.

Each sample is the starting point of corresponding contour
search. The moving edge algorithm searches this correspon-
dence along the contour normal at each sample. To compute
this normal, we can directly use the partial derivates of
Q(x, y) as: 

∂Q

∂x

∂Q

∂y

 =

2a0x+ 2a2y + 2a3

2a1y + 2a2x+ 2a4

 (29)

VI. RESULTS

The algorithm was applied on real image sequences. We
used the ViSP library [16] to develop the algorithm. Frames
are acquired at 10 fps with a resolution of 1280×960 pixels
and mean processing time is about 300ms.

A. Tracking a Box

In this experiment, the sensor is immobile and a box
(30cm×25cm×20cm) is handheld and moves in a large part
of the sensor field of view (Fig. 2), at a distance from the
sensor between 35cm and 75cm. Despite disturbing image
gradients in the background and illumination variations, the
tracking is achieved all along the sequence of 312 images.
Of course, some sample points are influenced by the strong
background gradients but thanks to robust estimation and
robustness induced by stereovison, these ones are rejected.

We also applied tracking and pose estimation with our
method to only two mirrors of the sensor, the ones with the
widest baseline (the top-left and the bottom-right mirrors).
These two mirrors should be the ones used in a more classical
stereo sensor: a two mirrors/cameras rig. But with two
mirrors the object is lost from image 277 (Fig. 2(d)). This
shows the higher robustness, due to information redundancy,
brought by the two additional mirrors. The video of this
experiment is available from the research section in website
http://mis.u-picardie.fr/∼g-caron/en/.
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(a) Image 1 (b) Image 149

(c) Image 312 (d) Image 312 with two mirrors pose estimation. The object is lost
from image 277. To be compared with Fig. 2(c)

Fig. 2. Images of pose estimation for the handheld box sequence.

B. Self-occlusion

Another experiment has been made in order to show the
higher robustness induced by the four mirrors stereo sensor
w.r.t. a two mirrors stereo sensor. A problem of self-occlusion
can appear when placing parabolic mirrors on the same
plane. They reflect on each other. This phenomenon creates
problematic image zones and these are generally withdrawn
thanks to an image mask. We also used this method to avoid
tracking problems and we made a second experiment in
which the box starts outside the inter-reflection zone between
the two diagonal mirrors, moving through it and come
back near starting position. The four mirrors stereo pose
estimation and tracking process succeed (Fig. 3(a) and 3(c))
while with two mirrors, the box is lost in the self-occlusion
zone (Fig. 3(b) and 3(d)).

VII. CONCLUSION

We have presented a robust 3D model-based pose esti-
mation method using omnidirectional stereovision. Results
with our four mirrors sensor show even higher robustness
than a two mirrors approach. The combination of VVS and
four mirrors omni-stereo sensor has proven to be robust
to disturbing background or even to self-occlusion thanks
to redundancy, all around the sensor. Future works will be
focused on the full utilization of the stereo sensor relaxing
the constraint of knowing the 3D model.
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