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Abstract— Several recent algorithms address simultaneous
localization and mapping as a maximum likelihood problem.
While many proposed methods focus on efficiency or on online
computation, less interest has been devoted to investigate a
parallel or distributed organization of such algorithms in the
perspective of multi-robot exploration.

In this paper, we propose a parallel algorithm for map
estimation based on Gauss-Seidel relaxation. The map is given
in the form of a constraints network and is partioned into
clusters of nodes by applying a node-tearing technique. The
identified clusters of nodes can be processed independently as
tasks assigned to different processors. The graph decomposition
induces also a hierarchical organization of nodes that could be
exploited for more sophisticated relaxation techniques. Results
illustrate the potential and flexibility of the new approach.

I. INTRODUCTION

A representation of the environment is required to achieve

specific robotic tasks in several applications. Indeed, au-

tonomously building maps of the environment has become

a major problem in the robotics community. For this task

the robot has at its disposal its motion information and its

sensor observations, which are both affected by uncertainty.

In literature, map building and localization is often referred

to as Simultaneous Localization and Mapping (SLAM).

Maximum Likelihood (ML) is one of the approaches

developed to address this problem. According to ML, SLAM

is formulated as a network of constraints. Relations among

robot poses and observations are represented by constraints

among nodes in a graphical model. The solution of the

problem corresponds to the configuration of the graph that

maximizes its likelihood or, equivalently, minimizes the least

square error.

Early algorithms exploiting ML formulation of SLAM

were only suitable for an offline computation of the solution.

Offline methods require that all data be available at the

beginning of computation. In particular, Lu and Milios [1]

pioneered the maximum likelihood approach proposing a

brute force technique to align range scans, once all the

scans have been acquired. Gutman and Konolige [2] im-

proved the construction of the network by introducing map

patches instead of single scans and provided an effective loop

detection method based on correlation. Duckett et al. [3]

introduced Gauss-Seidel relaxation to compute the optimal

solution, although in their formulation angular terms were

not considered.

Recent research has focused on making these algorithms

more efficient and, eventually, incremental in order to

make online optimization possible. Multi-level relaxation

(MLR) [4] improves the simple Gauss-Seidel relaxation by

solving the network at different levels of resolution. The

Treemap algorithm [5] performs efficient updates with a tree-

based subdivision of the map into weakly-correlated com-

ponents. The smoothing and mapping (SAM) algorithm [6]

relies on a QR factorization of information matrix that allows

an efficient estimation of the poses of the network nodes

with an efficient back-substitution. The original algorithm

has been modified to allow hierachical decomposition into

submaps [7] and online update of the map when new obser-

vations are available [8]. A stochastic gradient descent (SGD)

technique has been proposed [9] to compute the configura-

tion minimizing least-square error by using a representation

which enables efficient updates. An incremental variant of

the algorithm relies on several improvements such as tree

parameterization, adaptive learning rate and selective update

rules [10].

Several improvements of previous ML methods depend

on a decomposition of the graph in clusters of nodes. This

decomposition can be hierarchical or concerns the portion

of graph involved by the addition of new measurements, but

it is allowed by the sparsity of information matrix in ML

approaches that avoids repeated marginalization. Given such

decomposition, the update of network configuration focuses

only on a portion of the map.

Decomposition of the network allows also the introduction

of parallelism in algorithms for map estimation. There are

several advantages in a parallel design. First, map estimation

is sped-up by computing solutions for different graph clusters

on different threads, when a proper hardware is available.

The decomposition of the problem into tasks for different

processors requires a distributed implementation. Recently,

the diffusion of multi-core processors has also stimulated

multi-threaded single process implementations. In any case,

the impact of non-parallelizable portions of the algorithms

and the overhead due to data sharing and synchronization

should be carefully considered. Moreover, a parallel design

of SLAM algorithms makes easier their extension to a multi-

robot context. When only a robot is involved, data acqui-

sition and map-building are intrinsically serial operations.

However, graph decomposition is required when the map is

concurrently estimated by two or more robots. In multi-robot
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contexts, map decomposition is sometimes determined by the

activity of each robot, as shown in [11].

In this paper, we present an offline parallel algorithm

that solves mapping problems where a set of constraints

is provided as input. Our algorithm combines Gauss-Seidel

relaxation and a reordering of variables that transforms the

information matrix in block-bordered-diagonal form. The

graph associated to the information matrix is partitioned into

clusters of connected nodes. A special cluster contains all

nodes separating pairs of clusters. Hence, the Gauss-Seidel

update of the value of a pose in a cluster depends either

on another pose in the same cluster or on a separator node.

Gauss-Seidel update depends on variables whose value could

have been already updated in current iteration or not, and

the order of variables matters. Thus, each cluster can be

computed independently if the separator set is computed after

the other clusters.

Graph clustering is performed with a node-tearing heuris-

tic algorithm. The efficiency of the proposed algorithm

depends on the sparsity of the information matrix that deter-

mines the result of decomposition. Gauss-Seidel relaxation

is chosen because it is easy to parallelize, even though faster

algorithms exist.

The paper is organized as follows. Section II provides the

general formulation of the ML paradigm and the original

version of Gauss-Seidel relaxation. Section III illustrates the

steps of the proposed parallel algorithm, including clustering

technique, variable reordering, and threaded implementation.

Section IV reports experiments to evaluate convergence and

performance of the algorithm on known datasets. Finally,

section V gives conclusion remarks.

II. GAUSS-SEIDEL RELAXATION FOR MAXIMUM

LIKELIHOOD MAPPING

This section discusses the general formulation of the

maximum likelihood (ML) approach and a solution algorithm

based on Gauss-Seidel relaxation to solve the resulting

equations. The SLAM problem is formulated as a graph,

whose nodes correspond to the variables of the map and

whose edges represent the constraints between pairs of these

variables.

Graph-based SLAM can be expressed according to feature

based or delayed-state representations [12]. In the following,

the Gauss-Seidel relaxation is applied to the solution of the

map in the delayed-state form. According to this formulation

the map consists only of robot poses obtained by matching

observations anchored to a local frame [1] or by marginal-

izing feature-based maps [13].

Then let x = (x1 · · · xn)T be the vector of robot poses

xi = (xix
, xiy

, xiθ
). Let δji and Ωji be respectively the mean

and the information matrix of an observation of node j seen

from node i. Let fji(x) be a function that computes a zero

noise observation according to the current configuration of

the nodes j and i

fij(x) =





(xjx
− xix

) cos xiθ
+ (xjy

− xiy
) sinxiθ

−(xjx
− xix

) cos xiθ
+ (xjy

− xiy
) cos xiθ

xjθ
− xiθ





(1)

Thus, the error on constraint 〈j, i〉 is given by

eji(x) = fji(x) − δji (2)

Let C = {〈j1, i1〉 , . . . , 〈jM , iM 〉} be the set of pairs of

indices for which a constraint δjmim
exists. Then the aim

of ML approach is to minimize the negative log-likelihood

or error function on the observation

χ2(x) =
∑

〈j,i〉∈C

eT
ji(x) Ωji eji(x) (3)

Several numeric techniques have been proposed in order

to find the minimum of χ2(x). In this section, we illustrate

part of the relaxation algorithm proposed by Frese et al. [4].

The algorithm consists of two steps. First, the observation

functions fij(x) are linearized around the current value of

the network configuration x̂

eij(x) ≈ fij(x̂) − δji + J i
ij(xi − x̂i) + J

j
ij(xj − x̂j) (4)

where J i
ij and J

j
ij are the Jacobians of the observation

function with respect to xi and xj evaluated in point x̂i and

x̂j . Since Eq. (1) only depends on poses i and j, there are

no additional terms.

Then, the resulting negative log-likelihood χ2(x) is ap-

proximated by a quadratic function [4]

χ2(x) ≈ xT A x + 2bxT b + c (5)

The minimum of the linearized function is easily found by

solving the linear system A x = b. The method proposed

in [4] to perform this final step is Gauss-Seidel relaxation.

The value of each pose xi is computed individually by

solving the single block-row equation i with fixed value of

xj (j 6= i). Let Aij be the block of matrix A corresponding

to block-row i and block-column j; let bi be the values for

block-row i. Respectively, we have

Aij =
∑

〈j,i〉∈C

J i
ij

T
Ωij J

j
ij (6)

bi =
∑

〈j,i〉∈C

J i
ij

T
Ωij (J i

ij x̂i + J
j
ij x̂j) (7)

The relaxed solution of equation i at step k is

x
(k+1)
i = A−1

ii



bi −
∑

j<i

Aijx
(k+1)
j −

∑

j>i

Aijx
(k)
j



 (8)

The estimated value of xi is determined by the neighbor

poses, either already updated (j < i) or not (j > i).

These procedure is performed iteratively until solution is

reached with enough precision. Since A is a symmetric

positive defined matrix, the convergence of the algorithm is

guaranteed.
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Gauss-Seidel relaxation is only the basic step of a multi-

level relaxation (MLR) algorithm. MLR defines a hierarchy

between nodes to solve the problem at different levels of

resolution in order to speed up the convergence. However,

the Gauss-Seidel algorithm can be conveniently decomposed

in separate tasks that are performed independently. In the

next section, we describe a parallel version of Gauss-Seidel

relaxation.

III. A PARALLEL LINEAR-EQUATION SOLVER

Identification of the parts of the algorithm that can be

executed independently is the first step in making an al-

gorithm parallel. The block-row update Eq. (8) of Gauss-

Seidel depends on nodes xj that are connected to the current

node, i.e. the nodes with Aij 6= 03×3. The structure of the

linearized information matrix A depends on the connectivity

of the constraints network. Since the graph is built incremen-

tally by one or more robots adding each pose in a trajectory

or eventually closing loops, the resulting matrix is naturally

sparse and locally connected. Hence, a decomposition of the

network into clusters follows directly from the structure of

the problem. Still the clusters are connected to each other:

the computation of border nodes requires data from another

cluster and the single algorithm tasks cannot be executed in

parallel when such dependency exists.

An important remark concerns the role of order for node

variables in Eq. (8). While the order does not change the

value to which the algorithm converges, it determines the

dependencies among variables. In particular, at a given

iteration k the updated value of pose x
(k+1)
i depends both

on already updated poses, whose index is j < i, and on the

poses yet to be updated (j > i). The value of the last ones

is known before starting a new iteration, so their values and

the value of pose i can be computed independently. Thus, in

order to compute the nodes of a cluster independently from

the nodes connected to the cluster and not belonging to it,

the contour nodes have to be computed at the end.

The suggested reordering leads to the so called block-

bordered-diagonal form (BBD) of a matrix [14]. Figure 1

shows how it is possible to reorder variables based on a

cluster decomposition. Each simple cluster (labeled with

B1, B2, B3) has no direct connection to other clusters,

except for contour nodes (labeled with a, b, c) cluster. By

reordering nodes so that contour nodes are the last ones, the

resulting information matrix assumes a block diagonal form

with a border due to contour nodes. Each cluster can be

solved independently by using the value of contour nodes at

the previous step. It is therefore convenient that the contour

partition be as small as possible in order to limit computation

of sequential parts. In the following, we discuss how to find

the clusters and the permutation that achieves BBD form.

A. Clustering nodes and reordering variables

A clustering algorithm is needed to reorder the matrix

into BBD form. There are two main requirements for this

algorithm. First, the number of contour nodes should be

limited as much as possible. This property is achieved when

Fig. 1. Decomposition of a graph in clusters of nodes (left) and information
matrix in block-bordered-diagonal form after reordering (right). Note the
position of contour nodes (a, b, c) in the matrix.

the clustering algorithm picks bottleneck nodes. Bottlenecks

nodes correspond to the minima in the size of the contour

when partition consists of sets of connected nodes. Therefore

the size of the clusters could be chosen to balance the

computational load of each task. We propose to meet these

requirements by adopting a heuristic algorithm to perform

node-tearing using a contour set [15]. Node-tearing methods

decompose a network into smaller subnetworks that can be

solved separately. Starting from a weakly connected node,

the contour set is expanded putting the new nodes in a

contour set. Bottleneck is detected by searching a minimum

in the size of contour set. Heuristic techniques avoid local

minima and bound the size of a cluster to the interval

[perc nmax, nmax] (0 < perc < 1), where perc is the

portion of nmax allowed as minimum cluster size.

Algorithm 1 illustrates how clustering is performed. Note

that the condition for creating a new cluster is satisfied in

two cases: when the contour is empty or when the candidate

cluster set contains nmax nodes. Anyway, the final cluster

set contains only the nodes found before the last detected

bottleneck.

Each cluster is labeled with an integer, except for the

contour nodes cluster that is labeled with ∞ (in real im-

plementation, an integer larger than other labels is used).

Thus, the numeric identifier of a cluster induces an order

in the set of nodes. The identifiers of the simple clusters

could be permuted without significant changes for parallel

Gauss-Seidel relaxation. The order of the nodes belonging

to the same cluster remains undefined and is chosen by

implementation. Since the robot poses are usually numbered

incrementally, it seems convenient to use their identifiers as

second index of a lexicographic order criterion.

B. Parallel implementation

The clustering algorithm identifies the groups of nodes that

can be solved independently. Thus, there is a set of tasks to be

assigned to different threads or processes. A map estimator

consisting of different processes would allow the execution

of the algorithm on different hosts and could be applied in

multi-robot contexts. The drawback of such a solution is the

overhead due to the exchange of messages required at the

end of each iteration. Nonetheless, the amount of exchanged

data is limited to nodes of contour cluster.
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Data: N : set of nodes, nmax: maximum size of cluster, perc:
portion of nmax allowed as minimum size of cluster.

Result: a label for each node
I = {}; /* candidate cluster set */

C = {}; /* current contour set */

lastContourSize = 0;
iteratingSize = 0;
foreach n ∈ N do

n.label = {};
end
while ∃n ∈ N : n.label = {} do

pick n, node with minimum degree in N );
while ∃n ∈ C : n.label = {} do

I = I ∪ {n};
if n ∈ C then

remove n from C;
end
foreach node t adjacent to n and t.label = {} do

C = C ∪ {t}
end
if card(I) > perc nmax and card(C) < lastSize
then

T = C; /* save cutting set */

iteratingSize = card(I);
end
if C = {} then

iteratingSize = card(I);
else

end
if ={} or card(I) > nmax then

foreach t in first iteratingSize of I do
t.label = newClusterLabel();

end
foreach node t in cutting T do

t.label = ∞;
end
C = {};

end
lastSize = card(C);
pick n from C, if exists;

end
end

Algorithm 1: Partition of graph into clusters.

In this paper, the straightforward multi-threads solution

has been chosen. A thread-pool, specifically a work crew,

has been implemented in order to create and manage threads

ready to accept tasks. This choice allows the creation of

a correct number of threads depending on the available

parallelism of the machine. After nodes reordering, the

evaluation of the poses of a cluster is inserted into the queue

of tasks ready to be executed by an available thread. When

the execution of all tasks is completed, the poses of con-

tour nodes are updated. The Gauss-Seidel procedure within

linearization is then repeated for an appropriate number of

iterations.

Synchronization is required at the end of each iteration

to update data for all threads. A development of this ap-

proach would consist in reducing the dependencies between

the tasks. This could be achieved only with the adoption

of a more hierarchical approach than simple Gauss-Seidel

relaxation. The decomposition of the network suggests itself

a hierarchy to be exploited in relaxation.

IV. RESULTS

In this section, we evaluate the performance of the pro-

posed parallel constraints solver. To test the algorithm we

used the constraint networks extracted from two commonly

used datasets, ACES building on UT Austin campus (ACES)

and Intel Research Lab (INTEL) [16]. Constraints between

pairs of poses have been obtained by matching laser scans

and grid map patches. The resulting graph is the input for

the experiments described in the following.

First, the convergence rate of Gauss-Seidel relaxation has

been evaluated to remark its advantages and drawbacks.

In particular, we compared the Jacobi relaxation method,

the Gauss-Seidel relaxation method, the parallel relaxation

(Parallel Gauss-Seidel), and the offline version of the tree

network optimizer (Toro) [10]. Figure 2 depicts the mean

error per constraint of the network for the three algorithms

at different iteration steps. After few iterations, the global

error decreases faster with Toro than with Gauss-Seidel

and parallel Gauss-Seidel. This outcome was expected and

confirms the results previously obtained in the comparison

between Gauss-Seidel relaxation and stochastic gradient de-

scent [9]. Furthermore, the parallel version performs better

than the Gauss-Seidel relaxation without reordering in the

case of ACES dataset. In the case of INTEL, the errors

per constraints of the two relaxation algorithms are almost

overlapped.

Figures 3 and 4 show the adjusted network respectively

for ACES and INTEL. These experiments show that Gauss-

Seidel relaxation is not the best algorithm to estimate a

maximum likelihood map, but rather it is a simple method

that can be easily adapted to a distributed context.

As pointed out in section III, the main issue of a parallel

algorithm is graph partitioning. In the proposed method, this

operation is performed by a heuristic node-tearing technique.

One of the main advantages of this approach is that it accepts

bounds on the maximum size of a partition and on the

preferred minimum size. Figure 5 shows the results of graph

decomposition for ACES and INTEL with maximum size

nmax = 50 and perc = 0.6. Table I reports data on the

Dataset Nodes Mean Cluster Contour
number size number size

ACES 648 39.7 19 43

INTEL 729 30.2 14 106

TABLE I

RESULTS OF CLUSTERING.

results of the clustering algorithm. The mean size of clusters

and the size of contour partitions depend on the topology

of the constraints network. In particular, the ACES dataset

has a smaller mean node degree and the number of contour

nodes is limited.

Despite the overhead there are advantages with the multi-

thread implementation of the proposed algorithm. The sys-

tem has been tested on an Intel Core 2 Quad Q9450 both
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Fig. 2. Error per constraint of Gauss-Seidel relaxation and stochastic gradient descent (Toro) after each iteration for dataset ACES (left) and INTEL
(right).

(a) (b) (c)

Fig. 3. Network from ACES before the optimization (a), after adjustment with Gauss-Seidel relaxation at iteration 20 (b), and with Toro (c).

(a) (b) (c)

Fig. 4. Network from INTEL before the optimization (a), after adjustment with Gauss-Seidel relaxation at iteration 20 (b), and with Toro (c).

with a sequential version of the algorithm and with a variable

number of threads. Results in table II report the average time

required to complete a Gauss-Seidel iteration for the two

datasets. Node clustering has been performed with default

parameter values nmax = 50 and perc = 0.6. With two

threads the advantage of the multi-threaded version over

the sequential one is remarkable. By further increasing the

number of threads, the average time slightly decreases.

It should be noted that no advanced thread programming

features have been exploited and thread priorities have not

been modified. Hence, the parallel execution of tasks is

not guaranteed and relies on operating system scheduler.

However, the improvement is significant and would have

possibly been even more notable with a larger network.

V. CONCLUSION

In this paper, we have presented a parallel algorithm that

estimates a map consisting of poses and constraints. The

proposed method combines elementary Gauss-Seidel relax-

ation on linearized likelihood function and node clustering

into partitions. Constraint network decomposition removes

mutual dependencies among the node partitions, except for

special nodes called contour nodes. Formally, this operation

corresponds to a permutation of the variables of the network
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Fig. 5. The clustered graph of datasets ACES (left) and INTEL (right). Clusters are identified by different colors and contour nodes appear as clear spots
dividing clusters. The poses of nodes have been slightly modified by plotting program.

Thread Aces Intel
number Time (ms) Time (ms)

Mean Std. Dev. Mean Std. Dev.

clustering 16.453 0.339 2.769 0.122

no thread 17.668 0.699 8.485 0.722

2 5.659 0.516 5.571 0.433

3 4.507 0.418 5.643 0.721

4 4.316 0.410 5.413 0.373

TABLE II

AVERAGE TIME OF GAUSS-SEIDEL RELAXATION FOR THE ACES AND

INTEL DATASET.

that transform the information matrix in block-bordered

diagonal form. Thus, a Gauss-Seidel iteration is decomposed

in tasks to be executed in parallel.

We implemented a preliminar version of the algorithm

in a multi-thread design to exploit commodity multi-core

processors. Experiments with two different datasets show the

effectiveness of graph decomposition and a better exploita-

tion of computational resources in map estimation. Although

faster methods have been proposed, Gauss-Seidel relaxation

has proven appropriate for a parallel design. Advantages of

parallel design are apparent in multi-robot mapping and in

general distributed contexts. A parallel mapping algorithm

has important applications for multi-robot systems. In our

future work, we expect to exploit constraints map decompo-

sition for a more efficient ML method and, in addition to

the multi-threaded version, to implement a fully distributed

version of the algorithm suitable for multi-robot systems.

We intend also to address the problem of distributed data

association.
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