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Abstract— Task learning from observations of non-expert
human users will be a core feature of future cognitive robots.
However, the problem of task segmentation has only received
minor attention. In this paper, we present a new approach
to classifying and segmenting series of observations into a set
of candidate motions. As basis for these candidates, we use
Structured UKR manifolds, a modified version of Unsupervised
Kernel Regression which has been introduced in order to easily
reproduce and synthesise represented dextrous manipulation
tasks. Together with the presented mechanism, it then realises
a system that is able both to reproduce and recognise the
represented motions.

I. INTRODUCTION

Task learning from observations of non-expert human

users will be a core feature of future cognitive robots.

Although several systems for programming by demonstra-

tion or imitation learning have been proposed (see [16],

[6] for overviews), the problem of task segmentation has

only received minor attention. The decomposition of a task

demonstration into its constituting subtasks was tackled only

in problem specific ways and a general framework and

methodology for task decomposition is still missing.

In this paper, we propose a novel approach to tackle

the task decomposition problem that is based on the claim

that the same representations of actions should be used

for recognition and segmentation as for execution of the

same action on a robot. This claim is well supported by

neurophysiological findings, namely the mirror neuron theory

[14]. This basically states that the same areas of the brain

show activity during the own execution and the recognition

of an action by another person. Other indications for holistic

representations of task knowledge come from gestalt-based

approaches [23], that propose unified representations for

segmentation and action [13]. It seems natural to extend

this line of thinking into the realm of task segmentation for

technical systems, since robots using the same representa-

tions for recognition and execution could use their learning

episodes and memory more efficiently, enabling them to

avoid duplicates of knowledge.

This paper presents a method for the classification and seg-

mentation of motion data exploiting structure features of the

manifolds used to represent the candidate motions, namely

Structured UKR manifolds [17], [19]. Whereas Structured

UKR has been originally introduced as a manifold structure

for motion reproduction and synthesis, we here present

features defined in the manifold domain which enable us to

exploit its structure for the recognition of the same motion,

yielding a system that realises reproduction and recognition

on the basis of one and the same representation.

The paper is organised as follows: Section II will review

some related work. In Section III, we briefly review basic

Unsupervised Kernel Regression and its modification to

Structured UKR. Section IV will address the training and

test data and in Section V, we present the new manifold

features for classification and segmentation which then are

evaluated in Section VI. We finish with a conclusion and an

outlook on future work in Section VII.

II. RELATED WORK

Robot task learning from human demonstration has drawn

increasing attention during the past decade. Nonetheless,

task segmentation has been tackled only implicitly by most

of the presented systems. [1] applies hand-crafted rules

to detect state transitions from video sequences. Segments

are characterised through stable contact points between the

objects recognized in the scene. More formalized models

use Hidden-Markov-Models (HMMs) to segment walking or

grasping actions from motion-capture data [3]. [4] performs

unsupervised clustering using Vector Quantisation (VQ) to

segment the basic actions (codes) for a discrete HMM. This

method is refined in [5] to Gaussian Mixture Models where

each Gaussian represents a single segment of a task demon-

stration. This GMM is then fed into a continuous HMM

for sequence learning. A taxonomy of action primitives is

presented in [7]. These primitives of action (mainly con-

cerned with grasping) are learned in a supervised way in [25].

This allows to classify each frame of a task demonstration

and to construct task segments from those classifications.

These segments have been transformed into petri-nets for

execution on a humanoid robot [24]. Several methods try

to avoid the segmentation problem: [8] lets the user define

the segmentation with explicit verbal commands that directly

guide the robot through a demonstration. [2] and [20] do not

decompose a task demonstration at all but search for direct

mapping functions between input and output trajectories.

III. UNSUPERVISED KERNEL REGRESSION

Unsupervised Kernel Regression (UKR) is a recent ap-

proach to learning non-linear continuous manifold repre-

sentations, that is, to finding a lower dimensional (latent)

representation X = (x1,x2, . . . ,xN ) ∈ R
q×N of a set

of observed data Y = (y1,y2, . . . ,yN ) ∈ R
d×N and a

corresponding functional relationship y = f(x). It has been
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Fig. 5. Classification results for trajectories of single letters. Solid lines represent the four considered candidate UKR manifolds: ’A’(red), ’B’(green),
’C’(blue), and ’D’(magenta). Points and crosses denote the observations of the test trajectory whereas coloured points depict true positive (’tp’) and coloured
crosses false positive (’fp’) classifications. Here, the colours encode the true class corresponding to the candidates (s.above). Black crosses on coloured
points denote rejected points and thus points which are not compatible with neither of the tested manifolds (i.e. for which C is below the threshold). In
this case, the colour of the underlying points denote the class with the maximal compatibility value. The headlines of the sub-figures denote the name of
the dataset (e.g. ”A3”), the size of the dataset, the history length H , the amount of true positive (tp) and false positive (fp) classifications and the amount
of rejected points (nc: not classified). (1st row) Results for an observation of ’A’ for different history lengths H = 0, 3, 14, and 30. (2nd row) Results
for ’B’ for H = 0, 3, 14, and 30. (3rd row) Results for ’C’ for H = 0, 3, 14, and 30. (4th row) Results for ’D’ for H = 0, 3, 14, and 30.

where γ ∈ [0; 1] is the discount factor for historic ob-

servations. Like Crec, Chist can take values in [−1; +1]
whereas −1 reflects worst and +1 best compatibility with

the underlying UKR manifold.

The combination of (a) and (b) to one overall compatibility

measure using λ ∈ [0; 1] as weighting factor yields:

C = λCrec + (1 − λ)Chist ∈ [−1; +1]. (8)

Like this, C provides a measure for the compatibility of

an observation together with its history and the considered

candidate manifold. In other words, C realises a measure

to quantify the appropriateness of a candidate manifold

to reproduce the observation together with the observed

history. The classification of the observation to one of several

candidate classes then is performed by a winner-takes-all

mechanism that works on the results of all UKR manifolds

corresponding to the available candidate classes and thus

chooses the class with the maximal compatibility.

To allow for rejecting observations, that is classifying that

neither of the candidate manifolds is appropriate, a threshold

for the compatibility measure C can be used as a lower

boundary below which observations get rejected. For the

initial experiments presented in the next section, we use the

static value of zero as lower compatibility boundary. For later

experiments, it is possible to adapt this value according to

the characteristics of the training data.
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Fig. 6. Segmentation/classification results for history lengths H = 0, 14 for (legend: see Fig. 5): (a) concatenated whole-letter trajectories: (left) for ’A’
and ’C’; (right) for ’B’, ’A’, ’D’, and ’C’. (b) concatenated first part of the ’A’ trajectory and middle part of the ’B’ trajectory. (c) reversed ’B’ trajectory
(data from Fig.5(b) in reverse order). (d) 100 random observations.

VI. EVALUATION

For the evaluation of the presented method, we trained

four Structured UKR manifolds – one for each of the letters

’A’, ’B’, ’C’, and ’D’ described in Sec. III. The represented

trajectories are shown in Figs. 5 and 6 as solid lines (’A’:

red, ’B’: green, ’C’: blue, and ’D’: magenta).

The evaluation of the compatibility works on the basis of

single observations (together with their histories) and thus,

the classification of trajectories is independent of the number

of observations to be classified. In this sense, a classification

of a trajectory as a whole is not performed directly but

emerges from the classification of succeeding observations

to the same class.

In the first experiment, we utilise our method for the classi-

fication of trajectories corresponding to single and complete

letters ’A’, ’B’, ’C’, or ’D’, respectively. As parameters, we

use γ = 0.9 and λ = 0.3. Figure 5 depict the results for the

four different letters (rows), each for four different history

lengths (columns; H = 0, 3, 14, 30).

For the letter ’A’ (Fig. 5, 1st row), without history, already

52% of the observations are true positive (TP) classifications

and no false positives (FP) occur as the rest gets rejected.

However, by increasing the history length up to H = 14, a

result of 100% TP can be achieved.

Letter ’B’ (Fig. 5, 2nd row) is more difficult as its

trajectory is similar to parts of letter ’C’ and ’D’. Without the

usage of history information, only 44% of the observations

can be safely classified correctly (TP) whereas only 3% are

misclassified (FP) and the rest gets rejected. However, by

incorporating the history, the TP rate increases to 80% (FP:

5%) for H = 14 up to 83% TP (FP: 0%) for H = 30.

For letter ’C’ (Fig. 5, 3rd row), similar results can be

achieved whereas the TP rate is better (TP > 90%) with a

worse FP rate at the same time.

Letter ’D’ (Fig. 5, 4th row) yields the worst results with

only 17% TP (FP: 17%, rejected: 66%) without history. Still,

with increasing history length H , the TP rate reaches 60%
with 27% misclassifications. These poor results are mainly

caused by confusions with the letter ’C’. Nonetheless, the

main parts of the trajectory can be classified correctly.

In general, for the application on trajectories consisting of

observations that only belong to one class, one can state that

longer histories are beneficial for the classification result.

The second experiment concentrates on the segmentation

of series of observations into the underlying classes. As

before, the segmentation of trajectories is independent of

the number of observations as each observation is processed

separately.

Figure 6(a) visualises the segmentation results for con-

catenated whole-letter trajectories. In principle, due to the

classification of single points instead of the whole series, the

results for a concatenation of two or more trajectories is sim-

ilar to serially processing the pure whole-letter trajectories

in the first experiment. However, for the transitions between

two trajectories, the history distorts the classification results.

Nevertheless, the results for concatenated letters are similar

to the results for single-letter trajectories (cp. Fig. 5): for the

concatenation of ’A’ and ’C’, 96% of the observations are

correctly classified (Fig. 6(a, left)); the concatenation of ’B’,

’A’, ’D’, and ’C’ (containing the difficult ’B’ and ’D’ from

the first experiment) result in 80% correct classifications.

Note that this loss of performance is caused exclusively by

the more difficult ’B’ and ’D’ letters and is independent from

the higher number of observations.

Figure 6(b) depicts the results of another interesting ap-

plication possibility: instead of whole-letter trajectories, only
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trajectory parts of different letters (here: first part of ’A’ and

middle part of ’B’) are concatenated and processed by the

segmentation. Whereas Fig. 6(b, left) does not incorporate

history (H = 0) and thus yields suboptimal classification

results, Fig. 6(b, right) uses a history of 14 observations

(H = 14) and performs generally good. However, due to the

consideration of the history, a hysteresis-like effect occurs

when transitioning from the ’A’ part to the ’B’ part of the

trajectory. Nevertheless, the segmentation into ’A’ part and

’B’ part is clearly visible.

In Figures 6(c-d), two other effects are visualised. Fig-

ure 6(c) depicts the influence of history consideration on

the sensitivity against the temporal direction in which the

trajectory is presented: evaluated are the same observations

as in Fig. 5(b), but in reverse order. Without history (Fig. 6(c,

left, H = 0)), the reverse order does not change the results

compared to Fig. 5(b, H =0) (different TP/FP values result

from NC being considered as the true classification in Fig.

6(c, left)). On the other side, when considering the temporal

history of the observations, 97% get correctly rejected, as

the reversed ’B’ is not represented by the candidate UKR

manifolds. Figure 6(d) demonstrates that random points are

correctly rejected, either with or without history (note that

the figures are 2D projections of the 6D random data).

VII. CONCLUSION

We presented a new approach for the classification and

segmentation of motion data exploiting the manifold fea-

tures of the Structured UKR manifolds which represent

the candidate motions. Whilst this approach is limited to

the classification and segmentation into known/represented

candidate classes (with the possibility of rejecting observa-

tions effectively yielding one additional class for unknown

motions and enables to semi-automatically recognise and

train new classes), within these borders, it is very flexible

and robust at the same time. The main strengths of this

approach are: (1) due to the definition of the compatibility

features in the manifold domain instead of directly in the

observation space, it is independent – to a certain extent –

of the specific task or observation space characteristics; (2) it

is independent of a fixed time window or history length of the

observations and can thus be applied on the ’raw’ data stream

without specific preprocessing and (3) as the computation of

the compatibility measure only requires historic observations,

it is basically also applicable to real time classification and

segmentation of sensor data streams.

Another important benefit of the system is that, in princi-

ple, the ability to recognise (or classify or segment) a specific

motion is automatically included in its representation as a

Structured UKR manifold for reproduction and synthesis,

because the recognition mechanism directly works on the

basis of these reproduction manifolds.

For our future work – after these very promising initial

experiments with the ABCD-data – we plan to return to our

original domain of dextrous manipulation where we want

to apply the presented approach on different kinds of hand

motions and manipulation movements. However, as the

method does not rely on domain-specific data characteristics,

the application on a variety of other (motion capture) data

will be addressed as well.
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