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Abstract— The project ASAROME (Autonomous SAiling
Robot for Oceanographic MEasurements) is working on a
small autonomous sailboat in order to make measurements and
observations in the marine environment for long periods. In
this project, perception plays an important role by giving an
estimate of the speed of surface winds, the state of the sea
surface and the rate of precipitation in wet weather. In this
paper, the unknown signals are first encoded with different
codes (ERB, MFCC, LPC, LPCC). Then the coded signals are
modeled by two different methods of classification: predictive
and k-Nearest Neighbor. The final part of the system uses local
and global decision to recognize the class of the unknown signal.
Experiments are conducted to compare the results obtained by
different encodings. Our results show that MFCC does not
represent the ideal approach for the recognition of underwater
audio signals, but LPCC seems to be a better candidate.

I. INTRODUCTION
ASAROME (Autonomous SAiling Robot for Oceano-

graphic MEasurements) is a research project focused on
autonomous robotics. The project aims to prove the relevance
of using sailing autonomous surface vehicles (ASV) for
long (several weeks) observation and measurement missions
in marine environments. Based on a robotized sailing boat
concept from Robosoft, the ASAROME project focuses
on adding and integrating advanced functionalities in the
fields of aero and hydrodynamics modeling, as well as
action/perception in robotics, to build a sailed autonomous
surface vehicle demonstrator.

One of the tasks of the project is the multiperception
coupling task which gathers the following detection meth-
ods: panoramic vision, radar, inertial and gyro sensors. It
will be used for detecting obstacles (boats, drifting floating
bodies) and for estimating the sea state (wave direction and
amplitude).

In the field of perception, most of the literature to date
relating to the detection of obstacles at sea concerns the prob-
lem of tracking and monitoring of appropriate paths in order
to avoid collision situations. The anticollision maneuvers
are mainly based on the route of radar echoes observed on
moving objects. The design of the ARPA system [1], initiated
in the early 80s, had the primary purpose of the automation
of obstacle monitoring and planning safe trajectories. It
continues today with the introduction of artificial intelligence
tools [2]. For example, we found with the Syllogic sailing
lab [3] the implementation of predictive algorithms to predict
the relative height and direction of nearby waves, from the
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fusion of data with the sensors placed in the boat (a measure
of the strength and direction of winds, accelerometers, etc.).
These studies work on correlating the data related to the state
of the sea and wind with data as detected on the boat. They
do not use visual and/or audio sensor data.

We are specifically interested in the data resulting from
underwater sound sensors with the objective to detect near
and far motor vehicles. In this context, we propose a
comparative study of coding and classification algorithms
commonly used in the audio field for the classification of
underwater sound events (noise related to weather conditions,
the maritime traffic or the proximity of marine animals, etc.).
Lim et al. [4], [5], have recently shown that it was possible
to classify underwater transient sound events by the Mel
Frequency Cepstral Coefficients (MFCC) features of acoustic
frames. They proposed a classification of feature vectors by
comparing Euclidean distances (k-NN), or by learning of a
Multilayer Perceptron (MLP). We propose in this article to
extend the work of Lim et al. in the following way:
• extension to the case of signals non transient or long-

term, i.e. whose characteristics vary slightly during
time.

• study of other coding methods (Linear predictive coding
(LPC), Linear prediction cepstral coefficents (LPCC)
and Equivalent Rectangular Bandwidth (ERB));

• classification by non-linear predictive modelling;
• more signal classes (13 to 30 instead of 8 are used in

[4], [5]).
In the first part of our paper, we describe the signal coding

algorithms. In the second part, we discuss the classification of
underwater signals. The third section of this article contains
the description of experiments and the analysis of the results
obtained.

II. THE COMPOSITION OF THE SYSTEM
A. Representation of signals

For the classification problem covered in this paper, we
suppose that the shape, duration and spectral response of the
signal are not known. The spectral features may be highly
variable in time, which has led many authors to use time-
frequency representation (wavelet transform [6], Wigner-
Ville distribution and Cross Wigner-Ville distribution [7], [8],
or short-time Fourier transform (STFT)) methods.

Tucker and Brown [9] proposed another idea to classify
underwater transient signals recorded by passive sonar. They
propose to consider perceptual acoustic features, i.e. those
which contain information that human listeners are likely to
use in transient classification tasks.
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In this paper, we follow the approach of Lim et al [4],
[5], who use conventional methods of coding (MFCC) and
the classifiers of k-NN and MLP to classify the underwater
transient signals. For that, we tested four types of codes:
three of which are commonly used in audio signal processing
(MFCC, LPC and LPCC) and an approach based on the
model of the cochlea developed by Patterson [10] (ERB).

All methods used are based on a short-term description of
the spectrum, the signal is divided into successive frames of
about 45 ms. A pretreatment by using Hamming Windows is
then carried out on each frame, before the extraction of 14
parameters according to the 4 previous encoding methods.

1) ERB: The ERB filter is a general purpose model of
peripheral auditory processing that produces auditory images
of sounds. The model includes the interactions associated
with adaptation and suppression as observed in the auditory
nerve, and also the phase alignment and temporal integration
which takes place before the formation of initial sound im-
ages, but does not include any of the processes that combine
information across widely separated frequency bands. Each
filter models the signal present at the output of a nerve of
the cochlea. For N ERB filters whose frequency responses
range as shown in Figure 1, we obtain N signals for each
frame, which we use to calculate the energy during a period
of time corresponding to the frame.

Fig. 1. Impulse responses of a set of filters performing ERB on audio
signals.

2) LPC, LPCC and MFCC: These three feature extraction
methods are classically used in the literature for compression
or classification of audio signals, especially speech signals.
LPC is founded on modelling the vocal tract, following
the hypothesis of linear source-filter. LPCC calculate the
coefficients of the cepstral representation of the signal from
the LPC coefficients. Finally, MFCC extracts the feature
frequency of signals following a non-linear scale called Mel
scale and inspired by the auditory sensitivity of the human
ear. We are interested in this appoach because it is commonly
used in speech recognition. In particular, Lim et al. [5] use
this for classification of transient signals, but we show that
it is possibly not the most effective method.

A question arises which is to know if MFCC and LPC
are suitable coding in our application given the fact that we
consider both speech and non-speech signals. As an answer
one can say that MFCCs are suitable for speech and non-
speech signals since they are inspired by the human ear. On
the other hand LPCs could be less appropriate since they are
designed to model the vocal tract. But unlike MFCCs they

are better adapted to underwater sounds for which frequency
bandwidth are somewhat different. This is the reason why we
suggest in this article to use both MFCC and LPC coding
methods.

B. Classification of signals

We propose two classification methods for audio signals.
This allow us to both compare the techniques, and also
provide more robust information from the environment on
the decision and then command steps of the complete robotic
system. The first classification technique uses the predictive
modelling of signals. This method is commonly used in
speaker recognition systems [11], which has the advantage
of making a single decision from a number of considered
frames. The second method of k-NN is one of the simplest
appoaches classically used in pattern recognition. But it
requires the set up of a global decision making algorithm,
that uses the local decisions obtained at the level of the
acoustic frame.

1) Predictive modelling: Predictive modelling of sound
sources allows us to estimate the distance between an un-
known source and a set of models of sources. These sources
are each modeled by a MLP network, and used for prediction.
Consider the vector of parameters xk extracts a frame k.
The modelling of a sound source trains the network by
minimizing the square error of prediction that is calculated
on all frames of the sequence:

Q(Ω) =
∑

k

‖F (xk−2,xk−1)− xk‖2 (1)

where F represents the function performed by the net-
work, with two successives frames xk−2 and xk−1, which
are associated with xk, are used as input.

prediction errors
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Fig. 2. Predictive architecture with neural networks.

For the problem of classification of a source among N , we
have N networks previously trained with signals belonging to
the same sound class (Figure 2). In recognition, an unknown
source with its frames presented as input to the N networks.
N prediction errors are calculated and the final decision is
obtained according to the principle of maximum likelihood:
the class of the unknown source is the network with the
smallest prediction error.
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2) Classification k-NN: The k-NN classifier allows us to
carry out a local classification of acoustic frames: for a given
frame, the feature vector is compared with all the vectors of a
referenced base which was established previously. Euclidean
distance between the unknown and referenced encoded signal
is calculated. The decision is reached by assigning the
encoded signal according to the majority classification of
the k closest referenced vectors. For a frame sequence, we
arrange a series of local decisions from which a global
decision is made, as used by Lim et al. [4].

3) Local and global decisions: The two classification
algorithms (the predictive modelling and k-NN) produce
local decisions at frame level. This local decision of the
kth acoustic frame is represented by ck. For the predictive
classifier, we have :

ck = arg min
i=1,M

{εk,i} (2)

where εk,i designates the N errors calculated from N
multilayer perceptrons. The global decision is obtained by:

c = arg min
i=1,M

{
K∑

k=1

εk,i} (3)

where K represents the total number of frames of the
unknown audio sequence. We will designate this decision
algorithm by GD1.

The k-NN appoach does not allow us to compute a global
decision so easily. A majority decision algorithm is often
used in the literature:

c = arg max
i=1,M

{|Ui|} (4)

where Ui is the set of all the frames belonging to class i,
i = 1, . . . , N . We will designate this decision algorithm by
GD2.

The last algorithm, GD3, is variant of GD2 consisting
of considering the longest chain of successive identical local
decisions.

III. EXPERIMENTATIONS

We present a set of simulations taken from a database
of real recorded signals, The Underwater Sound Effects
Series [12]. This database includes 500 sound effects which
were recorded with a sampling frequency of 44KHz from
an underwater perspective using a pair of Brüel & Kjaer
hydrophones. Among these recordings, some correspond to
transient sound events (of a maximum duration in an order
of seconds) and others to non transient (up to one minute of
recording). Two bases have been established from this album,
one composed of transient signals (13 classes of signals) and
the other composed of non transient signals (30 classes of
signals). Every class includes 4 signals datasets for training
and 2 signals for test. This database allows us to consider
both types of events. Generally, the transient signals are
often covered in the literature. But in the robotic context that
concerns us, we have to deal with non transient signals also,

for example to provide sea state or ship information. Many
of these signals were recorded both in water and above water.
Figures 3 and 4 represent respectively the spectrum of signals
obtained by recording an event of non transient type drip,
and an event of transient type object hitting metal. The top
graph of each figure represents the spectrum of registration
in the water and the bottom one is the spectrum in the air.
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Fig. 3. Spectrum of a sound event corresponding to a drip recorded in the
water (above) and in the air (below).
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Fig. 4. Spectrum of a sound event corresponding to a hit of the metal
recorded in the water (above) and in the air (below).

We can see the spectral differences of these figures, essen-
tially a reduction in the bandwidth of signals in the water,
and a shift towards low frequencies. From this we know
that lower frequencies propagate better than high frequencies
under water.

From this, we can conclude that the MFCC method,
classically used in speech recognition, is probably less well
adapted to the analysis of underwater signals. This is verified
in the experiments presented in the next section.

A. Encoding stage

For the four methods used, we represented the evolution
of coefficients throughout the duration of an event. In all
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simulations, we used 14 coefficients. We have studied the
optimum dimensionality of the encoded signals. We found
that the optimum dimensionality varies between 10 and 18
with an average of 14, depending on the nature of the signal
(transient or non transient), and the feature extraction method
used. Figures 5 and 6 show examples of evolution for a non
transient and a transient signal respectively.
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Fig. 5. Evolution of coefficients ERB, LPC, LPCC and MFCC during time
for a non transient signal(30s, windows of 2048 sample points).
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Fig. 6. Evolution of coefficients ERB, LPC, LPCC and MFCC during time
for a transient signal(1.6s, windows de 2048 sample points).

In the case of non transient signals, there is a more
important variance of MFCC coefficients than found in LPC
and LPCC coefficients. This shows the inadequacy of MFCC
coefficients. In fact, throughout the evolution of LPC and
LPCC coefficients, the properties of the non transient signal
are quasi-stationary. In contrast, a large part of the MFCC
frequency bands (frequencies above 1500Hz as shown in
Figure 3) does not convey useful information. In the same
way, the ERB code covers the entire spectrum of audible
frequencies. Many of the coefficients have low amplitudes
because the energy of higher frequency channels is low.

With the transient signal, Figure 4 shows that they are
narrow-band signals. The evolution of coefficients is pre-
sented in Figure 6. They show that, the transient signals

are not stationary. The number of representative evolution
coefficients is more important in the case of LPC and LPCC
than in MFCC and ERB. This shows that LPC and LPCC
coefficients may be better candidates for the modelling of un-
derwater signals. These individual results were consistently
observed throughout the majority of signals available in the
database.

B. Classifier parameters
The classifiers proposed in this paper (the predictive neural

and the k-NN) need to be parametrized correctly. For this
reason, we realized a series of simulations with the number
of hidden cells of neural networks on the one hand, and with
the number of neighbors to k-NN classifier on the other.
Two bases have been established, one composed of transient
signals (13 classes of signals) and the other composed
of non transient signals (30 classes of signals). We have
conducted two sets of experiments. The separation of bases
was necessary because the transient signals and non transient
have different features which may justify the use of different
techniques. We present here two simulation examples: Figure
7 represents the scores obtained with the predictive classifier
and the LPCC codes according to the number of hidden cells,
and Figure 8 represents the scores obtained with the k-NN
classifier and the MFCC approach according to the number
of neighbors. For these tests, the decision algorithms GD1,
GD2 and GD3 have been tested with the predictive classifier
and GD2, GD3 with the k-NN classifier. This is because the
k–NN that we have implemented does not allow the use of
GD1 (see earlier in this article).
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Fig. 7. Recognition rate by the number of hidden cells using LPCC in the
base of non transient signals.

In general, it should be noted that a small number of
neurons or a small number of neighbors make it possible to
obtain the best scores. Concerning predictive networks, the
problem of over-learning, when the number of cells is too
large, the networks learn the training data well, but generalize
badly. Concerning the k-NN classifier, this is due to the
low number of references available in the base of signals.
However we know that k-NN works better than when the
number of references is large.
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Fig. 8. Recognition rate by the number of hidden cells using the codes
MFCC with the base of non transient signals.

C. Experimental results

The last set of experiments in this article concern the
scores obtained by the two classifiers tested using four ERB,
LPC, LPCC and MFCC with the two bases of transient and
non transient signals. Concerning the predictive networks,
scores are obtained by using a test data set not used in
the training process. Figures 9 and 10 represent the scores
obtained. C1 is the predictive classifier and C2 represents
the k-NN classifier.
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Fig. 9. Recognition rate of the codes with the base of non transient signals.

With the non-transient signals, LPCC returns superior re-
sults regardless of the classification algorithms used (between
78% and 85%). In contrast, results obtained with MFCC are
more mixed, good with the k-NN classifier (between 79%
and 81%), but poorer with the predictive classifier (between
59% and 65%).

For the transient signals, the difference vis a vis of
classifier used increases. LPC and LPCC always obtains the
best results, when using predictive networks. The predictive
network result makes it possible to model the evolution of
non-stationary signals and this is interesting because the
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Fig. 10. Recognition rate with the codes of the transient base.

transient signals are non-stationary. Finally, the obtained
score of 100%, which is higher than the score obtained with
non transient signals, is explained by the number of classes:
only 13 for the transient signals and 30 for the non transient
signals. Unfortunately these class numbers are too small to
say that LPC and LPCC are prefect for this task.

These results show that MFCC does not represent the ideal
approach for the recognition of underwater audio signals.
LPCC seems to be a better candidate. This result can be
explained by the fact that MFCC code is only suitable for
the spectrum of the speech signals in the air. For example,
Figure 3 shows that the spectral ranges are different in the
air and in the water so that MFCC appears to be not well
adapted. In contrast, temporal codings like LPCs are adapted
to the spectral envelope of the signals. The continuation of
our work within project ASAROME consists of the fusion
of multimodal data (audio, visual and accelerometers, etc.)
for aiding decision-making and the development of suitable
commends for the navigation of the autonomous boat.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper, we presented algorithms for classification of
audio signals to assist in the navigation of an autonomous
boat. We compared two classifiers and four methods of sig-
nals coding, expanding upon work started by Lim et al. in [4],
[5]. Results show that if the methods of signal representation
are well chosen, it is possible to obtain promising results in
classification. In particular, the MFCC method typically used
in speech processing are not suitable for underwater audio
signal processing.
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