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Abstract— In this paper we present a vibration control
scheme for a long-reach inspection arm in an environment as
constrained as a fusion reactor. The ultra-high vacuum, the high
operating temperature, the significant residual magnetic field
and the nuclear activation in ITER will prevent from con-
sidering common on-the-shelf dynamics sensors. Therefore we
propose to use the already developed rad-hardened viewing tool
to feed an oscillation observer with visual information. In our
approach the visual data are extracted from a totally unknown
environment. Particular attention is paid to obtain a robust
algorithm. Experimental results validate the proposed strategy.

I. CONTEXT OF THE STUDY

A. Need for an inspection arm for the ITER maintenance

Population growth and steadily rising standards of living
will keep demand for energy growing substantially in the
years to come. All potential energy options must be kept
open to ensure that responses are as appropriate as possible,
both environmentally and economically. Thermonuclear fu-
sion is one of these options.

The International Thermonuclear Experimental Reactor
(ITER) is the next generation of experimental fusion reactors.
It aims at demonstrating the scientific and technological
feasibility of fusion energy. Inside the torus fusion reac-
tions between Deuterium and Tritium isotopes produce high-
energy neutron fluxes that irradiate the structure. Because of
this neutron activation, which forbids direct human access
inside the reactor, the in-vessel plasma facing components
of ITER must be inspected and maintained remotely.

The In-Vessel Viewing System (IVVS) project, which is
still mainly at the concept level, assumes that a long reach
deployer equipped with a probe penetrates the ITER chamber
to perform periodic inspections in a short time between two
plasma shots. In that purpose the operation of the robot
should be realised under ITER operating conditions i.e. ultra-
high vacuum (10−6 Pa), high temperature (120 − 200 ◦C),
significant residual magnetic field and nuclear activation.

B. A carrier demonstrator: the AIA

A feasibility analysis drove the design of the so called
Articulated Inspection Arm (AIA) demonstrator [1], which is
a 8m-long multi-link carrier with 5 identical modules made in
titanium (see Fig. 1). Combination of elevation and rotation
motions gives to the robot 8 DOF. With a payload up to
10 kg and a total weight of 150 kg this polyarticulated
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arm can be introduced through a small port of 250 mm
diameter. To cope with the high temperature requirements,
all AIA articulations are actuated by specific electrotechnical
components qualified up to 120◦C in use and 200◦C when
switched off. However operating in a magnetic field and in
a nuclear ambiance has not been fully considered yet.

Full remote control under blind conditions requires on line
collision avoidance and monitoring. A challenging problem
has been addressed to deal with the structural flexibilities
of the robot which cause limited positioning accuracy per-
formance. At this stage a quasi-static model-based control
scheme has been developed [2] and will be implemented in
2010 after the flexible model calibration.

C. Prototypes of diagnostic tools

In parallel, various probe prototypes have been developed
to equip such a long-reach carrier.

First of all a viewing system (shown in Fig. 1) has been
designed to make close visual inspection of plasma facing
components in Tore Supra with the AIA demonstrator (see
inset in Fig. 1). All the camera inner electronic components
(CCD sensor, zoom, LEDs,...) are actively cooled by Nitro-
gen gas to keep the operating temperature bellow 60 ◦C.

The so called 3D Inspection System [3] is another plug
tool especially designed for ITER which aims at performing
sub-millimetric 3D images during maintenance procedure.
In this process a coherent single mode laser is modulated
and transmitted to the target via a rotating prism. When the
scanning head is stable the measurement accuracy is up to
0.1mm at 1m. Unfortunately this value drastically decreases

Fig. 1. Deployment inside TORE SUPRA vacuum vessel of the AIA
equipped with the viewing system. Inset: visual feedback
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when the scanning head is at the tip of a carrier since the
rotating prism induces vibrations in the whole structure.

Other diagnostic tools are currently developed for tokamak
in-vessel inspection, such as a leak detection system based
on helium sniffing or a compact laser system for carbon
codeposited layers characterizations or treatments [4].

D. Motivation

Man-in-the-loop technique would provide very useful help
during inspection giving the operator the ability and flexibil-
ity to locate and examine unplanned targets. But vibrations
due to the structure high flexibility are probably the main
identified problem in such a master-slave mode. As a con-
sequence it needs the integration of high level compensation
schemes to complete the tasks within the requirements.

The stimulation of the structural modes can result from:
• a critical trajectory imposed by the operator
• a collision or interaction with the environment
• internal unmodelled dynamics (from carried processes,

e.g. the rotating prism of the 3D Inspection System)
Input shaping techniques [5, 6] are very efficient to avoid

critical trajectories by adjusting the input command to the
actuators in such a way that the vibrational modes are not
excited. Considering the two other origins, the vibrational
behaviour of the arm cannot be foreseen and it needs to be
damped as soon as the vibrations occur.

Unfortunately the ITER remote handling equipment will
be subjected during a shutdown to a cumulated radiation dose
in the order of several MGy. This constraint limits the use
of dedicated on-the-shelf electronics such as accelerometers.
Moreover the use of strain gauges suffer from the inherent
high noise due to electromagnetic interferences.

The main idea behind this paper is to control the oscilla-
tory behaviour of the flexible carrier without considering any
extra sensor apart from its embedded vision process. The tip
displacement induced by vibrations is estimated exploiting
a simple physical model of the manipulator. Thanks to the
camera mounted in an eye-in-hand configuration [7] this
model is then readjusted using direct measurement of the
oscillations of the tip with respect to the static environment.

This paper continues along the lines of several other works
on the vibration control of flexible links using visual data
[8–11]. [12] proved the feasibility of using a two-time scale
Kalman filter to observe the arm vibrational behaviour. Yet in
this work the tracking is based on the detection of a set of
particular markers (red dots on a plain background). Even
if no information is assumed to be known regarding their
geometry, the problem is greatly simplified since the need
for a robust tracking is seriously toned down. Our primary
contribution is the implementation of a markerless tracker to
determine the tip-camera velocity in an untrimmed environ-
ment. The addition of an M-estimator ensures the robustness
of the algorithm. Moreover we look into the notion of
on-line computation of the Image Jacobian and propose a
modification to make such an estimator self-adjustable.

At the end of the day the all-in-one method we propose
solves the problem of vibration suppression using visual

Fig. 2. Principle of the vibration estimator

features from a totally unknown and untrimmed static envi-
ronment, which had surprisingly never been treated before.
It is definitely an application paper putting the emphasis
rather on the robustness and adaptiveness of the technical
implementation than on new theoretical inputs.

This paper is organised as follows. After an overview of
the context and constraints of the study in section I, section
II presents the different components of the control scheme:
the dynamic model of the flexible arm, the two-time scale
Kalman filter, the robust tracker and the real-time Jacobian
matrix estimator. The LQR controller designed in section III
is experimentally validated in section IV, which is followed
by concluding remarks in section V.

II. VISION BASED VIBRATION ESTIMATION

In this section we consider the problem of designing an
on-line vibration estimator using a camera and without any
knowledge of the environment (see Fig. 2). In the first step a
tracker extracts and tracks features from the camera images.
From this set of features an M-estimator rejects the outliers
possibly resulting from the extraction noise and gives a
robust estimation of the environment overall displacement
seen by the camera. Afterwards this signal is filtered and its
low-dynamic part is used to reconstruct the Image Jacobian
matrix, which relates the motion of the environment in the
2D-image and the motion of camera in the 3D-world. In
the last step of the proposed algorithm the on-line estimated
Image Jacobian and the high-dynamic part of the image
features displacement both feed a discrete time Kalman filter.
Due to the long processing time of visual data the Kalman
filter is modified to deal with delayed measurements.

A. System Equations

Let’s consider a flexible planar arm consisting of n joints.
It is modelled by lumped masses and massless springs. High
order vibrational modes are neglected. By a standard pro-
cedure based on Lagrange equations two dynamic equations
can be written as follows:
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M1(θ,e)θ̈ +M2(θ,e)ë+ c1(θ,e,θ̇,ė) + g1(θ,e) = τ (1)

MT
2 (θ,e)θ̈+M3(θ,e)ë+K3e+c2(θ,e,θ̇,ė)+g2(θ,e) = 0 (2)

where θ = [θ1...θn]T is the vector of the n joint angles and
e = [e1...em]T is the vector of the m deflections variables.
M1, M2 and M3 are inertia matrices, K3 is a stiffness matrix,
c1 and c2 are the centrifugal and Coriolis torques and forces
vectors, g1 and g2 are gravitational terms vectors, and τ
represents the joints input torques.

Since this paper deals with relatively slow motions we
assume that the action of c1 and c2 can be neglected.
Moreover the influence of the deflections on the gravity
terms is ignored. Thus the nonlinear dynamic model given
by eqs. (1) and (2) can be approximated by a linear model
around a given steady state position. Such an equilibrium is
characterized by the following conditions:

g1(θ) = τ0 (3)
K3e0 + g2(θ) = 0 (4)

where e0 is the static deflection for a given joint position θ
and τ0 is the constant torque that balances gravity.

Let’s consider δe = e − e0 and δτ = τ − τ0 as the
deviations of e and τ from their respective static values.
Subtracting eq. (3) from eq. (1) and eq. (4) from eq. (2)
we obtain the following linearized model:[

M1 M2

MT
2 M3

]
︸ ︷︷ ︸

M

[
θ̈

δ̈e

]
+
[
0 0
0 K3

]
︸ ︷︷ ︸

K

[
θ
δe

]
=
[
I
0

]
︸︷︷︸
U

δτ (5)

One can notice that the lower part of eq. (5) can be seen as
the dominant equation for the vibrational behaviour and it
can be expressed as the following state-space model:[

δ̇e

δ̈e

]
=
[

0 I
−M−1

3 K3 0

] [
δe

δ̇e

]
+
[

0
−M−1

3 MT
2

]
θ̈ (6)

Equation (6) fully describes the vibrational dynamics of our
arm. We could also have chosen to include δτ in this model
by replacing θ̈ in the lower part of eq. (5) by its expression
in the upper part. As we will see below our choice is mainly
motivated by the ease of measuring θ̈ as the model input
rather than δτ . Being given this model an observer of the
deflexion deviation δe can be built provided that we add to
eq. (6) a measurement equation. In our case the measurement
is made of visual data taken from features points of the static
environment projected in the image plane.

The velocity ξ̇ of these 2D features can be related to the
tip camera velocity Ṗ using the Image Jacobian concept [9]:

ξ̇ =
∂ξ

∂P
Ṗ = JimageṖ (7)

We will see in section II-F how to efficiently evaluate Jimage.
Moreover the velocity of the tip camera Ṗ depends on both
the rigid motion θ̇ and the elastic motion ė of the arm:

Ṗ =
∂P

∂θ
θ̇ +

∂P

∂e
ė = Jθ θ̇ + Jeė (8)

From eqs. (7) and (8) we deduce:

ξ̇ = JimageJθ θ̇ + JimageJeė (9)

where Jθ and Je refer to the Jacobian matrices of the end-
point with respect to the articular positions and the deflexion
variables respectively.

Now let’s consider that the velocity ξ̇ of the features can be
split in a low dynamics component ξ̇low and a high dynamics
component ξ̇high. It is plausible to assume that ξ̇low mainly
results from the articular movement whereas ξ̇high mainly
results from the vibration. Therefore, by considering the
linear approximation of ξhigh for a deflection e around e0:

ξhigh ≈ ξhigh,0 + JimageJe (e− e0) (10)

which can be written according to the state vector of eq. (6):

δξhigh ≈
[
JimageJe 0

] [δe
δ̇e

]
(11)

As a consequence the process to be estimated can be ex-
pressed as the following continuous state-space model:

ẋ1(t) = A1x1(t) +B1θ̈ + w1(t) (12)
z1(t) = C1x1(t) + v1(t) (13)

where x1 =
[
δe δ̇e

]T
and z1 = δξhigh. w1 and v1 are the

usual white Gaussian noises, with respective covariances Q1

and R1. Matrices A1, B1 and C1 are defined by:

A1 =
[

0 I
−M−1

3 K3 0

]
B1 =

[
0

−M−1
3 MT

2

]
C1 =

[
JimageJe 0

]
From there a linear state observer can be designed using a

discrete steady-state Kalman filter whose gains are optimized
for the above assumed noises.

B. Incorporation of the acceleration estimation

The robust vibration estimation algorithm in this paper is
based on the dynamic model (12) and therefore assumes that
the joints accelerations θ̈ are known exactly. Unfortunately,
because of the very constrained environment, the use of
accelerometers is made impossible. As it is commonly the
case in robotics, only the joint positions θ are available from
optical encoders and the joint velocities θ̇ and accelerations
θ̈ must be estimated from these discrete-time quantized
signals. The classic Euler approximation combined with low-
pass filtering can be considered but it does not yield good
results at high sampling rates. Moreover such filtering often
smoothes excessively the measurement of transient dynamics
which stimulate the flexible arm but could not be taken into
account in the vibration estimator. As a consequence stochas-
tic methods are preferred to deterministic ones in order to
reduce the variances while reconstructing the accelerations.
A more sophisticated method to estimate the velocities is
then by using an optimized Kalman filter for the following
continuous model [13]:

ẋ2(t) = A2x2(t) + Γ2w2(t) (14)
z2(t) = C2x2(t) + v2(t) (15)

where x2 =
[
θ θ̇ θ̈

]T
. The white, zero mean Gaussian

noise w2(t) is a surrogate for the jerk
...
θ , which has to be

5699



considered as a wide-band signal for better reconstruction.
Its covariance Q2 may be regarded as a filter parameter to
be adjusted. v2(t) represents the quantization error, assumed
white, zero-mean, and of constant variance R2. Matrices A2,
C2 and Γ2 are defined by:

A2 =

0 I 0
0 0 I
0 0 0

 C2 =
[
I 0 0

]
Γ2 =

0
0
I


As a consequence we propose to merge systems (12–13)

and (14–15), by incorporating the joint position, velocity and
acceleration as a part of the state and reconstructing the latter
from the encoder measurement:

ẋ(t) = Ax(t) + w(t) (16)
z(t) = Cx(t) + v(t) (17)

where x =
[
θ θ̇ θ̈ δe δ̇e

]T
, z =

[
θmeas δξhigh

]T
,

w(t) and v(t) are white Gaussian noises, zero means, whose
covariances are respectively Q and R such as:

Q =
[
Γ2Q2 ΓT2 0

0 Q1

]
R =

[
R2 0
0 R1

]
Matrices A and C are defined by:

A =

 A2 0(3n×2m)

0(2m×2n) B1 A1



C =

 C2 0(n×2m)

0(1×3n) C1


C. Incorporation of Time Delayed Measurements in a
Discrete-time Kalman Filter

Let’s consider that the linear discrete system derived from
the continuous system (16–17) is observed by non-delayed
measurements where both process and measurements are
influenced by additive Gaussian noises:

xk+1 = Axk + wk (18)
zk = Ckxk + vk (19)

where the noise vk and wk are independent (respective
constant variances R and Q). A is assumed to be invariant.

The optimal state estimator minimizing the variance of the
estimation error will then be a Kalman filter:

x̂−k = Ax̂+
k−1 (20)

P−k = AP+
k−1AT +Q (21)

Kk = P−k CTk [CkP−k CTk +R]−1 (22)
x̂+
k = x−k +Kk[zk − Ckx̂−k ] (23)

P+
k = [I −KkCk]P−k (24)

Compared to other kinds of sensors used in robotics, vision
devices have the disadvantage of a long processing time. It
leads not only to delayed measurements, but also potentially
to low update rates. In our case the visual data measurement

Fig. 3. Modified Kalman filter

δξhigh is delayed of about one sample and is approximately
updated every 60 ∼ 70ms –sometimes 100ms!–, depending
on the charge of the supervisor computer which runs a non-
real-time OS. On the other hand the estimation of δe is
expected to be done at the servo rate, i.e. every 10 ms.

To overcome these two issues we propose to push the
method exposed in [14] a little further. We consider a two-
time-scale Kalman filter composed of 3 blocks (see Fig. 3):
• Block #1: the time update equations are executed at the

servo rate and estimate the state variables as fast as
needed to perform a stable and quality control.

• Block #2: the measurement update equations corre-
sponding to the optical encoder measurement are also
executed at the servo rate and correct the state estima-
tion regarding the measured articular position.

• Block #3: the measurement update equations corre-
sponding to the camera measurement are executed at the
visual data refresh rate and refine the state estimation
regarding the measured image features displacement.

An important point to be noted is that the time update equa-
tions, which are intrinsically stable, never stop predicting the
state vector. As a result this method is robust against visual
troubles such as partial occlusions or failure of the camera.

In order to avoid phase-lag between the real state and the
estimated state, it is necessary to take into account the delay
due to the processing time into the Kalman filter. One can use
a delay compensator that extrapolates the measured output
to the present time using past and present estimates. In [12]
the delay is assumed constant which is quite limiting. Indeed,
when the visual data processing application runs on a non-
real-time OS, the delay can vary a lot and it is hardly possible
to predict if previous measurements are fused in this delay
period. As a consequence we have adapted the above-cited
method to obtain a more flexible delay compensator.

Let’s consider that the output corresponding to the camera
feedback in the system (18–19) is delayed by an indetermi-
nate number of samples N. The new output equation is:

z∗k = C∗sxs + v∗k (25)

where the variance of z∗k is R∗ and s = k−N . This delayed
measurement cannot be fused using the regular Kalman filter
equations but requires some modifications in the structure
of the filter. Indeed if the measurement z∗k is delayed by
N samples and fused at time k, the data update should
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Fig. 4. Tracking method

reflect the fact that the N data updates from time s to k,
and therefore the state and covariance estimates, have all
been affected by the delay. A new optimal Kalman gain is
computed so that the variance of the estimation error is as
low as possible. The measurement update equations of this
modified discrete-time Kalman filter can then be written:

zextk = z∗k + C∗kx̂k − C∗sx̂s (26)
Kk = M∗PsC∗Ts [C∗sPsC

∗T
s +R∗]−1 (27)

x̂+
k = x−k +Kk[zextk − Ckx̂−k ] (28)

P+
k = P−k −KkC∗sPsM

T
∗ (29)

where:

M∗ =


I if N = 0

N−1∏
i=0

(
I −K ′k−iCk−i

)
A if N > 0

(30)

The prime on K ′ means that these Kalman gain matrices
have been calculated using a covariance matrix updated at
time s with the covariance of the delayed measurement.

This method guarantees all time-optimality and limits the
computational burden, contrarily to other approaches [15].
From a practical point of view it is to be noted that the
measurement equations of blocks 2 and 3 can be merged
and executed together when the visual data is updated.

D. Tracking of features from the unknown environment

One main contribution of this paper consist in imple-
menting the Lucas-Kanade-Tomasi (KLT) feature tracking
algorithm to evaluate the speed of the environment in the
camera basis, and thus to deduce the speed of the camera in
the environment basis which is definitely static.

We assume that no a-priori knowledge on the environment
is available as well as no markers have been placed on it.

As the manipulator moves, the tip camera moves and the
patterns of image intensities change in a complex way. These
changes can be described as image motion:

I(x, y, t+ dt) = I(x− ζ, y − η) + N(x, y) (31)

In other words an image taken at time t+dt can be obtained
by moving every point in the previous image, taken at time
t, by a suitable amount. N represents the visual noise. The
amount of motion δX(ζ, η) is called the displacement of the
point X = (x, y). The image motion is better represented
by an affine motion field δX = DX + d where D is a
deformation matrix and d is the translation of the window’s
centre. Given two images, tracking means determining the
parameters that appear in the deformation matrix D and the

Fig. 5. Example of tracked features in an unknown and ”untrimmed”
environment (a tokamak vessel wall)

displacement vector d.
Practically visual noise prevent from tracking single pix-

els, thus we consider fixed-size feature windows. The quality
of the estimate depends on the size of the window, the
”texturedness” of the image within it, and the amount of
camera motion between frames.

The particularity of the KLT algorithm [16] lies in the fact
it is designed to select features that are more than traditional
”interest” measures, that are often based on a preconceived
and arbitrary idea of what a good feature is and consequently
do not guarantee to be the most reliable for the tracking
algorithm. From the KLT point of view the right features
cannot be defined independently of the tracking method and
are exactly those that make the tracker work best. As a result,
the selection criterion is optimal by construction. This idea is
the real strength of the KLT and makes it extremely robust.

To keep track of the selected features through the se-
quence a pure translation model of motion is used. At the
same time the tracker performs an affine consistency check.
In other words it defines a measure of dissimilarity that
quantifies the change of appearance of a feature between
the first and the current image. If the window has changed
too much, it is discarded (see Fig. 4).

When features are lost our implementation of the algo-
rithm replaces the lost features by finding new features in
the new image and consequently keeps a constant pool of
features. To ensure that the new detected features do not
correspond to already detected features we build a mask
image containing the current pool of tracked features and
we filter out those of the new features that match it. To
avoid optical distortion, features in the image borders are
also junked. At last to secure a representative estimation of
the environment displacement (exposed in section II-E) a
minimum distance between the extracted features is set.

As shown on Fig. 5 the spatial distribution of the tracked
features tends to be relatively regular because of the above
mentioned minimum distance between them. Moreover one
can notice that the selected features are concentrated in the
centre of the image.
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E. Robust estimation of the features displacement
As stated in section II-A, the quality of the vibration

reconstruction is based on the accuracy of the environment
displacement measurement. Because of the features extrac-
tion noise, outliers can corrupt the state observer as well
as the Jimage estimator. To minimize the influence of these
outliers we employ robust statistics, which makes it possible
to recover the structure that best fits the majority of the data
while identifying and rejecting deviating substructures.

M-estimators can be considered as a more general form of
Maximum Likelihood Estimators (MLE) because they permit
the use of different minimization functions not necessarily
corresponding to normally distributed data. This class of
estimators can be written:

T̂n = argmin
Tn

[
n∑
i=1

λ(xi, Tn)

]
(32)

where λ is an influence function (Huber’s, Cauchy’s...).
To obtain a proper estimation of the environment displace-

ment in the image we chose to implement Tukey’s influence
function:

λ(u) =
{

1
6 [1− (1− u2)3] if |u| ≤ 1

1
6 if |u| > 1 (33)

where u = x−Tn

c×Sn
. Sn represents the Median Absolute

Deviation (MAD) estimator and c is a potentiometer that
adjusts the asymptotic efficiency of the obtained M-estimator.

This influence function completely rejects outliers by giv-
ing them a zero weight. This is of interest in our application
to prevent detected outliers from having any effect on δξhigh.

F. Real-time Jacobian Matrix Estimator
The vibration estimator built in section II-A assumes that

the velocity of the tip camera can be related to the velocity
of the image features through the so-called Image Jacobian.
This matrix, which is used to linearly describe the differential
relation between the motion of the image features to the
camera motion, was first introduced by [17], who referred
to it as the feature sensitivity matrix. It is also referred to as
the interaction matrix [18] and the B matrix [19].

Determining this matrix analytically is not simple. One has
to take into account the intrinsic parameters of the camera
(focal distance, image centre coordinates, aspect ratio, distor-
tion coefficients) as well as the depth estimation (translations
and rotations between the camera and the features).

To deal with changing or unknown environments, some
on-line Image Jacobian matrix estimator have been proposed
by [20] and [21], in which the Jacobian is estimated recur-
sively by just observing the process without any a priori
model or introducing any extra ”calibration” movements.

The estimation of the Jacobian matrix using the Broyden
method [22] is an underdetermined problem and a family
of solutions can be chosen as Broyden updating formulas.
Among this infinite number of solutions, [20] proposes a
Jacobian estimator that can be formulated as:

Ĵt − Ĵt−dt =
(∆ξlow,t − Ĵt−dt∆θt) ∆θTt Wt

ρ+ ∆θTt Wt ∆θt
(34)

where W (t) and ρ(0 ≤ ρ ≤ 1) respectively denote a full
rank weighting matrix and a forgetting factor. Its goal is not
to estimate the true parameters of Jimage but to provide an
estimation Ĵimage that satisfies at any time the relation:

ξ̇low = ĴimageJeθ̇ (35)

Therefore the estimated parameters do not necessarily con-
verge to the true physical values.

Nevertheless the estimation algorithm would display
greater stability if it considered data over a period of time
instead of just the previous iteration. To that purpose the so
called ”population-based” method has been introduced, for
calibrating a linear model based on several previous iterates.
This can be accomplished easily using a recursive least
squares (RLS) algorithm with exponential data weighting
that minimizes a cost function based on the change in the
affine model. It is done by adopting the covariance matrix
P (t− dt) as the weighting matrix W (t):

Ĵt = Ĵt−dt +
(∆ξlow,t − Ĵt−dt∆θt) ∆θTt Pt−dt

ρ+ ∆θTt Pt−dt ∆θt
(36)

Here P(t) denotes a covariance matrix:

Pt =
1
ρ

(
Pt−dt −

Pt−dt ∆θt ∆θTt Pt−dt
ρ+ ∆θTt Pt−dt ∆θt

)
(37)

As previously the behaviour of this method depends on
the forgetting parameter ρ, which can be tuned from 0 to 1,
and ponders previous movements. ρ settles a compromise
between information provided by old data from previous
movements and new data, possibly corrupted by noise. This
kind of RLS algorithm has a memory approximately equal
to 1

1−ρ . This estimator is valid only when Jimage is time-
invariant or when the system moves slowly. But tuning
forgetting factor ρ, we can apply this method when the
system velocity is small.

In [23] a novel approach for uncalibrated visual servoing
introduced a RLS algorithm with a modified stabilizing term,
in eq.(37) only, which linearly depends on Pt−dt.

Curiously no paper has ever proposed to adopt an adaptive
forgetting factor in both eqs. (36) and (37). As a consequence
we suggest considering a memory term ρ(θ̇) which self-
adjusts depending on the range of the camera rigid motion.
• If the camera does not move (Jθ θ̇ ' 0), ρ is put to 1.

The new information is averaged with all past data, the
system is hardly insensitive and very stable.

• If the camera moves fast (Jθ θ̇ � 0), ρ is put close to
0. The system becomes only sensitive to observed data.

• Between these two extreme cases, ρ linearly varies
between 1 and 0. The old data are weighed less and
less, and the estimator tracks the time-varying Jacobian.

This adaptive RLS algorithm displays great stability and
improves sensibility to sudden movements of the camera
compared to classic fixed-parameters Broyden-based
methods. This method performs a robust estimation of the
Image Jacobian, with a quite low sensitivity to noise and a
relatively high repeatability.
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III. CONTROLLER DESIGN

The control problem is to determine the torque vector
δτ such that the joint rotation vector θ tracks the desired
trajectory θd with a good accuracy while δe converges to
zero as fast as possible. Thus we can regard each joint as
a single-input multiple-output (SIMO) system. A common
approach in the control of such systems involves the design
of linear quadratic regulators (LQR). To that purpose we use
the linear state-space representation of the entire flexible arm,
including rigid and flexible modes. From eq. (5) we deduce:

Ẋ(t) =
[

0 I
−M−1K 0

]
︸ ︷︷ ︸

Ac

X(t) +
[

0
−M−1U

]
︸ ︷︷ ︸

Bc

δτ(t) (38)

Yc(t) =
[
I 0 0 0

]︸ ︷︷ ︸
Cc

X(t) (39)

with X = [θ δe θ̇ δ̇e]T . The LQR technique involves
choosing a control law δτ = L1Yc − L2X which stabilizes
the controlled output vector Yc to its desired values Yd = θd
while minimizing the quadratic cost function:

J =
∫ ∞

0

(
X(t)TQX(t) + δτ(t)TRδτ(t)

)
dt (40)

where the penalty matrices Q and R are both symmetric
positive semidefinite matrices. The optimization horizon N
for the summation is the stopping time step for the cost
function which is set most of the time to approach infinity.

Due to the coupled dynamics of the arm, the control
of the low-dynamic rigid motion subsystem will be made
much easier if the fast-dynamic elastic vibration subsystem
is controlled as fast as possible. As a consequence the
component of Q related to δe (and δė) must be chosen large
in comparison with those related to θ (and θ̇).

Finding L1 and L2 that minimise J involves solving the
following Riccati equation [24]:

PAc +ATc P − PBcR−1BTc P +Q = 0 (41)

where P is the 2(n+m)×2(n+m) matrix to be determined.
At last the feedforward and feedback matrices L1 and L2

can be computed following the relations:

L2 = R−1BTc P (42)

L1 =
(
Cc(Ac −BcL2)−1Bc

)−1
(43)

IV. EXPERIMENTAL RESULTS

Before implementing our vibration suppression scheme on
the real AIA, a validation campaign has been carried out on
the experimental mock-up shown if Fig.6 [25]. It consists of:
• an actuated joint (capacity ' 1000 N.m) driven by a

motor through an Harmonic Drive based speed reducer
• a 3m-long circular beam with a calibrated tip mass
• a 5000 cpr optical encoder to measure the joint position
• a laser tracker Leica LTD800 to measure the tip position

(accuracy = 5.10−5 m, frequency ' 500 Hz)
The controller runs on the real-time OS VxWorks at a
sampling time of 10 ms. The overall vision-based application

is based on the ViSP software [26] and runs at around
10−12Hz. The joint friction and gravity torques applied on
the beam have been compensated considering measurements
from a rigid bar of the same weight. The KLT algorithm has
been implemented using the OpenCV implementation which
is computationally the most efficient at the present time. The
tracker contains a pool of 20 features and it considers 10×10
windows for each. The minimum distance between features
has been set to 30 pixels and the quality factor to 0.01.

Displaying an example of the obtained Jimage wouldn’t
make much sense as it does not necessarily converge towards
values having a physical meaning (see section II-F). Instead it
is quite eloquent to rebuild the low-filtered camera velocity˜̇
ξlow from the angular velocity and the estimated Jimage,
and to compare it to the measured camera velocity. Figure
7 validates the benefit of our method. The best results are
obtained for min(ρ) = 10−3 and θ̇limit, which characterizes
the self-adjustment of ρ, is set to 10−3rad/s. The error
between the rebuilt and measured velocity is around 14.1%,
while it is up to 46.5% when ρ is fixed to 0.4.

The robustness of the environment displacement esti-
mation is greatly improved by the use of the Tukey M-
estimator. For example the displacement estimation of a static
scene disturbed by fleeting partial occlusions yields temporal
standard deviation σ in the order of 0.012979. In comparison
the same estimation made by a classic mean and a trimmed
mean respectively yields σ = 1.619542 and σ = 0.017504.

Then we can compare the behaviour of the link with and
without vibration suppression scheme. As illustrated by Fig.8
the response of the controlled system is very sensitive to the
choice of the penalty matrix Q. This point is also outlined in
the short video accompanying this paper. In the first overall
view, which could correspond to the green curve of Fig. 8,
priority has been given to the position control. The desired
joint position is reached quite fast but a slight overshoot
occurs on δe. In the following close-up, priority has been
given to the vibration compensation. As it can also be noticed
on the red curve of Fig.8, the joint is a bit slower to reach
its desired position but the vibration is much better damped.

Fig. 6. Flexible mock-up at CEA LIST site in Fontenay-aux-Roses
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Fig. 7. Camera velocity rebuilt from different Image Jacobian estimators

V. CONCLUSION AND FUTURE WORKS

In this paper a robust vibration control has been presented
for a flexible inspection arm moving in an unknown envi-
ronment. Its particularity is to entail a vibration estimator
that reconstructs the vibrations from visual data without any
a priori knowledge of the surroundings. To that purpose a
robust tracker based on the KLT algorithm feeds a two-time-
scale Kalman filter in which a part of the measurements are
delayed. In other applications this modified Kalman filter
could be extended to multi-sensors systems with different
delays and refresh rates. Moreover the issue of Image Jaco-
bian on-line estimation has been assessed and an adaptive
method is proposed to ensure both stability and sensibility
of the estimation whatever the camera velocity may be.

The whole control scheme is validated on a single-joint
mock-up until the availability of the AIA arm makes possible
to implement it on the real 8–DOF system. As each joint of
the complete arm enables an elevation and a rotation, the
control of its end-effector can be considered as a collocated
problem. The estimated vibration will thus be projected on
an orthogonal basis and suppressed using only the motion
of the fifth module. Of course this strategy cannot prevent
middle parts of the structure from oscillating. Therefore we
rely upon internal damping to stabilize the whole structure as
long as the diagnostic tool plugged at the tip is not vibrating.

In future works we will try to extend these results to the
observation of complex and not necessarily normal planes.
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