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Abstract— The paper presents a novel strategy that learns to
associate a grasp to an unknown object/task. A hybrid approach
combining empirical and analytical methods is proposed. The
empirical step ensures task-compatibility by learning to identify
the object graspable part in accordance with humans choice.
The analytical step permits contact points generation guaran-
teeing the grasp stability. The robotic hand kinematics are also
taken into account. The corresponding results are illustrated
using GraspIt interface [1].

I. INTRODUCTION

The first goal of every grasping strategy is to ensure
stability. A grasp is stable if a small disturbance, on
the object position or finger force, generates a restoring
wrench that tends to bring the system back to its original
configuration [5]. Nguyen [21] introduces an algorithm for
constructing stable grasps. Nguyen also proves that all 3D
force-closure grasps can be made stable. A grasp is force-
closure when the fingers can apply appropriate forces on the
object to produce wrenches in any direction [22]. Obviously,
stability is a necessary but not a sufficient condition for a
grasping strategy. When we reach out to grasp an object,
we have a goal in our mind or a task to accomplish. Thus,
in order to successfully perform the task, the grasp should
also be compatible with the task requirements. Computing
task-oriented grasps is consequently crucial for a grasping
strategy. Finally, because of the variety of objects shapes
and sizes, a grasping strategy should always be prepared
to grasp new objects. Thus, it should ensure stability,
task compatibility and adaptability to novel objects. In
other terms, a grasp synthesis strategy should always have
an answer to the following question: where to grasp a
novel object in order to accomplish a task? Analytical and
empirical approaches answer this question differently.

Analytical Approaches consider kinematics and dynamics
formulations in determining grasps. Many works have
been developed to compute force-closure grasps [17], [21],
[24] or even optimal force-closure grasps achieving the
most desirable performance in resisting external wrench
loads [19], [23]. These approaches find stable grasps adapted
for pick and place operations and are not task-oriented.
Only few works [6], [7], [8] take the task into account.
These analytical approaches suffer from a major problem:
computational complexity when trying to model task
requirements. Thus, while the selection of task-oriented
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optimal grasp is very easy for a human hand, it is still a
complicated process for a robot hand.

Empirical grasping methods avoid the computational
complexity of analytical techniques by attempting to mimic
human grasping strategies. Empirical strategies for grasp
planning can be divided into two main kinds: systems
based on the observation of the object to be grasped [9],
[10], [18] and systems based on the observation of a
human performing the grasp [11], [14], [15], [16], [20].
The former techniques generally learn to associate objects
characteristics with a hand preshape, while in the latter, a
robot observes a human operator performing a grasp and
try then to reproduce the same grasp. This technique is
called in the literature learning by demonstration approach.
Empirical systems based on objects observation are adapted
to new objects but generate a lot of possible grasping
positions and fail to select the one that best suits the task.
When trying to do this autonomously, they encounter the
same problem of analytical task-oriented methods, which is
task modelling. Empirical systems based on the observation
of humans overcome task modelling difficulty by imitating
humans grasping gesture. However, these systems are not
fully autonomous when they face an object completely new.

Thus, a strategy that learns to associate a grasp to an
unknown object/task is still an unsolved problem. We believe
that neither analytical nor empirical approaches can fulfill
by themselves the constraints of stability, task compatibility
and adaptability to new objects. We propose, in this paper, a
hybrid approach combining empirical and analytical methods
to solve the problem. The empirical step will ensure task-
compatibility by avoiding the analytical approaches task-
modelling complexity. The analytical step permits contact
points generation guaranteeing the grasp stability.

II. THE PROPOSED APPROACH: EMPIRICAL STEP

Humans are capable of reaching and grasping novel
objects with great dexterity. To ensure these skills and to
interact with a human’s world, robots must be capable of
using their hands proficiently. Thus, robots should handle
objects in the same manner as humans. What are the
factors taken into consideration when choosing a specific
grasp configuration? What should the grasping algorithm
learns in order to pick a new object in the same manner as
humans? In other words, what parameters are relevant to
new objects grasping? Are these parameters related to the
hand characteristics? Are they related to the object features?
By taking inspiration from the Recognition By Components
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theory of Biederman [25], RBC, we propose a strategy to
imitate human’s choice of the objects grasping component.
Biederman suggests that people are able to recognize objects
(even unfamiliar) by segmenting them into parts at regions
of deep concavities. Thus, objects identification does not
depend on our familiarity with them. We conduct the same
process for any object, whether it is familiar or unfamiliar.
But what about grasping an unfamiliar object? Does its
part decomposition emphasize a specific grasp? When
considering objects we use for everyday tasks on a part-
representation level, we can make the following assumptions:

• Objects are equipped with a part designed specifically
to make their grasp easier. Figure 1 shows some familiar
objects. The black part indicates the component that
humans choose to grasp these objects. It is also the part
that satisfies the task requirements. This part is what we
call the object graspable part or more simply the object
handle.

Fig. 1. The black part indicates the object handle.

• Objects with similar components are grasped in the
same manner. Bags, buckets, mugs and cups are roughly
composed of a cylinder and a curved cylinder. Even
though the arrangement of these components is different
for these objects, they are all grasped by their curved
component (Fig. 2). Thus, the choice of an object gras-
pable part is influenced by the shape of its constituting
single parts. Objects parts orientation is less relevant to
that choice.

Fig. 2. The choice of an object graspable part is influenced by the shape
of its constituting parts, independently from their orientations, i.e: a) a mug,
b) a bucket and c) a bag are all grasped by their curved part.

• The relative sizes of object components is crucial for the
graspable part selection. Let us examine some alcohol
glasses shapes and sizes. We consider wine, champagne
and brandy glasses. Although, all these glasses are

composed of three parts: the bowl, the stem and the
foot, they are grasped differently (Fig. 3). Wine and
champagne glasses have a long stem. They are designed
to be held by the stem to help prevent the heat from
the hand from warming the alcohol. On the other hand,
brandy glasses have a short stem. They are designed to
be held by the bowl.

Fig. 3. Roughly approximation of: a) a wine glass, b) a champagne flute
and c) a brandy glass.

In summary, we can say that objects are designed in a way
to make their grasp easier and in accordance with their func-
tions and information about an unknown object parts shapes
and sizes may emphasize a specific part for its grasping. This
leads to our ”Grasping By Components” strategy. It aims
at finding, for an unknown object, its graspable part. Thus,
objects are represented as a set of components. A learning
process permits then to use geometric representation of the
object components to perform an analogue of the human
choice of the grasping component. Thus, our approach will
learn to imitate humans selection of the object graspable part.
The different steps of the proposed approach are detailed in
the following.

A. Objects Representation

The selection of the object graspable part is influenced
by the size and shape of its components. Thus, objects
are represented as an assembly of geometric primitives.
Starting from a 3D surface model, a part decomposition
step is performed to segment the object into its constituent
single parts. For this end, a segmentation algorithm based
on the Gaussian curvature and the concaveness estimation
is used [13]. This method has a main advantage over
the existing ones in the literature. It uses multi-ring
neighborhood in order to compute a 3D object surface
features such as the gaussian curvature. Thus, when a
model is densely represented with polygonal faces, a
multi-ring neighborhood permit to accurately catch their
geometric behavior. This segmentation approach succeeds
in decomposing low resolution as well as high resolution
3D laser scanned objects (Fig. 4).

Object segmentation produces a set of parts. The next
task is to generate a description for each one. Each part
is represented by a superquadric. With only a few parame-
ters, superquadrics can represent a large variety of standard
geometric solids as well as smooth shapes. In order to
have a manageable number of superquadrics shapes, we
have chosen 7 representative models that span the space
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Fig. 4. Segmentation of real 3D laser scanned objects. Each color represents
a different part of the object.

of superellipsoids: box, cylinder, sphere, bent box, bent
cylinder, tapered box and tapered cylinder.

III. LEARNING THE GRASPING COMPONENT

The proposed algorithm learns to use object components
shapes and sizes in order to select the grasping part. Su-
pervised learning [26] is used for this task, with synthetic
objects (generated using computer graphics) as training data.
The training objects are the result of the assembly of two
volumetric primitives. Our supervised learning requires a
set of objects that can potentially span the space of two
superquadrics assembly. Therefore, the choice of the training
objects is important to effectively sub-sample this space. We
use 12 objects for the training set (Fig. 1). We mentioned
previously that 7 superquadrics will be used to model our
objects. Thus, the training objects components are chosen
to span these 7 superquadrics shapes with different sizes.
Figure (5) shows the steps for generating the training data.
It shows first the initial object, its decomposition into single
parts, the approximation of each part with a superquadric
and finally its corresponding grasping part according to
human choice. A multi-layer perceptron, with one hidden

Fig. 5. Some two-part objects used for generating the training set:
(a) initial 3D object, (b) segmentation into single parts, (c) superquadric
approximation, (d) natural grasping part (black part).

layer, is trained with a typical backpropagation learning
algorithm [26] in order to select the grasping part of a two-
component object. For multi-part objects, the decision of the
grasping component is taken by considering the object parts
two by two. In other words, the algorithm starts by choosing
a grasping component between two parts of the object. The
chosen part is then compared with another component and
so on until finding the handle of the multi-part object.

IV. THE PROPOSED APPROACH: ANALYTICAL STEP

At this point, we are able to identify an unknown object
handle. This section aims at computing contact points on
the corresponding handle that ensure stability. Force-closure
property characterizes the stability of a grasp. According
to the definition of Salisbury [4], a grasp is force-closure
if and only if any external wrench can be balanced by the
wrenches at the fingertips. This condition is equivalent to
that the origin of the wrench space lies strictly inside the
convex hull of the primitive contact wrenches [2], [3]. In
the past few years, several force-closure tests were also
proposed [17], [19]. Generating good force-closure grasps
with the previously detailed force-closure necessary and
sufficient conditions require considerable computation time.
In order to find such grasps, they perform an exhaustive
search for the best n-finger force-closure grasp of an object
modeled by N points which would take time in the order
of O(Nn). Thus, heuristic approaches were proposed to
improve performance [28], [29]. They generate many grasp
candidates by selecting contacts on the object surface. Then,
these grasps are filtered with a necessary but not sufficient
force-closure tests. The grasps that pass the filter may or
may not be force-closure. In other words the filter reports
false positive but not false negative force-closure grasps.
The selected grasps are tested afterwards for force-closure.
Another way to improve performance, proposed in the
literature, is to use a simplified version of the object’s
geometry consisting only of shape primitives such as
spheres, cylinders, cones and boxes. Then, for each shape,
define a set of grasping strategies [30]. This also reduces
the number of grasps tested for force-closure.

Our work is an hybrid solution to the force-closure grasp
synthesis. The number of grasps tested for force-closure is
reduced since we do not consider the object as a whole
but we are interested in generating force-closure grasps
only on the object natural grasping component. We also
propose a new sufficient but not necessary force-closure test.
Thus, grasps that pass the filter ensure necessarily force-
closure. Our heuristic is original in the sense that it permits
simultaneously fast computation and good quality force-
closure grasps generation.

A. Force-closure Test

In order to ensure force-closure or determine grasp
wrenches that positively span the entire 6-dimensional
wrench space, one needs to find: (1) primitive wrenches that
constitute a 6D basis and (2) a primitive wrench that can be
expressed as a negative linear combination of that basis. But,
in which case wrenches associated to hard contact points may
form a basis of the wrench space? May a representation in
the 3D space of 6D wrenches facilitate the problem? Plücker
coordinates represents 6D wrenches as lines and Grassmann
algebra studies the rank of such lines. We use these two
studies to prove that wrenches, associated to any three non-
aligned contact points of 3D objects, form a basis of the 6D
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wrench space. Consequently, a force-closure test is given by
the following proposition:
Proposition 1: Assume that the grasp of n−1 non-aligned
fingers is not force-closure. Suppose that {bi}i=1..k is the
k-dimensional (where k = 6) basis associated to their corre-
sponding contact wrenches. A sufficient condition for a n-
finger force-closure grasp is that there exists a contact wrench
γ such that:

• γ is inside the linearized f riction cone

o f the nth f inger (1)

• γ =
k

∑
i=1

βibi, βi < 0

⇒ γ = Bβ ⇒ β = B−1
γ (2)

where B = [b1,b2, ...,bk] is a k × k matrix and
β = [β1,β2, ...,βk]T is a k × 1 strictly negative vector.
Thus, a simple multiplication by B−1 permits to test if a
contact wrench γ , and consequently the location of the nth
contact point, ensures a force-closure grasp.

Proof. The reader should refer to [27].�

B. Generating n-finger force-closure grasps

We showed (proposition 1) that to achieve force-closure,
we generate randomly locations of n−1 non-aligned fingers.
A position of the nth finger is chosen such that an associated
contact wrench can be uniquely expressed as a strictly
negative linear combination of one of the first generated
n− 1 fingers wrench basis. Our objective is to ensure fast
robust force-closure grasps generation. In our case, force-
closure grasps fast computation and robustness are strongly
linked. In order to understand how the two latter are tied
together, one should notice that generating a n-finger good
grasp will depend on the generation of the first n−1 fingers.
A good choice of their locations will induce on one hand
robust grasps and on the other hand more locations for the
nth finger on the object surface guaranteing force-closure
and consequently fast computation. Thus, we use a quality
criterion quantifying a good placement of the n− 1 first
fingers. This criterion is based on the computation of these
fingers wrenches basis volumes [27].

V. GRASPING BY TAKING INTO ACCOUNT THE HAND
KINEMATICS

At this point, our grasping strategy identifies an unknown
object handle and generates contact points on it with the only
constraint of stability. Dealing with a robotic hand model
induces additional kinematical and geometrical constraints.
Taking these constraints into account results in limiting
possible locations for the contact points on the graspable
part. The latter should be kinematically feasible for the
fingers and they should also avoid collision with the hand,
the remaining fingers and the object. Consequently, these
contacts should be generated in respect of the accessibility
domains of the fingers. Furthermore, a grasp involves several
closed kinematic loops between the fingers and the object.

Randomly generation of a closed kinematic chain is very
difficult. In order to handle these closed kinematic chains,
we propose to adapt the RLG (Random Loop Generator)
algorithm [31] to our grasping strategy. RLG aims at han-
dling closed kinematic loops by dividing them into active
and passive parts. The idea of the algorithm is to reduce
the closed kinematic chain complexity iteratively until the
active part becomes reachable by all passive chain segments
simultaneously. In our case, the object is the active part while
the fingers constitute the passive parts. A grasp can occur
when the object is reachable by all the fingers. The reachable
workspace of a kinematic chain is defined as the volume
which the end-effectors can reach. RLG approximates such
volume with a sphere. Figure 6 illustrates an example of the
reachable workspace of a finger. It also shows the intersection
between this space and the object. Thus, the finger should
be placed on this intersection. The placement of the first
finger is then taken into account when computing the second
finger reachable workspace and so on until the placement of
all fingers. We modify our grasping strategy to take these
constraints into consideration.

Fig. 6. Reachable workspace approximation of a finger.

Require: - 3D points representing the object graspable part
- Linearized friction cone and wrenches

Ensure: - n-fingers force-closure grasp
1: RW1← Grasp RLG( f1,object)
2: CP1 ← Rand(RW1)
3: i ← 1
4: while i < n−1 do
5: RWi ← Grasp RLG( fi,object, ∑

i−1
k=1 fk)

6: CPi ← Rand(RWi)
7: i++
8: end while
9: RWn ← Grasp RLG( fn,object, ∑

n−1
k=1 fk)

10: FC ← 0
11: while !FC do
12: CPn ← Force Closure(∑n−1

k=1 CPk)
13: FC ← CPn in RWn
14: end while

Since we are interested in computing grasps on the object
handle, an obvious first step of our algorithm is to move
the hand towards the handle until this object sub-part is
reachable by a finger. RWi stands for the intersection of the
reachable workspace of a generated finger fi and the object.
Grasp RLG permits the estimation of RWi by taking into
consideration the object and the i− 1 fingers positions. A

1275



contact location CPi is then randomly chosen in RWi. This
guarantees that the inverse geometrical model of the finger
existence. After placing the n− 1 fingers, the nth finger
location is computed with Force Closure in order to ensure
the grasp stability according to proposition 1.

VI. EXPERIMENTAL RESULTS

Different experiments were conducted to test the ability of
the algorithm to find the object graspable part corresponding
to humans choice. These experiments aim at testing the
ability of the learning algorithm to generalize.

First, we tested the algorithm on objects belonging to
the same categories as the training data but of different
shapes and sizes. These objects are such as bottles, spoons,
forks, mugs, knifes, pencils etc. The motivation behind this
experiment is that if our algorithm does not work on objects
similar to the training data, then we must conclude that our
feature set is not sufficiently discriminative. Fortunately, for
such objects, the algorithm generalizes very well and was
capable of finding each time the handle that human choose
to grasp the corresponding object. In a second time we tested

Fig. 7. Examples of AO objects: segmentation into different parts (first
row), system choice (black part) and humans choice (cross-marked parts).

the algorithm on 54 objects that are completely different from
those of the training set. This experiment is useful to test the
algorithm ability to generalize to completely novel objects.
Seven subjects were asked to grasp these objects in order to
accomplish a task. We do not specify the task that should be
performed. The subjects were supposed to identify objects
graspable parts whether they recognize the object or not.
Twenty seven objects, AO (Agreed Objects), were grasped
by the same manner. On the other hand, the remaining 27
objects, CO (Confusing Objects), induced confusion and the
seven subjects chose different parts to grasp them. We remind
the reader that our aim is to imitate humans choice of the
graspable part. The distinction between AO and CO objects
is necessary for measuring our algorithm performance. Their
success grasp rate is computed differently.

For AO objects, whenever the algorithm selects for grasp-
ing a part different from the one identified by the seven
subjects, it is considered a failure. The system succeeds to
find the correct graspable parts for 22 AO objects, which
corresponds to a successful grasp rate of 81% (table I). Since
humans grasp CO objects in various ways, two successful
rate may be computed: a successful grasp may be a grasp
that identifies the object part chosen by most people (MP), or

Fig. 8. Examples of CO objects: segmentation into different parts (first
row), system choice (black part) and humans choice (cross-marked parts).

TABLE I
SUCCESS GRASP RATE FOR AO AND CO OBJECTS.

AO objects CO objects
Grasp rate computed on the basis of All people MP ALO

Number 27 27
Number grasped success f ully 22 15 23

Success Grasp Rate 81% 55% 85%

a successful grasp may be a grasp that identifies a part chosen
by at least one person (ALO). Otherwise, failure occurs.
The algorithm succeeds to find, for 15 CO objects, the part
selected by most people. This corresponds to a successful
grasp rate of 55%. When considering a grasp rate on the basis
of ”at least chosen by one person” , the algorithm perform
well for 23 CO objects which corresponds to a rate of 85%.

The obtained success grasp rate show that features such
as sizes and shapes of novel objects subparts are about
80% discriminative to determine the object grasping part.
Table (II) shows the generation of a four-finger force-
closure grasp on the grasping part of 3D objects model with
different resolutions, a spoon modelled with 629 vertices, a
bottle (7360 vertices) and a mug (183534 vertices). Their
corresponding force-closure grasp computation time are re-
spectively 2.59 sec, 8.87 sec and 4.46 min. These com-
putation times include segmentation/approximation/selection
steps and force-closure grasps generation. Finally, Tables III
and IV show several grasps obtained using DLR and Rutgers
hands models and GraspIT interface. The latter uses PQP
algorithm to detect collisions [1].

TABLE II
GENERATING 4-FINGER FORCE-CLOSURE GRASPS FOR 3D OBJECTS.

Objects Grasps Vertices Number GBC time

629 2.59 sec

7360 8.87 sec

183534 4.46 min
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TABLE III
GENERATING 4-FINGER FORCE-CLOSURE GRASPS USING DLR HAND.

TABLE IV
GENERATING 5-FINGER FORCE-CLOSURE GRASPS RUTGERS HAND.

VII. CONCLUSION

We proposed a grasping strategy to predict grasps of
unknown objects that conform humans grasping. Several
experiments have characterized how well learned grasps
generalize to objects that the algorithm has no experience
with. Results show that features such as objects sub-parts
shapes and sizes are about 80% discriminative to grasping.
In other words, an unknown object appropriate grasp can
be found only by using information on its constituting
components shapes and sizes without any task modeling.
Once the graspable part is identified, contact points should
be determined. For this purpose, we proposed a new suffi-
cient condition for generating n-finger force-closure grasps.
Finally, an algorithm for generating contact points on a
novel object that takes the hand kinematics into account
was proposed. The efficiency of the proposed approach is
confirmed by several experiments.
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