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Abstract— In order to define an architecture for task and
motion planning of a mobile robot, we propose the Cell-
RRT path planner that combines the advantages of planning
approaches by decomposition of the environment and the
advantages of probabilistic approaches. Experiments of the
method for various decomposition granularities and various
adjustments of the planner settings show that using a bias
towards the goal while choosing a random configuration reduces
the paths length but can cause failures, that the choice of
the criterion for analysing the environment is important, and
that the method can profit from a reuse of already made
computations in a part of the environment.

I. INTRODUCTION

The field of mobile robotics is subject to a research
effort over the past years. The increasing needs of autonomy
for robotic systems imply an embedded mission planning
system. Within this framework, algorithms have to be more
and more efficient.

New reasoning architectures for mobile robotics have been
developed, among which hybrid planning architectures that
interleave search phases for actions allowing to fullfill the
mission and search phases for paths to accomplish these
actions [1]. This kind of architectures requires a low-time
response from the path planner to the task planner requests.
However, the computation time is strongly dependent on the
complexity of the environment in which the robot is evolving.

Path planning algorithms commonly use a structuration
of the environment or configuration space under the form
of a graph or a grid [2], [3], [4]. Most of these methods
can be grouped under four classes: reduction approaches,
cell decomposition approaches, potential field approaches
and probabilistic approaches. Trying to bring together the
advantages of these four classes is a research track that aims
at improving path planning algorithms.

In this paper, we propose to combine a decomposition
approach with a probabilistic approach. Our method is pretty
similar to Discrete Search Leading continuous eXploration
(DSLX) [5], [6] but instead of only guiding the search
process, it restricts the search space. The algorithm splits the
environment into a set of cells that allows, using a shortest-
path search technique, to define a corridor in which the
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search for a solution will take place, and then to apply one of
the current most powerful and used path planning algorithm:
the Rapidly-exploring Random Trees (RRT) algorithm [7].

First, we describe the basic RRT algorithm and some of
the extensions that have been proposed. Then, we present
the core of Cell-RRT, the proposed planner. Finally, we
compare the Cell-RRT performances with the basic RRT
algorithm used without decomposing the environment and
we study how Cell-RRT scales according to the settings of
its configuration parameters.

II. RRT

The algorithm is a probabilistic path planning algorithm.
This is an incremental method that rapidly explores the
environment by trying to iteratively connect random con-
figurations until reaching the goal configuration.

The core of the RRT method is presented in Algorithm 1.
Starting from an initial configuration qstart, the aim of this
algorithm is to find a sequence of configurations allowing
the mobile robot to reach the final configuration qgoal. The
algorithm is composed of a loop that calls three main func-
tions: chooseTarget() which selects a random configuration,
nearestNeighbor() which returns the nearest configuration of
the randomly chosen one that is already in the tree, and
extend() which creates a new configuration.

For each iteration of the loop, a new configuration qtarget
is randomly drawn. Then, the tree node corresponding to
the nearest configuration qnearest is selected. Finally, a
new configuration qnew is created by extending the selected
configuration towards the drawn configuration according to
a beforehand fixed distance. The algorithm stops when the
new configuration can be connected to the goal, in this case
a solution path is found, or when the maximum number K
of drawn configurations is reached. This version of the RRT
algorithm is called RRT-Extend [7].

Another variant, called RRT-Connect [8], consists in trying
to connect the nearest configuration directly to the drawn
configuration. In this case, the nearest configuration is ex-
tended towards the random configuration until connection or
until encountering an obstacle.

In order to accelerate the search for a solution path,
one possible improvement of previous algorithms is to use
two trees instead of a single one [7], [8]. The first tree is
initialized with the initial configuration qstart and the second
one with the final configuration qgoal. The search stops when
both trees meet each other. When the RRT-Extend method
is implemented with the two trees, the algorithm is named
RRT-ExtExt. When the RRT-Connect is implemented, it is
named RRT-ConCon.
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Algorithm 1 RRT-EXTEND(qstart, qgoal)
1: T .init(qstart);
2: i = 0; qnew = qstart;
3: while (i < K and canConnect(qnew, qgoal) == null) do
4: qtarget = chooseTarget();
5: qnearest = T .nearestNeighbor(qtarget);
6: qnew = extend(qnearest, qtarget);
7: if (qnew 6= null) then
8: T .add(qnew);
9: end if

10: i = i + 1;
11: end while
12: return T ;

The RRT algorithm has received a special attention
and many improvements have been proposed. These im-
provements, for highly-constrained environments [9], aim
at guiding more efficiently the construction of the explo-
ration tree by taking into account information about the
environment [10], [11] or by specifically treating narrow
passages [12], [13]. Another research track is to extend RRT
in order to apply it to dynamic environments [14], [15].

III. THE CELL-RRT PLANNER

One of the common critics done to RRT planners is their
slowness when the search is done in complex environments
such as labyrinthian environments. Indeed, in the case of the
basic RRT-Extend method, the algorithm uniformly extends
a network of possible configurations or towards the goal if
the randomization is biased, but it does not take into account
the environment topology.

In order to overcome this lack of efficiency, we propose
a method allowing to restrict the configuration space to a
corridor in which both ends contain the initial and the final
configurations. This corridor is built from a set of cells that
are selected using the A* search algorithm [16].

The implemented algorithm is organized into two parts.
First, the environment is divided into cells which are as-
sociated to indicators of traversability. Paths are searched
in the cells adjacency graph by optimizing a cost function
linked to these indicators, allowing to limit the search to
few parts of the environment. The result is a set of cells
for which two waypoints are defined: an entry waypoint and
an exit waypoint. Then, the RRT algorithm is applied to
each cell providing a set of trees. A solution path between
the initial and the final configuration is found by connecting
trees together.

In a first step, we present the models we chose to represent
the environment and the mobile robot. Then, after having
presented the overall functioning of the algorithm, we detail
its two main functions: the restriction of the environment
space to a corridor and our implemented version of RRT
allowing to obtain a solution path according to the kinematic
model of the robot.

A. Modeling
1) Robot modeling: The mobile robot used to illustrate

Cell-RRT is a car-like vehicle. The attitude of such robot
can be described by three configuration variables (x, y, θ):
x and y are the cartesian coordinates of the robot position
and θ is its heading. The robot is considered to move with
a constant speed and its turning angle is bounded:

−φmax ≤ φ ≤ φmax (1)

The robot kinematic model is defined as follows:
ẋ = v.cos(θ)
ẏ = v.sin(θ)
θ̇ = v

L tan(φ)
(2)

where v is the speed and L is the vehicle’s axle length.
Computing a robot movement corresponds to integrating this
model on a time interval ∆t. In order to limit the search
space, changes of turning angle are modeled by a three-
valued command:

φ ∈ {−φmax, 0, φmax} (3)

2) Modeling transitions between two configurations:
A transition is represented by the pair < φ,∆t >:

< x, y, θ >
<φ,∆t>−−−−−→< x′, y′, θ′ > (4)

where ∆t is the movement duration.

B. Planner main loop
During the first step, the planner splits up the environment

into cells and computes a corridor between the initial and the
final configurations. Within this corridor, subtrees are com-
puted for every cells using the waypoints between adjacent
cells of the corridor. If a cell does not contain a solution,
the link between this cell and the next one is removed from
the adjacency graph in order to prevent the A* algorithm
from choosing this cell. The loop is iterated until obtaining
a solution path or a failure. A failure occurs when it is not
possible to find a corridor and so a solution path. In case of
success, the solution path is built by gathering the extracted
paths from the trees of each cell belonging to the corridor.

C. Environment division and corridor computation
1) Division and computation of the traversability: The

environment is discretized into a set of cells. Each cell is
stored in a table and will be considered thereafter as a full
environment, i.e., an initial and a final configuration will be
associated to it. If this cell is selected so that it belongs to
the corridor, a path between these two configurations will
have to be computed.

For each cell ci of the environment, a weight correspond-
ing to cell traversability t(ci) is computed. This weight is
the ratio of the obstacles occupation compared to the free
space. A weight of 0 corresponds to a cell without obstacle,
i.e., a perfectly traversable cell. We consider a traversability
threshold prohibiting a cell to belong to the corridor. On the
other hand, according to the chosen crossing direction, the
obstacles configuration can prevent a cell to be crossed, even
with a low ratio.
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2) Definition of waypoints: In order for a cell to belong
to the solution corridor it has to contain a solution path.
Nevertheless, at this stage, it is not possible to compute
the path because the purpose of this part is to quickly and
effectively reduce the search space. In order to compute a
path, a cell must have waypoints defined on its boundaries.
In addition, two adjacent cells may have the same waypoint
on their common boundary.

For 2D environments, waypoints are computed as follows:
for each boundary of the considered cell, free segments
whose length is greater than a threshold are identified. These
segments are recursively divided until obtaining a minimal
length. For each subsegment segi, a square surface Ssegi

with no obstacle along the segment mediator is computed:

Ssegi
= min(sL(segi),mL(segi))2 (5)

where sL and mL are respectively the length of the segment
and the length of its free mediator. The waypoint associated
to the considered cell boundary is the center of the segment
having the largest square surface.

This method allows to take into account the length of the
passage between two cells in addition to its width and thus
it avoids narrow passages: the larger the surface is, easier
the planner will find configurations allowing to connect two
adjacent cells according to the robot kinematic constraints.

3) Corridor computation: After computing the set of
waypoints, a solution corridor between the cell containing
the robot initial configuration and the cell containing the
final configuration is computed using the A* algorithm. A
possible heuristic for the choice of the next cell ci of the path
is the euclidian distance between the center of the cell and
the center of the destination cell cgoal and, as a transition cost
function, the distance d(., .) between the two cells ponderated
by the traversability t(.) of the cell:{

g(ci) = g(ci−1) + (d(ci−1, ci) ∗ (1 + γ ∗ t(ci)))
h(ci) = d(ci, cgoal)

(6)

where γ is a positive tuning parameter. If this cell does not
contain an entry waypoint on its boundary with the previous
cell ci−1, then it is abandoned and the next cell with lower
cost is selected. The solution corridor is obtained when the
algorithm reaches the destination cell, i.e., the cell containing
the final configuration.

D. Trees construction: RRT-ExtExt

Once the search space has been restricted to a corridor,
a path respecting the kinematic constraints of the robot is
computed. The algorithm is divided into three main func-
tions: selection of a random configuration qtarget, choice of
the nearest configuration qnearest which belongs to the tree,
and extension of qnearest towards qtarget which allows to
obtain a new configuration qnew.

Selection of random configurations In order to guide
the tree expansion towards the final configuration, the ran-
dom draw can be non-uniform. According to a probability
probabilityGoal, the algorithm will choose configurations

that are less than radius units of the final configuration.
Otherwise, according to a probability (1−probabilityGoal),
this draw is uniform. Algorithm 2 describes this method.

Algorithm 2 chooseTarget()
1: if (random([0,1]) < probabilityGoal) then
2: qtarget = randomNodeAroundGoal(qgoal, radius);
3: else
4: qtarget = randomNode();
5: end if
6: return qtarget;

Choice of the nearest node. The aim of this algorithm
is to choose a node whose configurations will be extended
towards the randomly drawn configuration. For the selection
of this node, the heuristic we use is the euclidian distance
between two configurations. Thus, the nearest tree node of
qtarget is selected. However, it has to be farest than a minimal
distance of the qtarget configuration so that the extension
respects the kinematic constraints.

Adding a new configuration. This addition is done by
extending the qnearest configuration towards the qtarget con-
figuration. Algorithm 3 presents this extension. The first step
is to compute φ, i.e., to compute whether the robot should
go ahead in a straight line to reach the target configuration
or if it has to turn on the right or left. In order to choose
the command to apply, we checked if the target is in a
restricted visibility cone minCone of the robot. If the target
is in this cone, the robot has to go ahead, otherwise it has
to turn in order to get closer to the target. Then the new
configuration is generated. It corresponds to the configuration
where the robot will be after a time interval ∆t. This
interval is the incremental step of the algorithm. Finally, the
algorithm checks the feasibility of the motion between the
qnearest configuration and the new configuration, i.e., the
new configuration should not be located within an obstacle
and a path must exist between them.

Algorithm 3 extend(qnearest, qtarget, ∆t)
1: α = (-θ(qnearest) + direction(qnearest, qtarget)) % 2π;
2: if (|α| > minCone) then
3: φ = φmax × signum(α);
4: else
5: φ = 0;
6: end if
7: q = generateConfiguration(qnearest, φ, ∆t);
8: if (notInObs(q) and isConnectable(qnearest, q)) then
9: qnew = q;

10: else
11: qnew = null;
12: end if
13: return qnew;

Generation of new configurations. generateConfigura-
tion (line 7) integrates the kinematic model described by
equation (2) over time intervals ∆t.
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Trees connection: The CSC method. The developed
RRT-ExtExt algorithm generates simultaneously two trees
and stops when the configurations associated with two leaf
nodes of these trees can be connected. To connect these two
trees, we use the CSC (Circle-Segment-Circle) algorithm.

The modeled robot corresponds to a Dubins Car robot.
Indeed, its speed is always positive and constant, and its
turning radius is fixed to the minimal radius. Then, the
robot trajectory can be modeled by Dubins curves. It has
been shown in [17] that the shortest path between two
configurations can always be expressed by a combination
of at most three movements. Possible movements are ”go
straight” (S), ”turn right” (R) or ”turn left” (L).

The CSC method consists in using only sequences {LSL,
LSR, RSL, RSR} to connect two configurations, i.e., the
robot must first perform a turn, then a travel in straight line,
and finally a second turn to reach the target configuration.

Fig. 1. 4 possible tangents for the connection of 2 directed circles

The process is as follows: two circles with radius equal to
the minimum turning radius are computed for both config-
urations to connect. The bitangents allowing to connect the
circles together are defined. Only four tangents are possible
(see Fig. 1) because the circles are directed according to
the robot heading value of the configurations. Then, the
four trajectories {LSL, LSR, RSL, RSR} are computed.
Intermediate configurations which link together the qnearest
and q configurations are generated from the movements
sequence of minimal length.

IV. EXPERIMENTS AND RESULTS

In order to present the performances of our Cell-RRT path
planner and to compare the different possible parameter set-
tings, we led experiments on a set of 20 randomly generated
environments. Presented results are averages of values for
1000 runs on each environment and for each environment
decomposition.

For each experiment, the number of drawn configurations
is limited to 12000 for the whole environment. Thus, the
maximum number of drawn configurations per cell is:
K = 12000/number of cells.

In a first step, we show the advantages of using environ-
ment decomposition on the computation time and the path
length by varying the size of cells. Indeed, computing the
optimal decomposition granularity is not easy. We use as
an upper bound the environment size. Lower bound must be
enough to permit the connection of two waypoints according
to the robot kinematic model, i.e., squares with a side
length of 2 minimal radius. Then, we evaluate the planner
performances in terms of replanning rate, computation time

and traveled distance when the environment decomposition
is combined with various random bias, cost functions for the
A* algorithm and with the reuse of trees and path segments
already computed.

The aim of these experiments is to analyse the impact of
these parameter settings on computation time, path length
and necessary replannings while avoiding failures.

A. Advantages of the environment decomposition

First experiments aim at demonstrating the advantages of
dividing the environment into a set of cells then reducing
the search space to a corridor. We study the impact of our
approach on the computation time of a solution path as well
as on the traveled distance.
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Fig. 2. Influence of decomposition granularity on computation time.

On Fig. 2, we see that the decomposition into 2x2 cells
leads to a decrease of computation time of 75% and a
decomposition into 5x5 cells reduces this time of 91%
compared to the time without decomposition. This optimal
decomposition is related to the used environments and seems
not to be general. Indeed, For a smaller size of cell, the
computation time is subject to slight variations suggesting
that some cell sizes for some environments do not allow to
obtain directly a solution path and require several replanning
loops. This is reinforced by the evaluation of the number
of replannings presented on Fig. 3c (red curve). For a size
of cells greater than the one giving the minimal time, we
can make the assumption that the time decreases because
the explored surface decreases with the cell size. However,
such decomposition of the environment induces an augmen-
tation of the traveled distance compared to the path length
for an environment without decomposition (Fig. 3b, red
curve). This degradation decreases with the cell size because
the corridor between the initial configuration and the final
configuration is more direct. Nevertheless, this degradation
persists for a minimum cell size. The analysis of the graph
representing the distance indicates that it varies between
1,5% (9x8 cells) and a little more than 10% (3x2 cells).

B. Influence of the drawing method

The aim of using a bias is to encourage expansions of RRT
trees towards final configurations. In these new experiments,
we compare a uniform random draw with methods in which
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Fig. 3. Influence of drawing methods on computation time, distance and replanning.
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Fig. 4. Influence of cost functions on computation time, distance and replanning.
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Fig. 5. Influence of trees and segments reuse on computation time, distance and replanning.

probabilities of selecting new configurations in a 10 units
perimeter around the target are 25% and 50%.

According to graphs on Fig. 3c, the more the bias
increases, the more the number of necessary replannings
increases and, globally, the probability of finding a solution
decreases. This is particularly true for the division granular-
ities 8x7 and 8x8 which do not seem best suited to some of
the used environments and induce more replannings.

Fig. 3a shows that using a biased random draw increases
the computation time. This increase is around 10 to 15%.
On the other hand, this bias allows to improve the quality of
the solution without division, and to limit the loss of quality
when the environment is decomposed. It is interesting to
note that the performance gain in terms of traveled distance
is constant whatever the cell size and it is about 3% for a bias
of 50%. For a division into 9x8 cells, the length of solution

paths is lower than the one obtained without division and
without bias.

C. Influence of the A* cost function

Another adjustable parameter of the planner is the cost
function used by the A* method for the corridor search.
Indeed, two kinds of information can be taken into account:
the distance between the new cell and the target cell as well
as the traversability of this new cell. We experimented three
different cost functions:
• g1 : only the euclidian distance is used (γ = 0);
• g2 : only the traversability is used (γ = high value);
• g3 : distance is added to the traversability ratio (γ = 1).

This third function is used in experiments presented in
previous figures and therefore is used as a reference to g1
and g2 in next figures.
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Fig. 4c depicts the number of replannings when using each
of the three cost functions. The function g2 (traversability)
avoids more replannings than g1 and g3 when the number
of cells is increasing. This is because the algorithm searches
in priority for a path through cells with few obstacles.

On graphics of Fig. 4, we note that the influence of the cost
function on the computation time is hard to quantify. The use
of function g1 seems to increase the time when the number
of cells increases due to higher replanning requirements. In
the other hand, the choice of this function strongly influences
the traveled distance. Whatever the granularity of the envi-
ronment division, function g2 shows the worst performances
because, in order to avoid obstacles, the corridor between
the initial configuration and the final configuration is less
direct. This loss of performance is greater than 20% in the
worst case, unlike 10% of degradation obtained when using
function g3. The traversability seems to be more useful to
eliminate cells from the graph when it is used as a threshold
than as a criterion for the corridor search.

D. Reuse of trees and path segments

Reducing the environment to a corridor allows to reduce
the search space of the RRT algorithm and thus to decrease
the computation time. However, there is not necessarily a
path connecting the initial configuration to the final con-
figuration. Replannings can be necessary in order to define
a new corridor before searching for a new path. This new
corridor may contain cells that belonged to the old corridor.
In this case, if the entry and exit waypoints of a cell are
the same and if it exists a path to cross it, then the cell
does not need to be recomputed. In addition, previously
computed trees can be reused in order to limit the solution
search process. We compared results for the basis version
with the values obtained when the planner reuses previously
computed trees, previously defined path segments, and trees
and path segments together.

Graphics on Fig. 5 indicate that such a reuse decreases
the computation time when the decomposition granularity
increases. This effect is mainly due to the reuse of path
segments. However, we note that reuse offers less optimal
solutions in terms of path length. This is particularly true
when trees are reused. Indeed, the more the reused tree is
developed, the lower is the probability that the nearest node
is on a ”direct” branch. Moreover, this reuse improves the
replanning rate.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have presented the Cell-RRT algorithm
that allows to plan efficient travels for a mobile robot. This
planner combines a decomposition method with a probabilis-
tic algorithm. The objective of the decomposition step is
to reduce the search space to a corridor in which the RRT
algorithm is used to find a solution path.

Experimental studies of our algorithm highlight the ad-
vantages of this decomposition step by allowing a reduction
of the computation time by around 75%, which is consistent
with DSLX results. However, this decomposition can lead to

a degradation of the solution quality up to 15%. Nevertheless,
a judicious choice of the planner parameter settings can
reduce the loss of quality and even improve the computation
time.

We showed, on the one hand, that using a bias is beneficial
to the path length but harmful to the computation time
and, while on the other hand, that using traversability as
a cost criterion for the A* algorithm is harmful to the path
length. It allows however to avoid replannings with a reduced
influence on the computation time. Finally, reusing trees and
paths improves the computation time but it leads to a slight
degradation of the solution length.

One extension of this work is the integration of this algo-
rithm into a hybrid planning architecture. Another interesting
research track we did not explore is how to automatically
choose the best decomposition granularity according to the
environment topology.
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