
Coarsely Calibrated Visual Servoing

of a Mobile Robot using a Catadioptric Vision System

Romeo Tatsambon Fomena, Han Ul Yoon, Andrea Cherubini, François Chaumette and Seth Hutchinson

Abstract— A catadioptric vision system combines a camera
and a mirror to achieve a wide field of view imaging system.
This type of vision system has many potential applications
in mobile robotics. This paper is concerned with the design
of a robust image-based control scheme using a catadioptric
vision system mounted on a mobile robot. We exploit the fact
that the decoupling property contributes to the robustness of a
control method. More precisely, from the image of a point, we
propose a minimal and decoupled set of features measurable
on any catadioptric vision system. Using the minimal set, a
classical control method is proved to be robust in the presence of
point range errors. Finally, experimental results with a coarsely
calibrated mobile robot validate the robustness of the new
decoupled scheme.

I. INTRODUCTION

There is currently a growing interest in using omnidirec-

tional vision system for mobile robotics [1]. An important

advantage of omnidirectional vision systems over classical

perspective cameras is that the former do not suffer from a

restricted field of view (FOV). This can facilitate landmark

visibility during mobile robot navigation.

Vision-based control of a mobile robot can be applied to

pose stabilization, visual homing and path following. These

applications can require the robot to localize itself in the

environment. Based on the localization approach, several

control techniques have been proposed. To keep a robot

on a desired or predefined path, a homography between

the reference and the current image can be used to define

adequate visual features for navigation [2]. It is also possible

to exploit the epipolar geometry between the reference and

the current image to drive the robot to a desired position [3].

An image memory can be used to guide the robot on a pre-

taught path [4]. In this last application, Cartesian coordinates

of a point centroid have been used as features in the visual

servoing scheme.

Other geometric features have been proposed for robot

visual navigation. A normalized cross correlation can be used

to control the robot heading [5]. The robot can autonomously

move to the desired destination by exploiting the bearing

angle of feature points matched in panoramic images [6].

Polar coordinates of landmarks in omnidirectional images

can be used as inputs for localization in a pose-based control
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scheme [7]. Spherical coordinates of points can be used to

keep a vehicle on a predefined path using a conventional

camera mounted on a pan-tilt head and an omnidirectional

camera [8]: the control using spherical coordinates has been

shown to be robust with respect to (w.r.t.) calibration errors

on omnidirectional vision systems.

This paper deals with an image-based visual servoing

application which consists in positioning a mobile robot

w.r.t. a point using an omnidirectional vision system. The

main problem addressed here is the design of a robust

control scheme. Since the decoupling property has a positive

impact on the robustness of a control method, using the

image of a single point, we propose a decoupled set of

features which ensures a satisfactory robot behavior even

in the case of calibration errors in the robotic platform. The

second section describes the robotic platform and the type of

omnidirectional vision system that can be used as well. In the

latter part of Section II the basic concepts of visual servoing

are reviewed succinctly. Section III exploits the work in [8]

and presents the choice of the set of features used to control

the robot from an initial image to a final image. The set

decouples the control of the robot rotation from the robot

translation. Although the proposed set does not control the

pose of the robot, the set enables a simple pure rotation of

the robot around its inertia axis which is not the case of the

epipolar geometry-based control method proposed in [3]. In

Section IV, using the selected set of features, a classical

control law is shown to be robust in the presence of point

range errors. Finally, Section V presents real experiments that

validate the robustness of the proposed decoupled control

scheme w.r.t. both point range and calibration errors.

II. SYSTEM CHARACTERISTICS

A. Mobile robot characteristics

This work focuses on a non-holonomic robot (which is

a differential-drive robot) with the kinematics of unicycle

type (see Fig. 1(a)). As shown in Fig. 1(b), the two control

inputs available are: vr = (υr, ωr) where υr is the linear

velocity and ωr is the angular velocity. The robot moves

in a planar workspace. Let Fw = (W,x,y, z) be the world

frame. The robot configuration is given by q= (rx, ry, rθ),
where (rx, ry) is the Cartesian position of the robot center

in Fw, and rθ is the robot orientation w.r.t. the world frame

x axis (see Fig. 1(b)). The state equations of the robot are

given by
ṙx = υr cos rθ

ṙy = υr sin rθ

ṙθ = ωr

(1)
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Fig. 1. Visual servoing system. (a) Super scout mobile robot equipped
with a central catadioptric vision system. (b) Robot relevant variables in the
plane.

As shown in Fig. 1(a) and Fig. 2(a), the robot senses its

environment through a wide FOV vision system called cen-

tral catadioptric vision system. The next subsection briefly

presents the principle and the projection model of this type

of vision systems.

B. Central catadioptric vision systems

A central catadioptric vision system consists of a couple

(camera, mirror) which has a single viewpoint [9]. Fig. 2

presents the usual couples (camera, mirror) where the image

of an object consists of the camera image (red rays) of the

reflection (blue rays) of the object into the mirror.
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Fig. 2. Usual couples (camera, mirror). (a) Example of a catadioptric image
formation. (b) Paraboloidal mirror and orthographic camera. (c) Ellipsoidal
mirror and perspective camera. (d) Hyperboloidal mirror and perspective
camera. fm is the mirror focal length and dm is the distance between the
focal points.

The central catadioptric image of an object can be decom-

posed in two steps according to the unified projection model

of catadioptric image formation [10]. Fig. 3(a) shows the

general case of the central catadioptric projection of a feature
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Fig. 3. Central catadioptric image of a point. (a) General case, cut made
perpendicular to the image plane. (b) Paracatadioptric model with ξ= 1.

point P , where parameters ϕ > 0 and ξ ∈ [0, 1] describe

the mirror shape (see Table I for usual mirrors [11]). The

paracatadioptric case, shown in Fig. 3(b) corresponds to the

coupling of an orthographic camera and a paraboloidal mirror

described by ξ= 1. Let Fv be the sensor frame (V,x,y, z)
and Fc be the center of projection frame (C,x,y, z) where

C is the unique viewpoint of the vision system. The first

step is the spherical projection of P onto the unit sphere

S(C,1): ps = P/‖P‖ where P is the vector coordinates of

P . The point ps is then expressed in the sensor frame Fv

and projected onto the catadioptric image plane z= ϕ − 2ξ
as follows:

px = psx/(psz + ξ) , py = psy/(psz + ξ) (2)

where p = (px, py) is the vector coordinates of the projection

of ps = (psx, psy, psz). Note here that we consider a unit

sensor focal length, that is ϕ − ξ= 1.

TABLE I

PARAMETERS OF USUAL MIRRORS.

Mirror type ξ ϕ

Paraboloidal 1 1+2fm

Hyperboloidal dm√
d2

m+4f2
m

dm+2fm√
d2

m+4f2
m

Ellipsoidal dm√
d2

m+4f2
m

dm−2fm√
d2

m+4f2
m

In the next section we present a visual servoing scheme

corresponding to our robotic system.

C. Visual servo control

We recall that the interaction matrix Ls ∈ R
n×6 related to

a set of features s ∈ R
n is defined such that ṡ = Lsvc where

vc=(v,ω) ∈ se(3) is the instantaneous camera velocity [12]:

v= (υx, υy, υz) and ω= (ωx, ωy, ωz) are respectively the

translational and the rotational velocities of the camera and

se(3) ≃ R
3 × R

3 is the Lie algebra of the Lie group of

displacements SE(3).
Visual servoing consists in using data provided by a vision

sensor to control the motion of a dynamic system [13]. The

principle of visual servoing is to regulate e= s − s∗, which

is the error between a current set of visual features s and a

desired set of features s∗, to zero. In the center of projection
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frame Fc, the regulation can be done using the classical

control law

vc = −λL̂s

+
(s − s∗) (3)

where λ is a positive gain and L̂s

+
is the pseudo-inverse of

an approximation of the interaction matrix related to s.

Wheel

Robot frame:
y

x

Fr

υy

ωz

Center of projection frame: Fc

Fig. 4. Robot and center of projection frames in the ideal case.

In this paper, we consider a positioning task with respect

to a point. For our robotic platform we assume that a vision

system can be ideally placed on top of the robot such that

the center of projection frame Fc and the robot frame Fr

are aligned as shown on Fig. 4. In this case, since the vision

system is rigidly attached to the robot, the linear and the

angular velocities of the robot correspond to the translation

along the y-axis υy and the rotation about the z-axis ωz

respectively (see Fig. 4):

υr = υy, ωr = ωz. (4)

Therefore the appropriate interaction matrix for our visual

servoing system is given by

Ls =
[

Lυy
Lωz

]
. (5)

Since the image of a point enables only to control two DOFs,

it is not possible to control the pose of the robot and the

camera velocity sent to the low level robot controller is given

by

vc = vr = −λL̂s

−1
(s − s∗). (6)

In the next section, we choose a set of two features that

decouples the control of the robot two degrees of freedom

(DOFs).

III. FEATURE MODELING

It is possible to use the two coordinates p= (px, py) of the

catadioptric image of a point to control the robot two DOFs

υy and ωz . However the corresponding interaction matrix,

obtained from the six DOFs case in [14], is highly coupled:

Lp =

[ ξpxpy

‖P‖ py

−
1+p2

x+p2

y(1−ξ(ξ+λξ))

‖P‖(ξ+λξ) −px

]
, (7)

where ξ is the mirror parameter and

λξ =
√

1 + (1 − ξ2)(p2
x + p2

y).

In the case of a pure rotation of the robot around its inertia

axis, the interaction matrix (7) induces also a translation of

the robot which is not desirable. Indeed, for a 180◦ rotation

around the optical axis of a six DOFs manipulator, using

the coordinates of the perspective image of several points

leads to an unachievable motion of the robot [15]. This is the

reason why a decoupled control is desirable. The decoupled

control can be obtained using a partition approach [16],

cylindrical coordinates [17], moment invariants [18] or spher-

ical moments [19].

z

x

y P

C

φ

θ

S(C,1)

ps

P

Fig. 5. Spherical projection of a point.

A decoupled interaction matrix can be obtained using the

spherical projection of the point object. As shown in Fig. 5,

a point ps = (psx, psy, psz) on a sphere can be minimally

parameterized using its spherical coordinates

s= (φ, θ), with φ= arccos(psz) and θ= arctan(psy/psx).
(8)

By exploiting the coordinates p= (px, py) of the catadiop-

tric image of the point, it is possible to compute features s.

Indeed by expressing ps as a function of p from (2) and by

using (8), it is possible to show that

φ= arccos
(

ξ+λξ

p2
x+p2

y+1 − ξ
)

, θ= arctan
(

py

px

)
(9)

where ξ and λξ are defined in (7). From (9), it is important

to note that the set s does not have any singularity in the

image space. Indeed the configuration where px = py = 0 in

the catadioptric image plane corresponds to the center of the

dead region in the image space (see Fig. 2(a)), and the dead

region is (of course) not included in the region where the

object is visible.

The pose-based control of a mobile robot using spherical

coordinates of several points has been shown to be robust

to calibration errors on an omnidirectional vision system in

a vehicle prerecorded-path following application [8]. In [8],

the interaction matrix relating the change of s to the change

of motion in plane (υx, υy and ωz) was presented. In this

paper we do not control the pose of the robot; the appropriate

interaction matrix, related to motions υy and ωz , is given by

Ls =

[
lυ 0

lω,υ −1

]
(10)

where {
lυ = −(sin θ cos φ)/‖P‖
lω,υ = −cos θ/(‖P‖ sin φ),

with ‖P‖ the range or distance of the point from the center

of projection C.

Note that sinφ 6= 0 in the object visibility region since

sin φ= 0 is equivalent to psx = psy = 0 (see Fig. 5), which

corresponds to center px = py = 0 of the dead region in the

catadioptric image plane.
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Taking the inverse of the interaction matrix (10) and

plugging it into (6) leads to the ideal control law
{

υy = −λ 1
lυ

(φ − φ∗)
ωz = lω,υ υy + λ(θ − θ∗).

(11)

The decoupling in Ls shows that feature θ is the only

feature which is sensitive to the robot rotation around its

inertia axis. Indeed, for a pure rotation of the robot, the value

of φ is constant, i.e. φ= φ∗, from (11) we obtain

υy = 0, ωz = λ (θ − θ∗) . (12)

In addition, in this case (pure rotation), there is no singularity

of the control (12) in the visibility space since the value θ
is always defined when the object point is visible.

It is important to note that contrary to the work done in [3]

where the image of several points is used, we control neither

the pose of the robot nor the non-holonomic constraint since

we use the image of a single point. However a simple

pure rotation between the current and the desired images

is impossible to realize using the epipolar geometry-based

control law proposed in [3]. This is due to the fact that the

epipoles are not defined in this case.

The interaction matrix (10) loses its rank 2 if and only if

lυ = 0 that is φ= (2k + 1)π/2 or θ= kπ with k ∈ Z. This

corresponds to the cases where the point P is such that either

Pz = 0 or Py = 0. Using (2), it is possible to show that the

region of rank loss in the image space is defined as follows:

R1 = { (px, py), py = 0 or p2
x + p2

y = 1/ξ2 }. (13)

Fig. 6. Region R1 in red.

An illustration of R1 is given on Fig. 6 where we can

see that the circle is far from the exploitable space in the

image plane. Altough the line py = 0 is a serious issue, it is

possible to deal with it easily. Indeed by first controlling ωz

using the control law (12), it is always possible to position

the robot so that the image of the point lies in the adequate

half image plane (see Fig. 6) before controlling both υy and

ωz simultaneously in the image space where Ls is always of

rank 2. Note also that the loss of rank on the line py = 0 is

due to the nature of our non-holonomic robot, which can be

controlled with only two inputs (υx motion is impossible).

In the next section we analyse the stability of the proposed

control scheme.

IV. ROBUSTNESS ANALYSIS

The interaction matrix (10) depends on the point range

‖P‖ from the center of projection. Since the value of ‖P‖

is unknown in practice, we use an estimated value ‖̂P‖ which

can be expressed as follows

‖̂P‖= |̂Pz|
√

(Px/Pz)2 + (Py/Pz)2 + 1 (14)

where Px/Pz = psx/psz and Py/Pz = psy/psz can be mea-

sured, using (2), from the catadioptric image plane.

This section aims at analyzing the robustness of the con-

trol (11) w.r.t. point range estimation errors, that is errors on

the estimation ‖̂P‖. In the following, we derive a sufficient

condition for the robustness of the control in the image space.

Here we assume that the interaction matrix never loses

its rank during the servoing, that is we consider the image

space where Ls is always of rank 2. We also suppose that

the point object is visible all times. Assuming that we do

not have neither image processing errors nor vision system

calibration errors, the closed-loop system equation (using the

control law (11)) can be written as:

ė = −λLsL̂s

−1
e (15)

with e= s − s∗,

L̂s

−1
=

[
1/l̂υ 0

l̂ω,υ/l̂υ −1

]
,

where l̂υ = −(sin θ cos φ)/‖̂P‖, l̂ω,υ = −cos θ/(‖̂P‖ sinφ).
The stability of the system (15) can be analysed: in the

ideal case (no errors), (15) becomes ė = −λe which means

that the system is globally asymptotically stable (GAS).

Indeed no trajectory will cause feature point to pass into

the dead zone since in the ideal case the system will always

execute the shortest path, i.e. a geodesic on a sphere, from

the initial to the desired (s∗= (φ∗, θ∗)) configurations.

In the case of error on ‖̂P‖, the robustness domain of the

control is given by the theorem 1 below. Of course there is

no guarantee that the feature point trajectory will not pass

into the dead zone, but this visibility issue can easily be dealt

with by using path-planning techniques in the image [20].

Theorem 1: the equilibrium point e= 0 of the system (15)

is GAS in the image space for all range estimates ‖̂P‖ that

satisfy

0 < b1 < ‖̂P‖/‖P‖ < b2,

with b1 = 1 + 2−2
√

a2+1
a2 , b2 = 1 + 2+2

√
a2+1

a2 where

a= − cos θ/(sin φ sin θ cos φ).
The proof of the theorem 1, given in [21], uses the following

lemma:

Lemma 1: the equilibrium point e= 0 of the system

(15) is GAS in the image space if the symmetric part

Ms =

(
LsL̂s

−1
+

(
LsL̂s

−1
)⊤)

/2 of LsL̂s

−1
is positive

definite.

Proof: [Lemma 1] From Lyapunov theory, the equilib-

rium point e= 0 of the system (15) is asymptotically stable

if LsL̂s

−1
> 0. The real matrix LsL̂s

−1
is given by

LsL̂s

−1
=

[
‖̂P‖/‖P‖ 0

a
(
1 − ‖̂P‖/‖P‖

)
1

]
,
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where a= − cos θ/(sin φ sin θ cos φ).

Since we consider the image space region where the

current interaction matrix Ls is always of rank 2, that is

either y < 0 or y > 0 (see Fig. 6), the determinant of

LsL̂s

−1
given by ‖̂P‖/‖P‖ is never nul (|LsL̂s

−1
| 6= 0). In

this case, the equilibrium point e= 0 is unique. In addition

if LsL̂s

−1
> 0 then for a fixed desired position of the point

in the image space y < 0 (respectively y > 0) the control

converges for any initial position of the point in the image

space y < 0 (respectively y > 0). Therefore if LsL̂s

−1
> 0,

the asymptotic stability of the equilibrium e= 0 is global in

the considered image space.

Since the real matrix LsL̂s

−1
is not symmetric, LsL̂s

−1

is positive definite if and only if its symmetric part

Ms =

(
LsL̂s

−1
+

(
LsL̂s

−1
)⊤)

/2 is positive definite.

Therefore, a sufficient condition for the global asymptotic

stability of the equilibrium point e= 0 is given by the strict

positiveness of the symmetric matrix Ms of LsL̂s

−1
.

As long as the ratio ‖̂P‖/‖P‖ lies in the robustness

domain given by the above theorem, for a fixed desired

position of the point in the image space y > 0 (respectively

y < 0) (see Fig. 6), the control converges from any initial

position of the point in the image space y > 0 (respectively

y < 0). From a practical point of view the value of ‖̂P‖
should not be set constant. Indeed the robustness domain

to point range errors is constrained by the values of φ
and θ. For example, if θ= φ= π/4 then a= −1/2 and

0.056 < ‖̂P‖/‖P‖ < 17.94. In the next section, we will

show that the control converges for large errors between the

initial and final images in presence of both point range and

calibration errors.

V. EXPERIMENTAL RESULTS

This section presents relevant experimental results that

validate the robustness of our approach to both modeling

and calibration errors on the visual servoing system. The vi-

sion system intrinsic parameters (principal point coordinates

and focal lengths), obtained using the calibration method

proposed in [22], are given by u0 = 693.60, v0 = 453.14,

fu = 388.40 and fv = 388.67.

Center of projection frame:

Robot frame:

Wheel

υyδ

y

x

x

y

ωz

Fr

Fc

Fig. 7. Robot and center of projection frames in practice.

In order to validate the robustness of our approach to

the robot calibration, we have set rough values for the

parameters of the low level controller of the robot and we

have introduced a misalignment between the robot and the

center of projection frames (see Fig. 7): the shift between

these frames has been roughly estimated to δ= 1 cm.

In addition, for the estimation of ‖̂P‖ (see (14)), the value

of |̂Pz| has been set to the constant value 0.8 m which

roughly corresponds to the desired depth |̂P ∗
z |. Except for

one particular experiment, the value of the gain of the control

(6) has been set to λ= 0.1.

The desired set of features s∗ has been defined by moving

the robot. Five different initial positions of the robot have

been selected. The behavior of the robot illustrated on the

figures below validates the robustness of the decoupled

scheme to point range and robot calibration errors.

In the first experiment, it is clear from Fig. 8(c)that the

final position of the robot corresponds to the desired position

of the point in the image. Despite the large and abrupt

variations on the visual features θ ( see Fig. 8(c) ), the control

sent to the robot does not present oscillations as shown on

Fig. 8(d). The video attached to this paper displays the first

experiment.

(a) (b)

-0.2

 0

 0.2

 0.4

 0.6

 200 150 100 50 0

φ
θ

(c)

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 200 150 100 50 0

υy
ωz

(d)

Fig. 8. First case. (a) Initial image. (b) Final image. (c) Errors on s (rad).
(d) Camera velocities (m/s and rad/s).

The abrupt variation on feature θ is due to the low

compensation on the angular velocity ωz since lυ and lω,υ

are roughly estimated (see (11)). The low compensation

of the angular velocity ωz can also be explained by the

rough approximation of the parameters of the robot low

level controller. For large rotation motions of the robot, the

abrupt variations of feature θ could cause the failure of visual

servoing. We have therefore set the gain of the control to

λ= 0.05 for the second case as shown in Fig. 9. In the

second case, note that the initial image of the point is almost

in the region where Ls can lose its rank (see the line in

Fig. 9(a)). The experiment shows a more smooth variation

on the errors (see Fig. 9(c)) and the velocities (see Fig. 9(d)).

More importantly note also in this case that we have used a

rough approximation of ‖̂P‖ while when θ tends to 0 (i.e.

both b1 and b2 tend to 1), from Theorem 1 the control is GAS

if the value of ‖̂P‖ is accurately estimated. The robustness

domain to errors on the range estimate is thus larger than

the one given by Theorem 1.
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For the last experiment, we have added the follow-

ing errors on the vision system intrinsic parameters:

û0 = u0 − 15%u0, v̂0 = v0 + 17%v0, f̂u = fu + 10%fu and

f̂v = fv + 20%fv . Once again the control converges as

shown on Fig. 10(c) and 10(d).

To sum up, the decoupled control scheme proposed is

robust with respect to both calibration and point range errors.
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Fig. 9. Second case. (a) Initial image. (b) Final image. (c) Errors on s

(rad). (d) Camera velocities (m/s and rad/s).
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Fig. 10. Third case: (a) Initial image. (b) Final image. (c) Errors on s

(rad). (d) Camera velocities (m/s and rad/s).

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we have proposed a decoupled scheme for a

robust vision-based control of a mobile robot equipped with

a catadioptric vision system. More precisely, the spherical

coordinates of a point have been used to design a decoupled

visual servoing scheme to position a unicycle with respect to

an object point. Using the new set of features, the control has

been theoretically proved to be GAS in the ideal case, and

robust in the presence of error in the range of the object point.

In practice we have validated the robustness of the control

w.r.t. both point range and calibration errors. Experimental

results demonstrate successful performance. In future work,

it would be interesting to use image path-planning techniques

to keep the feature point in the non-dead zone in the case of

error on the estimated range of the object point.
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[22] C. Mei and P. Rives, “Single view point omnidirectional camera
calibration from planar grids,” in IEEE Int. Conf. on Robotics and

Automation, Rome, Italy, Apr. 2007.

5437


