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Abstract— This paper describes a strategy to select optimal
motions of multi robot systems equipped with cameras in
such a way that they can successively improve the observa-
tion of the environment. We present a solution designed for
omnidirectional cameras, although the results can be extended
to conventional cameras. The key idea is the selection of a
finite set of candidate next positions for every robot within
their local landmark-based stochastic maps. In this way, the
cost function measuring the perception improvement when a
robot moves to a new position can be easily evaluated on the
finite set of candidate positions. Then, the robots in the team
can coordinate based on these small pieces of information.
The proposed strategy is designed to be integrated with a
map merging algorithm where robots fuse their maps to get
a more precise knowledge of the environment. The interest
of the proposed strategy for uncertainty reduction is that it
is suitable for visual sensing, allows an efficient information
exchange, presents a low computational cost and makes the
robot coordination easier.

I. INTRODUCTION

The interest for having groups of robots working cooper-

atively has rapidly increased.Many tasks cannot be carried

out by robots working alone. For other tasks, multi-robot

systems offer increased robustness and adaptation. One im-

portant task that can be better achieved using a robotic team

is the perception of the environment. In these scenarios,

it is of interest to optimize individual robot motions to

maximize the information collected about the scene. This is

the problem that we address in this paper. Robots equipped

with vision sensors combine their information and build a

local landmark-based stochastic map of the environment. The

robots have communication capabilities to exchange their

local maps and build a global representation of the envi-

ronment [1]. However, the construction of this global map

may require long communication and computation times.

Therefore, it is of interest that robots make decisions based

on their local data and small pieces of information received

from the other nodes. We focus on strategies that improve the

local maps taking into account the proposed improvements

of other robots, giving rise to an improvement of the global

map. This problem is close to other works on optimization

of facilities, see [2], [3], [4], and coverage problems [5], [6],

where the objective is to optimally place a group of robots

in an environment of interest to achieve maximum coverage.

Specifically, it is highly related to exploration guided by

information and active sensing.
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Many of the existing solutions for exploration and active

sensing are based on occupancy grid maps. Here, frontier

cells dividing between already explored and unknown sec-

tions can be easily detected. Then, robots can evaluate a

cost function on this small subset of destinations and make

decisions propagating small pieces of information with the

other robots. Some examples of these approach are [7], [8],

[9] for the single robot case and [10] for multi robot systems.

However, the exploration problem turns out to be more

complicated for landmark-based maps, since the number of

candidate destinations is infinite.

An alternative to the use of sets of candidate vantage

locations are global optimization methods [11], [12], [13],

where robots search for the best position to reduce the whole

map uncertainty. Every robot makes decisions based on its

current local estimate of the global map and propagates its

observations to the other nodes so that they can update their

maps. These approaches result in weak robot coordination,

because without a common global map estimate, different

robots may end up exploring exactly the same regions.

In addition, many of these solutions use gradient methods

to find minima on the cost function. Gradient algorithms

are computationally expensive since the gradient must be

reevaluated at every step. Besides, they may find local

minima, and the step size adjustment is complicated.

Exploration and active sensing solutions may also be

divided between one step decisions and path planning meth-

ods. Most of the previously mentioned works are one step

approaches, where robots compute the reduction of the cost

function considering exclusively the next robot motion. Ap-

proaches based on path planning or trajectory optimization

[14], [15] use a larger time horizon and consider the cost

function for multiple successive robot motions. Although

these strategies may be suitable for a single robot, they

present important scaling problems for the multi robot case.

In this paper, we define a method for landmark-based maps

which is close to a frontier exploration in the sense that we

are able to select a finite set of destinations for every robot.

Each robot associates to these positions cost values that can

be sent to other robots in the team with the aim of negotiating

their next motions. This solution presents multiple appealing

features due to its low computation complexity and to the

fact that the robots do not need to wait for having a good

global map estimate. Instead, they can negotiate on small

pieces of information, ensuring that the resulting global map

will be improved.

This paper is organized as follows. Section II explains how

the robots can compute a prediction of the expected map

resulting of placing the robot into vantage locations to sense
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the scene. Section III explains how robots compute these

vantage locations for observing features in the map. Then,

Section IV presents the strategy for improved perception,

explaining both the global and individual cost function to be

minimized. Finally, Section V shows the performance of the

strategy via simulation.

II. EXPECTED MAPS FOR THE VANTAGE

LOCATIONS

When a robot moves to a vantage location and takes new

measurements of the environment, its local map estimate

may become more precise. We compute this expected map

applying the same algorithm used by the robots to build

their local maps. It is a Simultaneous Localization and Map

Building (SLAM) algorithm for bearing only data based

on an Extended Kalman Filter (EKF). We use the same

measurement and odometry models, and we assume that:

a) the measurements are exactly the expected bearings to

the features from the new robot pose, and b) the odometry

estimate is exactly the new robot pose.

A. Relative Motion Computation

Let x̂r(k) = (x̂k, ŷk, θ̂k)
T

be the robot pose at time k,

x̂i(k) = (x̂i, ŷi)
T

for i ∈ {1, . . . , m} the feature estimates

at time k, and x̂(k) = (x̂r(k)T , x̂1(k)T . . . , x̂m(k)T )
T

the

local map estimate at time k, with associated covariance

P(k). Let xg = (xg, yg, θg)
T

be the goal vantage location

where the robot plans to move to. The relative translation

and rotation xk
k+1 between x̂r(k) and xg can be computed

as:

xk
k+1 = (⊖x̂r(k)) ⊕ xg, (1)

where the operator ⊖ is the inverse location vector

⊖x̂r(k) =





−x̂k cos θ̂k − ŷk sin θ̂k

x̂k sin θ̂k − ŷk cos θ̂k

−θ̂k



 . (2)

The operator ⊕ is the composition of two location vectors. It

returns a location vector that transforms coordinates between

the reference frames x̂r(k) and xg. Then, the expression for

the relative transformation xk
k+1 between the robot pose at

time k and the goal pose at k + 1 is:

xk
k+1 =





(xg − x̂k) cos θ̂k + (yg − ŷk) sin θ̂k

−(xg − x̂k) sin θ̂k + (yg − ŷk) cos θ̂k

θg − θ̂k



 . (3)

B. EKF Prediction

The prediction step of the localization and mapping algo-

rithm gives x̄(k + 1) = x(k + 1|k) = (x̄r(k + 1)T , x̄1(k +
1)T . . . x̄m(k+1)T )T and covariance P(k+1|k) based on the

previous state x̂(k) and covariance P(k), and the odometry

measurements xk
k+1 = (xodom, yodom, θodom) with covari-

ance matrix Podom. Here, x̄r(k +1) = (x̄k+1, ȳk+1, θ̄k+1)
T

and x̄i(k + 1) = (x̄i, ȳi)
T for i ∈ {1, . . . , m}. The

odometry measurements xk
k+1 are given by (3), and the

odometry noise is modelled as three independent noises

in the perpendicular and parallel translations and rota-

tion, Podom = diag
(

σ2
x, σ2

y, σ2
θ

)

, where σx = Kxd and

σy = Kyd are proportional to the translation distance d =
√

(xg − x̂k)2 + (yg − ŷk)2. The equations used to predict

the new state are

x̄(k + 1) =



















x̄r(k + 1)
x̄1

ȳ1

...

x̄m

ŷm



















=



















x̂r(k) ⊕ xk
k+1

x̂1

ŷ1

...

x̂m

ŷm



















, (4)

P(k + 1|k) = J1P(k)JT
1 + J2PodomJT

2 , (5)

where the operator ⊕ is the composition of the location

vectors x̂r(k) and xk
k+1

x̂r(k) ⊕ xk
k+1 =





x̂k + xodom cos θ̂k − yodom sin θ̂k

ŷk + xodom sin θ̂k + yodom cos θ̂k

θ̂k + θodom



 ,

(6)

and J1, J2 are the Jacobians of the prediction operation rela-

tive to, respectively, the map and the odometry measurement:

J1 =

[

j1 0

0 I

]

, J2 =

[

j2
0

]

,

j1 =





1 0 −xodom sin θ̂k − yodom cos θ̂k

0 1 xodom cos θ̂k − yodom sin θ̂k

0 0 1



 ,

j2 =





cos θ̂k − sin θ̂k 0

sin θ̂k cos θ̂k 0
0 0 1



 .

(7)

C. Measurement Prediction

For every feature with coordinates x̄i(k + 1) = (x̄i, ȳi)
T

in the map, the expected bearing measurement with respect

to the robot that should be obtained from the predicted robot

location x̄r(k + 1) = (x̄k+1, ȳk+1, θ̄k+1)
T is

hi(x̄r(k + 1), x̄i(k + 1)) =

atan2
(

−(x̄i−x̄k+1) sin θ̄k+1+(ȳi−ȳk+1) cos θ̄k+1

(x̄i−x̄k+1) cos θ̄k+1+(ȳi−ȳk+1) sin θ̄k+1

)

.
(8)

The Jacobian of the observation model is

Hi =
[

∂hi

∂x̄r(k+1) 0 · · · 0 ∂hi

∂x̄i(k+1) 0 · · · 0
]

,

∂hi

∂x̄r(k+1) =
[

∂hi

∂x̄k+1

∂hi

∂ȳk+1

∂hi

∂θ̄k+1

]

,

∂hi

∂x̄i(k+1) =
[

∂hi

∂x̄i

∂hi

∂ȳi

]

,

(9)

where

∂hi

∂x̄k+1
= − ȳk+1−ȳi

(x̄k+1−x̄i)
2+(ȳk+1−ȳi)

2 ,
∂hi

∂ȳk+1
= x̄k+1−xi

(x̄k+1−x̄i)
2+(ȳk+1−ȳi)

2 ,
∂hi

∂θ̄k+1
= − 1,

∂hi

∂x̄i

= ȳk+1−ȳi

(x̄k+1−x̄i)
2+(ȳk+1−ȳi)

2 ,
∂hi

∂ȳi

= − x̄k+1−x̄i

(x̄k+1−x̄i)
2+(ȳk+1−ȳi)

2 ,

(10)
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and h and H collect the information from all the features in

the map

h =







h1

...

hn






, H =







H1

...

Hn






. (11)

D. EKF Update

The final map estimate x̂(k + 1) = x(k + 1|k + 1) and

covariance P(k + 1|k + 1) are obtained as

x̂(k + 1) = x̄(k + 1) + Kν,

P(k + 1|k + 1) = (I − KH)P(k + 1|k),
ν = z − h,

K = P(k + 1|k)HT S−1,

S = HP(k + 1|k)HT + R,

(12)

where ν is the innovation, S in the innovation covariance

and K is the Kalman gain. z is the vector with all the

measurements of the features. The matrix R is the covariance

of the observation noise and is equal to σ2
zI, where σz is the

standard deviation of the visual sensor noise.

III. SELECTION OF VANTAGE LOCATIONS

In order to manage a finite set of vantage locations for

every robot, we adopt a one feature improvement strategy.

Every robot in the team will attempt to improve, at least,

the observation of one of the landmarks. As a side effect,

the observations of other landmarks are also improved. We

compute vantage locations where the observation of the

landmark produces a high uncertainty reduction. In [16]

authors discuss uncertainty minimization within the EKF

framework. They show that the minimization of the map

uncertainty P is highly related to the maximization of the

covariance of the innovation S. In addition, they show that

if the system is driven to the optimal position to obtain

maximum information gain, it results in numerically unstable

update steps for the EKF. The system becomes more unstable

as the robot moves closer to a landmark. To derive the

vantage locations to observe the landmarks, we analyze the

robot locations that lead to the maximization of S.

For a landmark i, the covariance of the innovation Si is

(12)

Si = HiP(k + 1|k)HT
i + σ2

z . (13)

If we take P(k+1|k) = I and apply (9), (10), we can express

Si as:

Si = 1 + σ2
z +

2

r2
, (14)

where r =
√

(xk+1 − xi)2 + (yk+1 − yi)2 is the distance

between the robot pose and the landmark. As it can be

observed, the maximization of Si is equivalent to the mini-

mization of r. Now we introduce into the study the landmark

covariance, taking

P(k + 1|k) =









I 0 0

0
Pxx 0
0 Pyy

0

0 0 I









, (15)

and expressing Pyy = kPxx, with k > 1. This models an

uncertainty ellipse with its mayor axis perpendicular to the

y-axis. For robot poses at a constant distance r, xk+1 =
r cos α, yk+1 = r sin α, the value of Si is:

Si = 1 + σ2
z +

1 + Pxx

r2
+ (k − 1)

Pxx

r2
cos2(α), (16)

Computing the first and the second derivative of Si, the

critical points of Si are α = 0 + nπ, n ∈ Z and α =
π
2 + nπ, n ∈ Z. Besides we have that

∂2Si

∂α2
= 2(k − 1)

Pxx

r2
(1 − 2 cos2(α)). (17)

Since k > 1, Si reaches a maximum for α = 0 + nπ, n ∈ Z

and a minimum for α = π
2 + nπ, n ∈ Z. Then we can

conclude that Si is maximized when the distance between

the robot and the feature is minimized, and that for constant

distances, Si is maximized when the landmark is observed

from a position in a line perpendicular to its mayor axis.

However, minimizing r may make the system unestable

[16]. To avoid this situation, we compute the optimal position

for observing a feature so that it lays outside its uncertainty

ellipse. It is at a distance from the center so that the angle

α between the lines from the vantage point to the extremes

of the ellipse must be less than π
2 .

IV. STRATEGY FOR IMPROVED PERCEPTION

As we mentioned before, our strategy for improved per-

ception is designed to be integrated with a map merging

algorithm [1] where robots fuse their local maps into a global

map. This process may be executed at every time instant, not

necessarily while they are deciding their motions. Given n

independent local maps characterized by a mean xi and a

covariance matrix Pi = Pi(k + 1|k + 1) for i ∈ {1, . . . , n},

the maximum-likelihood estimate xglobal for the global map

and its associated covariance matrix Pglobal are

xglobal =
(

n
∑

i=1

AT
i P−1

i Ai

)

−1 n
∑

i=1

AT
i P−1

i xi, (18a)

Pglobal = (
n

∑

i=1

AT
i P−1

i Ai)

−1

, (18b)

where Ai are some observations matrices to allow the robots

to observe only a portion of the total amount of features.

From this expression, we can see that feature estimates with

smaller covariances greatly influence their estimates in the

global map. Therefore, a precise estimate of a feature can

be obtained if, at least, one robot has observed it with high

precision.

A. Aggregate Objective Function

The global cost function F measures the best contributions

for the estimate of every feature

F (x1, · · · ,xn) =
m

∑

j=1

min
i

fij(xi)), (19)
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TABLE I

PREDICTED COSTS FOR THE CANDIDATE NEXT MOTIONS FOR ROBOT i

feat 1 · · · feat m

x
1

i
fi1(x1

i
) · · · fim(x1

i
)

.

.

.
.
.
.

.

.

.

x
K

i
fi1(xK

i
) · · · fim(xK

i
)

TABLE II

GLOBAL COST FOR A SPECIFIC SELECTION OF NEXT ROBOT POSES

feat 1 · · · feat m

x
l1
1

f11(xl1
1

) · · · f1m(xl1
1

)
.
.
.

.

.

.
.
.
.

x
ln
n fn1(xln

n ) · · · fnm(xln
n )

min mini fi1(x
li

i
) · · · mini fim(x

li

i
)

where xi is the next position of the robot i at time k+1, for

i ∈ {1, . . . , n} and fij is the individual cost for the feature

j in the local map of the robot i when the next position of

the robot i is xi.

The individual cost functions fij(xi) evalute the covari-

ance matrix Pi(xi) of the expected map of robot i when

it moves to the location xi (Section II). They measure

the uncertainty of the sub-matrix [Pi(xi)]jj within Pi(xi)
associated to the feature j. There exist many metrics for mea-

suring the uncertainty in a covariance matrix. [17] compares

metrics based on the determinant, eigenvalues and trace,

concluding that all of them perform properly. Here, we select

the trace.The individual cost fij is

fij(xi)) = Tr([Pi(xi)]jj). (20)

B. Coordination Strategy

The proposed strategy for motion coordination consists of

an iterative algorithm where, at every time step, the team of

robot performs the following actions:

Optimal position for feature observation: Every robot i

computes the best position for observing the K features

with higher covariances in its local map, where K ≤ mi

for i ∈ {1, . . . , n} is adjusted depending on the perfor-

mance requirements. As a result, robot i ∈ {1, . . . , n},

obtains K next position candidates which we express

as x1
i , · · · ,xK

i .

Map prediction: For all the candidate next positions

x1
i , · · · ,xK

i , robot i computes the predicted map and

evaluates the local cost function fij(x
l
i) for all the fea-

tures, l ∈ {1, . . . , K}, j ∈ {1, . . . , m}, i ∈ {1, . . . , n}.

If an estimate of the feature j cannot be found in the

local map of robot i, then we set fij(x
l
i) = ∞ for all

l ∈ {1, . . . , K}. Every robot i can construct a table with

the values of fij (see Table I).

Minimization of the global cost: Given a selected combi-

nation of next robot poses xl1
1 , · · · ,xln

n , its associated

global cost is computed as
∑m

j=1 mini fij(x
li
i )). This

is equivalent to sum the values in the last row (min)

in Table II. The best robot-vantage location assignment

is the one minimizing the global cost F (see equation

(19)). Every robot can compute this value, based on the

information received from the other robots, and on its

own data. This is a classical task-assignment problem

where there are Kn possible combinations, and one

of them produces the best cost. There exist multiple

efficient suboptimal methods to solve this problem. Here

we just use a brute-force approachs, but in the future we

plan to implement a distributed auction-based solution

to this problem.

Motion and observation Once the best motions have been

decided for the team, the robots move to the new

positions, they observe the environment and update their

local maps.

The reader may notice that we have not specified when

the map merging stage takes place. This is due to the fact

that, as we mentioned before, it can be executed in parallel,

or even after the robots have finished the exploration.

V. RESULTS

In order to show the performance of the algorithm, a

simulation has been carried out where a team composed

by three robots explore an obstacle-free environment. They

estimate their motions based on odometry information and

sense the environment using an omnidirectional camera that

provides bearing to the landmarks. In the experiments we

use an observation noise σz = 1 degree and an odometry

noise σx = 0.01d, σy = 0.01d, σθ = 2.5 degrees, where

the translation noise is proportional to the travelled distance

d. In this simulation, the robots process the odometry data

and the measurements to construct their local maps using

a SLAM algorithm for bearing-only data, see [18] for a

detailed description. We initialize every local map with two

robot poses to recover the position of some of the landmarks

in the map. Their initial maps can be seen in Fig. 1(a). We

display in black the ground-truth information, using points

for the landmark positions, lines for the robot motions, and

triangles for the robot poses. The maps and trajectories

estimated by the robots are shown in different colors.

In Fig. 1(a) we show the initial local maps of the robots.

Since they have been constructed using two close robot

poses, their landmark estimates present high uncertainties.

Its associated global map can be found at Fig. 1(b).

At every step, the robots compute their candidate next

positions, and evaluate the cost function at these vantage

points. In the experiments, we simulate a perfect robot

coordination and we provide each robot with its best robot-

candidate destination assignment. In Fig. 1(a,c,e) we display

these selected motions and the resulting local maps for

successive steps. In Fig. 1(b,d,f) we show their associated

global map computed by (18).

In this example, we can see the behavior we explained

along this paper. If a feature has been observed by multiple

robots, and at least one of them has estimated it with high

precision, its estimate in the global map presents a small

uncertainty. See for instance F16 which has been observed

by the three robots; Robot 1 (blue) possess a very uncertain

estimate, Robot 3 (red) has a better estimate, although still
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uncertain, and the estimate at Robot 2 (green) is very precise.

After merging their maps, the final estimate for F16 is

very precise. Therefore, the robots should move to reduce

the uncertainties of features which have not been precisely

estimated by none of the robots, instead of reducing their

local uncertainties.

In Fig. 1(c) we can observe the decisions made by the

proposed algorithm and their effects on the global map

Fig. 1(d). The robots in the team move to positions that

optimize the global knowledge, and as a result, the global

map presents a high improvement. They do not exclusively

try to reduce their local uncertainties, but instead take care of

features uncovered by the team members. See for instance

Robot 1 (blue). Its worse feature estimates in its previous

local map (Fig. 1(a)), blue, are F6 and F16. He will

consider moving to positions where both of them present

a reduction on their uncertainties. However, exchanging the

information with the other robots, it realizes that one of the

team members already possess a precise estimate for F16,

and therefore it moves to a extremely bad conditioned pose

for the observation of F16, but well conditioned to observe

other features. Besides, we can see that the robots tend to

move to different regions in the environment, improving the

coverage of all the features. In Fig. 1(e-f) we show the

next step of the algorithm, where again the robots move

to improve the scene perception. Since this global map has

reached a high precision, next iterations of the algorithm add

no significant improvements.

VI. CONCLUSIONS

Along this paper we have proposed a motion control

strategy for improved perception of a scene capable of

efficiently managing landmark-based maps. This strategy is

designed to be integrated in a multi robot system, where

robots use a map merging algorithm to fuse their maps

and get a more precise knowledge of the environment. The

described strategy selects a finite set of candidate motions to

the robots, and computes its associated cost in the form of

the individual contributions of every feature. Therefore, this

cost presents a space complexity linear on the map size. This

information can be used by the team members to negotiate

their next motions, presenting the benefit that robots do

not need to wait for having a good global map estimate

when they coordinate. In the experiments, we have seen that

this approach offers good results in terms of the reduction

of both the uncertainties in the local and global maps.

Future extensions of this work are in the line of designing

distributed coordination strategies for the robots, so that they

can negotiate on the information provided by the described

algorithm. Other interesting extensions are in the line of

considering restricted robot motions, and environments with

obstacles.
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Fig. 1. Strategy for improved perception. We display some steps of the strategy for improved perception. Black dots are the ground-truth landmark
positions. Local map estimates from different robots are shown in a different color. Figures at the right show the maximum-likelihood associated to the
local maps. Notice that although the robots do not know this global map, their actions reduce its uncertainty. (a) Initial maps for robots 1,2,3. (b) Initial
global map. (c) Maps for robots 1,2,3 after the first execution of the algorithm. (d) Global map for (c). (e) Maps for robots 1,2,3 after the second execution
of the algorithm. (f) Global map for (e).

1070


