
A Bug-Inspired Algorithm for Efficient Anytime Path Planning
Javier Antich, Alberto Ortiz, and Javier Mı́nguez

Abstract— In recent years, anytime algorithms have shown to
be a good solution for planning a path in domains with severe
restrictions regarding the time for deliberation. They typically
operate by quickly finding a highly suboptimal path first, and
then improving it until the available time runs out. In this
paper, we propose a novel anytime approach called ABUG that
performs much more efficiently than the competing strategies.
ABUG is based on an improved version of a member of the
popular family of algorithms known as Bug. A formal analysis
of the planner is provided and several relevant properties
of ABUG are identified. Besides, as done in some heuristic-based
anytime approaches, we define bounds on the quality / length
of the paths returned by the algorithm. Finally, in order to
demonstrate the computational savings associated with the
proposal, a comparative study involving a set of well-known
path-planning techniques is also carried out.

I. INTRODUCTION

The problem of path planning is a fundamental issue in
mobile robotics. In response to this interest, a huge variety of
techniques has been developed along the past years. Among
all of them, deterministic / heuristic-based algorithms [1] and
probabilistic / sampling-based algorithms [2] are the two most
popular solutions to the problem. As it is well known, when
the dimensionality of the path-planning problem is low,
deterministic planners are preferred because they provide
bounds on the quality of the solution/s returned. On the con-
trary, in high-dimensional problems, probabilistic methods
exhibit a much more desirable performance.

Both deterministic and probabilistic strategies comprise a
useful class of algorithms named anytime (see [3] and [4],
just to cite two examples), which is able to trade off running
time and solution quality in domains where quick reactions
are required. To this end, this kind of algorithms generates
a succession of progressively better solutions to the problem
at hand, where the time needed for computing each solution
is related to its quality. In this way, the first / worst results of
the planner are expected to be obtained in a very short time.

Since the reformulation in anytime of A� [5], a bunch
of anytime algorithms have been developed to accommodate
for different planning problems. A common property of these
developments is that they formulate the planning problem as
a graph with nodes representing a state / point in the configu-
ration space and arcs / edges representing a feasible action to
make a transition from one state to another. This gives rise
to the dilemma of selecting the appropriate space resolution
as a compromise among computation time, optimality, and
completeness.

This study has been partially supported by project CICYT-DPI2008-
06548-C03-02 and FEDER funds

J. Antich and A. Ortiz are with the Dept. of Maths and Computer Science,
University of the Balearic Islands, Spain javi.antich@uib.es

J. Mı́nguez is with the Dept. of Computer Science and Systems Engi-
neering, University of Zaragoza, Spain jminguez@unizar.es

This paper puts forward a new anytime path-planning
strategy for indoor environments called ABUG that also relies
on a graph representation but where each edge involves a
sequence of actions corresponding to the way of acting of a
novel navigation strategy which comes from the well-known
family of algorithms Bug (see [6] for a recent compila-
tion and comparison of the more representative Bug-like
algorithms). ABUG is constrained to be applied to two-
dimensional problems with only obstacles and free space (as
the large majority of problems in indoor robotics). However,
the advantages are that this new technique is complete, much
less dependent of the resolution of the space, and largely
improves the running time of previous anytime algorithms
in the class of problem at hand.

The rest of the document is organized as follows: section II
describes a Bug-like algorithm named Bug2+, while section
III shows how Bug2+ can be used to construct an efficient
anytime path planner; section IV presents some experimental
results and, finally, section V concludes the paper.

II. THE ALGORITHM BUG2+

The anytime approach being proposed plans paths
based on Bug2+, an enhanced version —suggested by
the authors— of an algorithm named Bug2 which was
put forward by Lumelsky and Stepanov in [7]. This new
Bug-derivative strategy preserves the simplicity as well as
the intuitive behavioral description by which the algo-
rithm Bug2 is mostly characterized. Furthermore, the length
of a path produced by Bug2+ is always less or equal to
the one of Bug2. The strategy Bug2+ is a sensor-based path
planner with proven termination conditions for environments
which are static, unknown, and two-dimensional. In the
following, the proposal is briefly discussed underlining its
major points of discrepancy with regard to the classic version
of the algorithm Bug2. See [8] for a deeper explanation
of Bug2+ as well as the formal proofs for the above-
mentioned features of the strategy.

A. Notation

S, T ∈ R
2 are, respectively, the starting and the target

points of the mission. XY (X, Y ∈ R
2 and X �= Y) repre-

sents the straight-line segment with end points X and Y .
The line connecting the starting and the target points, ST ,
is referred to as main line, or m-line in brief. On the other
hand, Oi denotes a certain obstacle of the environment and
∂Oi its contour curve. Finally, d(X, Y) is a function which
measures the Euclidean distance between any two points X
and Y (X, Y ∈ R

2).

B. Description

The algorithm Bug2+ exhibits two different behaviors:
motion-to-goal and boundary-following. During the former,

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 5407

M-line Hit Point Leave PointTrajectory

X

Obstacle

X

X

Obstacle

X
X

X

(a) (b)

Fig. 1. Comparison of the paths generated by (a) Bug2 and (b) Bug2+
in a scenario with an intricate obstacle. In both cases, the parameter pCFD
was assumed to be right.

which is activated first, the robot moves towards the target
(T) along the m-line1. The boundary-following behavior,
on the other hand, is invoked when the robot encounters
an obstacle (Oi) on its way. The point where this obstacle
is found is called hit point (Hj). Next, the robot follows
the contour of the obstacle (∂Oi) to the left or right according
to a user-definable parameter named pCFD. During this
contour following process, a special situation may occur, in
which the robot returns to Hj meaning that a loop around
the obstacle boundary has been completed. In such a case,
the target is inside the obstacle, not being thus achievable.
More usual is, however, the situation where the robot reaches
a new point on the m-line closer to T than Hj . At that
moment, a leave point (Lj) is defined and the motion-to-goal
behavior is invoked again.

Algorithm 1 provides a formal description of Bug2+,
highlighting, in bold, the most important changes which
have been done regarding the strategy Bug2. In short,
the algorithms Bug2 and Bug2+ use a different criterion
to invoke the motion-to-goal behavior when the robot is
circumnavigating the contour of an obstacle. Specifically,
in Bug2, this transition occurs when a point Q on the m-line
nearer the target than Hj is found. Moreover, for really
abandoning the boundary-following behavior, the point Q
should satisfy condition C2 as well, which requires the robot
to be able to move along the straight-line segment QT
without immediately hitting the current obstacle. The strategy
Bug2+ differs from Bug2 in considering the points which
do not meet condition C2 into the decision associated
with leaving the contour following process. Let Γ denote
the set of m-line’s points not satisfying condition C2 which
have been found by the robot during the last —and still
current— activation of the boundary-following behavior.
Then, the algorithm Bug2+ will perform a transition to
the motion-to-goal behavior when reaching a point Q on
ST with Q /∈ Γ and satisfying the inequality d(Q, T) <
min{d(γ, T) ∀γ ∈ Γ} (observe that Hj ∈ Γ according to

1The mobile robot is supposed to be a point fitted with a complete set
of error-free tactile sensors.

Alg. 1 Bug2+: An improvement of the strategy Bug2

0) Set j = 1 and L0 = S
1) Move along the straight-line segment Lj−1T until one

of the following occurs:

a) T is reached. The algorithm stops
b) An obstacle Oi is found. Define the hit point Hj ,

set D = d(Hj, T) and, finally, go to step 2

2) Follow the contour of the obstacle (∂Oi) to the left or
right according to pCFD until one of the next three
possible situations arises:

a) T is reached. The algorithm stops
b) The robot returns to Hj . The algorithm stops

because the target is unreachable
c) The robot gets to a point Q satisfying condition C1.

As a result, either action A1 or action A2 is taken
depending on whether condition C2 is satisfied
(A1) or not (A2)

C1: Q is a point on the m-line (Q ∈ ST) such that
d(Q, T) < D

C2: the straight-line segment QT does not cross
the obstacle Oi at point Q∗

A1: define the leave point Lj = Q, set j = j + 1
and, lastly, go to step 1

A2: update D
(

= d(Q, T)
)

and continue in step 2

∗ The straight-line segment QT is considered to cross the obstacle

Oi at point Q when a segment of QT lies inside Oi in

the vicinity of Q

the definition of hit point). Fig. 1 illustrates with an example
the differences between the strategies Bug2 and Bug2+.

The length of a path planned by Bug2+ never exceeds the
limit given by expression 1, where i denotes an obstacle of
the scene (Oi), ni represents the number of intersections of
∂Oi with the m-line, and Bi refers to the Oi’s perimeter.

d(S, T) +
∑

i

ni

2
Bi (1)

III. THE ALGORITHM ABUG

The algorithm Bug2+, as was described in section II,
allows us to plan a single path in an unknown and static
environment. ABUG uses Bug2+ to generate multiple paths
in an a priori known scenario just by considering both
alternatives, left and right, whenever an obstacle is found,
instead of keeping the parameter pCFD constant. Such a
flexibility in the strategy Bug2+ does not jeopardize its
convergence nor the rest of its properties. Fig. 2 illustrates
the above-mentioned exhaustive search in a simple scenario
where four topologically different paths are planned.

Next, a deeper description of ABUG embedded into an
A∗ framework [9] is presented. Additionally, a fast mode of
operation based on inflating the heuristic cost function of
the A∗ search is also put forward. Finally, the theoretical
properties of the proposal are set out.

5408

Obstacle

Obstacle

Path #1

Obstacle

Obstacle

Path #2

(a)

(b)

Path #4Path #3

Obstacle

Obstacle

B
in

ar
y

T
re

e

Fig. 2. Exemplifying how the algorithm Bug2+ can be used for planning multiple paths: (a) the search step by step; (b) planned paths.

A. Description of the Planner

As can be observed at the bottom of fig. 2(a), the algo-
rithm ABUG makes use of a binary tree to search for paths,
where each node represents a point of the environment in
which a decision must be made regarding the direction —
left or right— to be taken during the subsequent contour
following process. On the other hand, taking into account
both that a binary tree is a particular case of a graph and
that A� is a well-known and efficient method for exploring
graphs, ABUG adopts A� for conducting the search of
all Bug2+-compliant solutions. To this end, we define an
estimated cost function f that returns as output the sum of
two values: g and h. Specifically, given a still incomplete
Bug2+ path P , g denotes the current P length and h the
expected additional distance to be traveled until achieving
the target (T). This distance is assumed to be the Euclidean,
which means that ABUG applies an optimistic / admissible
—and also consistent [10]— heuristic h, ensuring thus the
optimality of the planner (or in other words, the shortest path
within the graph will be found). Nodes / Paths are expanded
/ extended in the order of increasing f -values by means of
a priority queue. The search starts with a degenerated path
merely containing the starting point (S). This path is later
prolonged on the basis of step 1 in algorithm 1, which
involves moving straight towards T until finding an obstacle.
At that moment, the resultant path is duplicated and, next,
both are extended by following the boundary of the obstacle
in opposite directions. Finally, once for a path the contour

following process has finished (step 2 in algorithm 1), the
path is placed into the aforementioned priority queue —
qPrio— in a position in accordance to its updated f -value.
The strategy continues by taking out from qPrio the es-
timated least-cost solution —the one with the minimum
f -value— as well as by applying on it the preceding actions.
Algorithm 2 describes formally the approach.

It is important to note that ABUG is an anytime approach
and not a classic planner that generates the best / shortest
Bug2+ path as could be guessed so far. Anytime path
planning, as pointed out in section I, requires the progressive
improvement of the quality of the solutions while time
permits and the optimal path is not found. With this purpose,
the algorithm ABUG makes use of the mathematical / topo-
logical concept of path homotopy, which provides us with
an efficient way for optimizing a given path by solving the
so-called shortest homotopic path problem [11]. Informally
speaking, a path is regarded as an elastic band joining
points S and T which is tightened to shorten it (see fig. 3 for
an example). Many methods have been proposed to compute
the shortest homotopic path in R

2. Among all of them,
the one published in [12] has been finally applied because it
presents the minimum —to the best authors’ knowledge—
algorithmic complexity

(
O(log2 n′) per output vertex being

n′ the number of obstacles in the environment
)
.

The search performed by ABUG does not stop after find-
ing and, later, improving the best Bug2+ path. The strategy
actually considers all the solutions within the graph induced

5409

Alg. 2 ABUG: A description in pseudocode

f (P)

1: return g(P) + h(P)
Store(P)

2: Declare / Initialize the static variable PShortest to NULL
3: if PShortest == NULL or g(P) < g(PShortest) then
4: Set PShortest = P

5: output ← P
6: {P becomes a new solution for the anytime planner

which continues looking for shorter paths}
7: end if

Improve(P)

8: PImproved = ShortestHomotopicPath(P)
9: Store(PImproved)

Extend(P , qPrio)

10: Motion-To-Goal(P)
11: if T has been reached then
12: Store(P); Improve(P)
13: else {An obstacle has been found}
14: for pCFD = left to right do
15: Copy P into PNew

16: Boundary-Following(PNew, pCFD)
17: if T has been reached then
18: Store(PNew); Improve(PNew)
19: else if T is unreachable then
20: Stop search
21: else {Conditions C1 and C2 have been met at Q}
22: Insert PNew into qPrio
23: end if
24: end for
25: end if
Main()

26: Build a path P consisting of only the starting point (S)
27: Insert P into qPrio
28: repeat
29: Pick PBest from qPrio such that f(PBest) ≤ f(P),

∀P ∈ qPrio
30: Remove PBest from qPrio
31: Extend(PBest, qPrio)
32: until qPrio is empty or T is known to be unreachable

by the binary tree data structure which is built. As will
be seen in section III-C, the number of solutions to be
considered is bounded by a value that increases according
to the complexity of the mission, although it grows in a
reasonable way. The main reason for exploring the whole
space of solutions is due to the fact that worse Bug2+
paths can become better solutions after being optimized as
it so happens in the scenario of fig. 4. Finally, observe
that, each time a path is either computed or optimized by
the algorithm ABUG, the new solution is compared with
the best / shortest path found so far, and only if the former
improves the latter, the strategy provides as output the new
solution —i.e. line 5 in algorithm 2 is executed. Otherwise,

S

T

(a) (b)

Obstacle

Obstacle

Fig. 3. The shortest homotopic path problem: (a) a path; (b) the shortest
path preserving the homotopy class of a).

Obstacle

Obstacle

Obstacle

So
lu

tio
n

#1

Optimization by Homotopy

So
lu

tio
n

#2

Obstacle

T

S

T

S

Bug2+ Paths

Fig. 4. An example where the worst Bug2+ path (#2) turns into the optimal
solution after optimization.

the path is simply discarded. By applying such a filter-
ing process, ABUG guarantees the generation of a strictly
monotonically decreasing sequence of solutions regarding
path length.

By way of notation, from now on, each of the Bug2+-
compliant paths found by the strategy ABUG before being
optimized will be denoted as πk, where the index k is a
sequence number that indicates the order in which the path
was obtained. On the other hand, let Π = {π1, . . . , πq}2 be
a set containing all these solutions. Notice that, as a direct
consequence of the heuristic defined by the planner, πk is
shorten or equal than πl if k < l.

B. Accelerated Mode of Operation of ABUG

A�-based anytime approaches make frequent use of
the fact that, in many domains, inflating the heuristic values
often results in a substantial speed-up at the cost of solution
optimality (see [13] for some popular examples of this kind
of algorithms). Moreover, if the heuristic h employed is
consistent, then, by multiplying it by an inflation factor
ε > 1, the strategy produces a solution which is ensured not
to cost more than ε times the cost of the optimal path.

The previous idea can be exploited to provide ABUG
with an accelerated mode of operation that additionally gives

2Π is the empty set when there is not a solution to the path-planning
problem; that is to say, when the target point (T) is not reachable.

5410

bounds on the suboptimality of the solutions generated. To
this end, a simple change is required in line 1 of algorithm 2,
which consists in inflating the heuristics by ε as discussed
before, so that the final expression for the cost function is,
therefore, f(P) = g(P) + ε · h(P). Any finite real value
larger than or equal to one can be assigned to the inflation
factor ε, which constitutes the first and only user-definable
parameter of our approach. By setting ε = 1, the strategy
ABUG adopts its original and non-inflated form. In such
a case, a series of paths Π = {π1, . . . , πq} increasingly
sorted by length is progressively found and improved. On
the other hand, for ε > 1, the same Π paths as before
are computed but the sequence in which they are obtained
does not apparently obey to any ordering (in section III-C
—fourth property—, some restrictions will be imposed with
regard to such a sequencing).

C. Theoretical Properties of ABUG

The most important theoretical properties of ABUG are
enumerated next. Some additional notation is, nevertheless,
introduced first.

1) Notation: As was already said, Π = {π1, . . . , πq} rep-
resents the set of non-optimized solutions found by ABUG to
the path-planning problem at hand. The approach improves
each solution π ∈ Π by computing the shortest path for
the homotopy class to which π belongs. Consequently, let
Π∗ = {π∗

1 , . . . , π∗
q} be the resultant set of improved solutions(

π∗
k = SHP(πk) ∀πk ∈ Π, where SHP refers to the shortest

homotopic path function
)
. On the other hand, the cost —

Euclidean length— of paths πk ∈ Π and π∗
k ∈ Π∗ is given

by, respectively, σk and σ∗
k. This results in two new sets:

σ = {σ1, . . . , σq} and σ∗ = {σ∗
1 , . . . , σ∗

q}. Additionally,
σbest and σ∗

best are used to designate the length of the shortest
paths in Π and Π∗ (

or in other words, σbest = min{σ} and
σ∗

best = min{σ∗}). Following the same terminology, σbest,k

denotes the minimum cost for a subset of the solutions of Π.
More precisely, σbest,k = min{σl ∈ σ | l ≥ k} (observe
that σbest,1 = σbest as a particular case of the formulation).
Finally, to conclude, πopt symbolizes the optimal solution to
the path-planning problem, and σopt its cost / length.

2) Properties:
p1. ∀πk, πl ∈ Π such that k �= l, πk �= πl.
p2. ∀σk ∈ σ, σk is bounded by expression 1.
p3. The maximum number of paths found by ABUG never

goes above the limit
| Π | ≤ 2

n
2 (2)

where n denotes the number of intersections between
the m-line and the boundary of the obstacles in the en-
vironment

(
i.e. n =

∑
i ni

)
.

p4. When performing ABUG with an inflation factor ε = 1,
σ = {σ1, . . . , σq} becomes a totally ordered set under
the relation ≤ (σ1 ≤ σ2 ≤ . . . ≤ σq). On the other hand,
if ε > 1, the following holds: assuming that the execu-
tion of the algorithm ABUG is in a state where k paths
π1, . . . , πk have been computed3, the length of the next

3k ∈ {0, . . . , q − 1}. In case k = 0, the set {π1, . . . , πk} is supposed
to be empty.

(b)(a)

T

S

M-line
Intersection of

O

i with the m-line

Obstacle Obstacle

Obstacle

Obstacle

Obstacle

Obstacle
X

Obstacle

X

X

X
X

Fig. 5. About the optimality of our planner: (a) comparing the best
solution computed by ABUG (π∗

best) with the global optimal path (πopt);
(b) illustration of the conditions required for optimality.

path to be obtained πk+1 is bounded by inequality 3. As
can be observed, the strategy produces a solution which
is guaranteed not to have an additional cost on the best
of the paths that remain to be found (σbest,k+1) of more
than ε − 1 times the cost of moving from S to T by
following a straight-line path

(
d(S, T)

)
. In this way, we

can provide bounds on the suboptimality of the solutions
generated by ABUG when applying the accelerated
mode of operation described in section III-B.

σbest,k+1 ≤ σk+1 ≤ σbest,k+1 + (ε − 1) · d(S, T) (3)

p5. Some scenarios, such as the one of fig. 5(a), can
be constructed where σ∗

best and σopt do not match
each other

(
σ∗

best > σopt

)
, which means that the strat-

egy ABUG does not always end up yielding the op-
timal path πopt. However, there is a particular class
of problems where πopt is guaranteed to be in the
set of —improved— solutions computed by our ap-
proach

(
σ∗

best = σopt

)
. First of all, assume an en-

vironment composed of obstacles of generic shape
meeting the requirements imposed by the Jordan Curve
Theorem [11] (the contour of each obstacle ∂Oi de-
fines a simple closed curve). On the other hand, let
χ denote the minimal convex subset of R

2 containing
S, T , and the contour curve points of those obstacles
which intersect the m-line in only two locations

(
i.e.

∂χ = Hconvex

(
{S, T} ⋃ (⋃

i ∂Oi | ni = 2
))

, where
∂ means the boundary of and Hconvex represents the
geometric concept of convex hull

)
. Then, if equation 4

holds —see fig. 5(b) for a case where it happens—,
the algorithm ABUG can be formally proved to
find πopt, or in other words, the set of solutions given
by the strategy converges to the optimal value when
having enough time for deliberation.

χ
⋂ (⋃

i

Oi | ni �= 2

)
= ∅ (4)

IV. EXPERIMENTAL RESULTS

This section compares ABUG with other competing
approaches. Some of the most popular path-planning tech-
niques have been included into the comparison by choosing
from each a representative member. More precisely, the

5411

planners considered are: Bug2+ [8], NF1 [14], ARA� [3]4,
and RRT [15]5. On the one hand, the planner Bug2+ repre-
sents the non-anytime version of the algorithm ABUG. On
the other hand, the strategy NF1 constitutes the simplest
and more efficient way of building an artificial potential
function with its only minimum located at the target point T .
By applying a wave-propagation technique and a gradient-
descent method, NF1 computes the shortest collision-free
path from S to T . Alternatively, ARA� is a heuristic-based
anytime strategy which operates by executing a series of A�

searches with decreasing inflated heuristics. The approach
provides suboptimality bounds for each successive search
whose solution is guaranteed not to cost more than ε times
the cost of the optimal path. ARA� gains efficiency by
making each A� search reuse the results of the previous
search iterations. Finally, regarding probabilistic / sampling-
based planners, a goal-biased version of the algorithm RRT
has also been taken into account. This randomized strategy
incrementally builds a search tree that attempts to rapidly
and uniformly explore the free space. RRT has shown to be
extremely good in finding feasible paths but with no control
on the quality of the solutions produced.

Four different scenarios are proposed to assess the per-
formance of ABUG against each of the above-mentioned
planners (see fig. 6). The first mission is intended to
test the ability of the strategies to realize that the path-
planning problem has no solution. It is important to note that
sampling-based methods do not assume that such a situation
can happen so that no performance data will be given for the
algorithm RRT in mission 1. On the other hand, the second
mission corresponds to a simple scenario where no obstacles
are located in the environment. Beyond this simplicity,
mission 3 defines a topologically complex scenario under the
form of a multiply-connected maze. Finally, in mission 4,
many small obstacles are strategically spread throughout
the environment. This last scenario constitutes an important
challenge for the algorithm ABUG because of the high
number of paths / solutions which the strategy finds.

All the scenarios are represented as a grid-based map with
a resolution of 5cm, and a size of 150m × 150m —9,000,000
cells— for mission 3 and 100m × 100m —4,000,000 cells—
for the rest of scenarios.

As for the configuration of parameters, the more usual
settings defined by their corresponding authors have been
used for the strategies NF1, goal-biased RRT, and ARA�

(more precisely, regarding the latter, the inflation factor has
been set to ε = 3.0, decreasing in 0.5 steps, which leads
to a succession of five A� searches). On the other hand,
in case of Bug2+, a left value has been assigned to the
parameter pCFD. Finally, the algorithm ABUG has been
executed in its default / non-accelerated mode of operation

4In [3], the strategy ARA� is favorably compared against another anytime
algorithm named Anytime A� [5]. Consequently, if the comparative study of
this section demonstrates that ABUG is clearly more efficient than ARA�,
we can expect ABUG to outperform Anytime A� as well.

5By including the strategy RRT into the comparative study, we are
also considering, although only in part, the anytime version of such an
algorithm named ARRT [4]. The Anytime RRT approach computes its first
path / solution by growing a standard RRT without any cost considerations.

(ε = 1.0) in all the scenarios except for mission 4 where the
value for ε was 3.0 to speed up ABUG when dealing with
the 1024 resulting paths

(|Π|=|Π∗|=512 in this troublesome
mission

)
. Nevertheless, for comparison purposes, the results

associated with the execution of ABUG in its default mode
are also reported for mission 4.

Fig. 6(a),(b),(c) and (d) present the results obtained on
the four scenarios previously described. The processing times
provided correspond to a PC laptop Intel Core Duo @
1.66 GHz running Windows XP Media Center SP2. Observe
that, in mission 2, just one solution —and not five— is given
for the strategy ARA�. This is because the path found with
ε = 3.0 —the first and highest inflation factor for ARA�

according to the proposed parameter setting— was already
optimal being thus irrelevant the four remaining solutions.

As can be observed in fig. 6(a),(b),(c) and (d), generally
speaking, the strategy Bug2+ computes its first —and only—
path slightly faster than ABUG. This is due to the fact that
ABUG needs some extra time to look for the best (ε = 1),
or a bounded (ε > 1), Bug2+-compliant path. However, the
restricted search performed by ABUG results in a first path
of higher quality than the one by Bug2+.

In comparison with the other strategies, ABUG is 63 times
quicker than the best competing approach in detecting the
impossibility of reaching the target in mission 1. Addition-
ally, from mission 2 to 4, ABUG, on average, generates
its first solution 9 times more rapidly and converges to the
optimal path 50 times faster than the algorithms NF1, ARA�,
and RRT.

V. CONCLUSIONS

A deterministic anytime path planner inspired by a Bug-
derivative algorithm has been formally described and, later,
compared against some well-known strategies in the field,
such as NF1, ARA� (indirectly, Anytime A� as well), and RRT
(indirectly, ARRT as well). The performance of the approach
proposed, ABUG, turns out to be significantly better than
the one provided by the aforementioned competing planners.
ABUG efficiently computes a succession of progressively
better solutions or rapidly indicates failure when the given
target is unreachable, which makes it well suited for planning
on robots with severe computational power limitations.

ABUG has been defined for two-dimensional Euclidean
configuration spaces. Nevertheless, the strategy can be ex-
tended to higher-dimensional problems maintaining both the
efficiency of the algorithm and some of its more relevant
properties, although at the cost of not guaranteeing conver-
gence to the optimal solution. Such an extension, assuming
a three-dimensional configuration space, could be achieved
by searching for Bug-compliant paths in two-dimensional
manifolds containing, each of them, the initial and the target
configurations. This work is already finished and will be the
matter of a future paper. However, bringing forward some of
these results, fig. 6(e) shows a path computed by ABUG in
a three-dimensional grid-based environment.

5412

Mission #1

S

T

Alg. tU

NF1 503

RRT —

ARA� 44,343

Bug2+ 8

ABUG 8
(ε = 1)

Mission #2
Alg. t1

l1
σopt

NF1 750 1.00

RRT 66 1.09

ARA� 621 1.00

Bug2+ 6 1.00

ABUG 6 1.00
(ε = 1)

(a) (b)
Mission #3

Alg. t1
l1

σopt
t2

l2
σopt

t3
l3

σopt
t4

l4
σopt

t5
l5

σopt

NF1 18,500 1.00

RRT 701 1.28

ARA� 47,687 1.01 1,083 1.01 1,480 1.01 2,024 1.01 2,082 1.00
×103 ×103 ×103 ×103

Bug2+ 34 3.79

ABUG 59 1.61 138 1.32 399 1.00
(ε = 1)

(c)
Mission #4

Alg. t1
l1

σopt
t2

l2
σopt

t3
l3

σopt
t4

l4
σopt

t5
l5

σopt

NF1 2,640 1.00

RRT 72 1.24

ARA� 6,406 1.19 6,422 1.19 6,422 1.19 44,016 1.16 430 1.00
×103

Bug2+ 11 2.68

ABUG 626 2.24 629 1.00
(ε = 1)

ABUG 15 2.49 25 2.07 78 1.66 188 1.30 1,961 1.00
(ε = 3)

(d)
Obstacle

Obstacle

Obstacle

tU = time elapsed (ms) until reporting that the goal is unreachable

li = length of the ithpath

ti = time instant (ms) in which a strategy provides its ithpath

(remember that, in case of ABUG, a solution is not provided for

each element in the sets Π and Π∗ but after finding / computing

a path which is shorter than all the previous ones —worse paths

are simply rejected)(e)

Fig. 6. Experimental set-up and results: (a, b, c, d) processing times and quality of the solutions in the order that they are produced for the four scenarios
considered (the shortest path generated by ABUG (π∗

best), if exists, is superimposed on the layout of each mission; observe that ABUG assumes that
navigation is allowed along the obstacle boundaries); (e) ABUG solving a three-dimensional path-planning problem.

REFERENCES

[1] J-C. Latombe. Robot Motion Planning. Kluwer Academic, 1991.
[2] S. LaValle. Planning Algorithms. Cambridge University Press, 2006.
[3] M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A* with

provable bounds on sub-optimality. In Proc. of Advances in Neural
Information Processing Systems. MIT Press, 2003.

[4] D. Ferguson and A. Stentz. Anytime RRTs. In Proc. of IROS, 2006.
[5] R. Zhou and E. Hansen. Multiple sequence alignment using A�. In

Proc. of the National Conference on Artificial Intelligence, 2002.
[6] J. Ng and T. Braunl. Performance comparison of Bug navigation

algorithms. Journal of Intelligent and Robotic Systems, 2007.
[7] V. Lumelsky and A. Stepanov. Path-planning strategies for a point

mobile automaton moving amidst unknown obstacles of arbitrary
shape. Algorithmica, 1987.

[8] J. Antich, A. Ortiz, and J. Minguez. Bug2+: Details and formal proofs.
Technical Report A-1, University of the Balearic Islands, 2009.

[9] P. Hart, N. Nilsson, and B. Rafael. A formal basis for the heuristic
determination of minimum cost paths. IEEE T-SSC, 1968.

[10] J. Pearl. Heuristics. Addison-Wesley, 1984.
[11] W. Massey. Algebraic Topology. Harcourt, Brace & World, 1967.
[12] S. Bespamyatnikh. Computing homotopic shortest paths in the plane.

Journal of Algorithms, 2003.
[13] D. Ferguson, M. Likhachev, and A. Stentz. A guide to heuristic-

based path planning. In Proc. of the workshop on Planning under
Uncertainty for Autonomous Systems at ICAPS, 2005.

[14] J. Barraquand, B. Langlois, and J. Latombe. Numerical potential field
techniques for robot path planning. IEEE T-SMC, 1992.

[15] S. LaValle and J. Kuffner. Randomized kinodynamic planning.
International Journal of Robotics Research, 2001.

5413

