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Abstract— The this work deals with neural network-based
gait-pattern adaptation algorithms for an active lower limbs
orthosis. Stable trajectories are generated during the optimiza-
tion process, considering a stable trajectory generator based
on the Zero Moment Point criterion and the inverse dynamic
model. Additionally, two neural network (NN) are used to
decrease the time-consuming computation of the model and
ZMP optimization. The first neural network approximates the
inverse dynamics and the ZMP optimization, while the second
one works in the optimization procedure, giving the adapting
parameter according to orthosis-patient interaction. Also, a
robust controller based on the H∞ method is designed to
attenuate the effects of external disturbances and parametric
uncertainties in the trajectory tracking errors. The dynamic
model of the actual exoskeleton, with interaction forces in-
cluded, is used to generate simulation results.

I. INTRODUCTION

The use of robotics as support for rehabilitation procedures
is increasing due mainly to the importance of exercises for
functional rehabilitation [1]. The robotic orthosis Lokomat
is being used for rehabilitation of patients with stroke or
spinal cord injury individuals [3]. The device is installed in
a treadmill and the patient walks using a weight compensator
and performing a fixed gait-pattern, imposed through a joint
position control of the robotic orthosis. Gait-pattern adapta-
tion algorithms, based on the human-machine interaction, are
proposed in [4], [6] to ensure the patient is not only having
its leg moved passively for the locomotion device.

The proposed algorithms in [6] can not be applied directly
for active lower limbs orthoses since they were developed for
a fixed base robotic system, the Lokomat orthosis. They do
not consider the stability of the gait-pattern. For exoskeleton,
which can be considered as a biped robot, the generation
of a stable walking pattern is an essential issue. In [2], it
is presented a trajectory generator for biped robots taking
into account the ZMP (Zero Moment Point) criterion [9].
Specific points of the ankle and hip trajectories are defined
according to the desired step length and duration, and the
minimization of a functional related to the ZMP. The cubic
splines interpolation method is used to generate the smooth
and second-order differentiable curves. The joint trajectories
are obtained from inverse kinematics. In [5], the trajectory
generator proposed in [2] is extended for different ground
inclinations and stairs.

In this paper it is proposed the application of the inverse
dynamic-based gait-pattern adaptation algorithm proposed
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in [6] considering the stable trajectory generator described
in [2]. In this way, stable trajectories are generated during
the optimization process where the step duration, considered
here as the adaptation parameter, is updated according to the
orthosis-patient interaction. Furthermore, two neural network
(NN) are used to decrease the time-consuming computation
of the model and ZMP optimization. The first one works as
function approximator of the model-dependent term, while
the second one works as part of the optimization procedure
and gives the adapted parameter.

To ensure the orthosis-patient system follows the desired
trajectory even in the presence of external disturbances and
parametric uncertainties, a robust controller based on H∞

performance is implemented. In [7], the authors present
experimental results obtained from the implementation in
robot manipulators of a nonlinear H∞ control via quasi-
linear parameter varying (quasi-LPV) representation . The
quasi-LPV representation of a nonlinear system is a state-
space equation where the system matrices are functions of
state-dependent parameters [12]. In [8], a similar controller
is proposed for disturbance attenuation considering a semi-
passive dynamic walking of biped robots.

The paper is organized as follows: Section II presents the
trajectory generator for biped robots; Section III presents the
dynamic model of the orthosis-patient system and the robust
controller design; Section IV introduces the gait-pattern
adaptation algorithm based on inverse dynamics applied
to exoskeletons; Section V presents the neural networks’
structures and the complete description of the optimization
process; Section VI presents the results of the gait-pattern
adaptation algorithm applied to an exoskeleton model; and
Section VII shows the conclusions.

II. TRAJECTORY GENERATION
WITH ZMP CRITERION

In this section, the trajectory generator for biped robots
proposed in [2] is presented, with some considerations about
the ZMP trajectory optimization. It is considered the ex-
oskeleton as a biped robot with trunk, knees and feet, as
shown in Figure 1. According to [2], the walking cycle
can be divided in two phases, double support and single
support. The double support phase starts when the heel of the
forward foot touches the ground and finishes when the toe
of the backward foot leaves the ground. The second phase
is characterized by the fact only one foot is in contact with
the ground. In this work, the double support represents 20%
of the entire walking cycle.

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 4475



Fig. 1. Biped robot model.

Consider the inertia coordinate system of Figure 1. The
foot and hip trajectories can be respectively parametrized
as Xa = [xa(t),za(t),θa(t)]T , where (xa(t),za(t)) is the ankle
position and θa(t) is the angle between the foot and the
horizontal plane, and Xh = [xh(t),zh(t),θh(t)]T , where (xh(t),
zh(t)) is the hip position and θh(t) is the angle between the
trunk and the horizontal plane.

A. Foot Trajectory

The step k occurs between the kTc and (k + 1)Tc time
instants, where Tc is the step time interval (s). Step k is
defined starting when the heel of any foot leaves the ground
and finishing when the same heel touches the ground again,
Figure 2. qb and q f are the angles of the foot with relation
to the horizontal at the initial and final time instants of the
swing phase (single support), respectively.

Fig. 2. Walking cycle, double and single support phases.

Assuming that the left foot is completely in contact with
the ground during the times kTc + Td and (k + 1)Tc, the
following conditions can be stated:

θa =


qgs(k), t = kTc
qb, t = kTc +Td
−q f , t = (k +1)Tc
−qge(k), t = (k +1)Tc +Td

(1)

where Td is the time interval of the double support phase,
qgs(k) and qge(k) are the ground slope for the initial and final
step instants, respectively.

The following specifications can also be defined for the
foot position:

xa =



kDs, t = kTc
kDs + lansin(qb)

+la f (1− cos(qb)), t = kTc +Td
kDs +Lao, t = kTc +Tm
(k +2)Ds− lansin(q f )

−lab(1− cos(q f )), t = (k +1)Tc
(k +2)Ds, t = (k +1)Tc +Td

(2)

and

za =


hgs(k)+ lan, t = kTc
hgs + la f sin(qb)+ lancos(qb), t = kTc +Td
Hao, t = kTc +Tm
hge + labsin(q f )+ lancos(q f ), t = (k +1)Tc
hge(k)+ lan, t = (k +1)Tc +Td

(3)
where (Lao,Hao) is the higher foot position (this position
occurs at kTc + Tm), Ds is the step length (m), lan is the
foot height and la f is the distance between the heel and
the ankle joint. The heights of the ground when the foot
is touching it are defined as hgs(k) and hge(k), for the initial
and final step instants, respectively. Some constraints on right
foot velocities are also imposed, see [2] details.

A smooth trajectory can be generated through the inter-
polation method based on cubic splines, which generates a
second order differentiable trajectory for all time interval.

B. Hip Trajectory

It is considered that the angle between the trunk and the
horizontal axis θh(t) presents no variation along the walking
cycle. Also, as the position of the ZMP is not affected by the
hip motion in the z direction, it is assumed a little variation
between the highest position Hhmax and the lowest position
Hhmin, where the former occurs at the middle of the single
support phase and the second at the middle of the double
support phase. That is, zh can be defined as:

zh =

 Hhmin, t = kTc +0,5Td
Hhmax, t = kTc +0,5(Tc−Td)
Hhmin, t = (k +1)Tc +0,5Td .

(4)

Considering the sagittal plane, the hip motion along the
x direction is the main contribution for the ZMP be inside
the support polygon. In [2] it is proposed generate a set of
stable trajectories xh(t) and select the trajectory with large
stability margin according to the ZMP criterion.

The following conditions are defined for the hip trajectory
along the x direction:

xh =

 kDs + xed , t = kTc
(k +1)Ds− xsd , t = kTc +Td
(k +1)Ds + xed , t = (k +1)Tc

(5)

where xsd and xed are the distances along the x direction
from the hip to the ankle of the support foot at the initial
and final time instants of the swing phase, respectively. In
this paper, these values are constrained to xsd ∈ (0;0.5Ds)
and xed ∈ (0;0.5Ds).
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Considering the interpolation method based on cubic
splines, it is possible to generate different trajectories and
to select the best one according to the ZMP criterion. To
guarantee that the ZMP remains most of the time next to
the center to the support polygon, the following functional
is defined:

J(xed ,xsd) =
∑

p
n=1 d2

ZMP

p
, (6)

where dZMP is the distance between the ZMP and the center
of the stability region defined by the convex polygon of the
contact points and p is the number of points throughout the
trajectory in which dZMP is computed.

C. Optimization Issues

The steepest descent algorithm was selected as the op-
timization method. It presents a easy implementation and
high convergence rate after all parameters be adjusted. The
computation of J is highly time consuming if a representative
number of trajectory points p must be considered. The
algorithm is defined as:

Xn+1 = Xn−η∇J(xed ,xsd) (7)

where Xn is the vector containing the values of xed and xsd for
optimization step n, η is the optimization rate and ∇J(xed ,
xsd) is the functional gradient with relation to xed and xsd .

From the analysis of the variation of J given a variation of
Ds, it is proposed a relation between the step length, Ds, and
the maximum height, Hhmax. For a given Ds, Hhmax can be
computed as the height of the isosceles triangle defined by
base Ds and sides Lth +Lsh plus the ankle height. This value
is parametrized by parameters defined as function of (Ds−
0.5) an (T c−0.9), the differences from the initial values of
Ds and Tc, as shown in the following equations:

Hhmax =

√
(Lsh +Lth)2− (

Ds

2
)

2
+ lan

 .α1.α2, (8)

{
α1 =

(
Ds−0.5

0.5

)2
−1, Ds−0.5 > 0,

α1 = 1, Ds−0.5 < 0,
(9)

α2 =
(
|Tc−0.9|

0.9

)3.2

−1. (10)

where Lsh and Lth are the lengths of the shin and thigh,
respectively.

Fig. 3. Surfaces for J considering the empiric relation for Hhmax.

Figure 3 shows the surfaces for J computed for different
values of Ds and considering the empirical relation for Hhmax.
Note that the functional domain remains suitable for the
optimization, even with the variation of Ds.

III. ORTHOSIS-PATIENT DYNAMICS AND ROBUST
CONTROL DESIGN

To implement the robust controller and the gait-pattern
adaptation algorithm, the orthosis is modeled according to
the basic robotic equation,

Mort(q)q̈+Cort(q, q̇)+Gort(q) = τa + τpat + τd , (11)

where q ∈ ℜn is the generalized coordinates vector, M ∈ ℜnxn

is the symmetrical, positive definite inertia matrix, C ∈ ℜn

is the centrifugal and Coriolis torques vector, and G ∈ ℜn

is the gravitational torques vector. The terms τ ∈ ℜn are the
torques acting in orthosis: τa is the torque supplied by the
actuators, τpat is the torque generated for the orthosis-patient
interaction, and τd is the torque generated by any external
disturbances acting in the patient-orthosis system.

The torque of interaction between the orthosis and the pa-
tient, τpat , can be divided in active and passive components.
The passive patient torque, τpat,pas, is the torque necessary to
move the patient if he/she is moving in a passive way. In case
that the patient influences in the orthosis movement, he/she
will produce the active patient torque, τpat,act . Therefore, Eq.
(11) can be rewrite, considering now, the orthosis-patient
dynamics,

Mort+pat (q) q̈+Cort+pat (q, q̇)+Gort+pat (q)
= τa + τpat,act + τd , (12)

where Mort+pat(q), Cort+pat(q, q̇), and Gort+pat(q) correspond
to the combination of the orthosis and patient dynamics.

For to the control, the state tracking error is defined as:

x̃ =
[

q̇− q̇d

q−qd

]
=

[
˙̃q
q̃

]
(13)

where qd and q̇d ∈ ℜn are the desired reference trajectory
and the corresponding velocity, respectively. The variables
qd , q̇d and q̈d , the desired acceleration, are assumed to be
within the physical and kinematics limits of the manipulator.

The dynamic equation for the tracking error is given from
(12) and (13) as

˙̃x = A(q, q̇)x̃+Bu+Bw (14)

with

A(q, q̇) =
[
−M−1

ort+pat(q)Cort+pat(q, q̇) 0
In 0

]
,

B =
[

In
0

]
,

w =M−1
ort+pat(q)δ (q, q̇, q̈),

u =M−1
ort+pat(q)(τ −Mort+pat(q)q̈d −Cort+pat(q, q̇)q̇d

−Gort+pat(q)),
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where δ (q, q̇, q̈) are the composed disturbances defined as
the sum of the external disturbances, τd , and the para-
metric uncertainties on the dynamic matrices Mort+pat(q),
Cort+pat(q, q̇) and Gort+pat(q). The applied torque is given
by:

τ = Mort+pat(q)(q̈d +u)+Cort+pat(q, q̇)q̇d +Gort+pat(q).

Actually, the robust controller is working to attenuate only
the effects of the external disturbances and the parametric
uncertainties on the trajectory tracking errors. The active
patient torque, τpat,act , is not included into the composed
disturbances, δ (q, q̇, q̈), since it will be attenuated by the
gait-pattern adaptation algorithm.

A. State-feedback H∞ Control Design

In this section it is presented the formulation and solution
for the state-feedback H∞ control problem for quasi-LPV
systems, where the variyng parameters are function of the
system states.

The tracking error dynamics shown in Eq. 14 is actually
a quasi-LPV system, since, although the matrix Mort+pat(q)
explicitly depends on the joint positions, we can consider it
as function of the position error [7]:

Mort+pat(q) = Mort+pat(q̃+qd) = Mort+pat(x̃, t).

The same can be observed for C0(q, q̇).
Consider the state-feedback control problem

ẋ = A(ρ(x))x+B1(ρ(x))w+B2(ρ(x))u,

z1 = C1(ρ(x))x,
z2 = C2(ρ(x))x+u

(15)

where x∈ℜn is the state, u∈ℜq2 is the control input, w∈ℜp

is the disturbance input, z1 ∈ ℜq1 and z2 ∈ ℜq2 are system
outputs, A(·), B1(·), B2(·), C1(·) and C2(·) are continuous
matrices of proper dimensions and ρ(x) ∈ Fν

P , defined by

Fν
P =

{
ρ∈C 1(ℜ+,ℜm) :ρ(x)∈P, |ρ̇i| ≤ νi, i = 1, . . . ,m

}
,

where P ⊂ ℜm is a compact set, and ν = [ν1 · · ·νm]T with
νi ≥ 0. The system (15) presents L2 gain≤ γ in the interval
[0,T ] if ∫ T

0
‖z(t)‖2

2 dt ≤ γ
2
∫ T

0
‖w(t)‖2

2 dt, (16)

for all T ≥ 0, all w∈L2(0,T ) with the system starting from
x(0) = 0 and z(t) = [z1(t)T z2(t)T ]T . The objective is to
find a continuous function F(ρ(x)), such that the system in
closed-loop presents L2 gain ≤ γ with state-feedback law
u = F(ρ(x))x. This problem was solved in [12] and the
solution is given in the following.

If there exists a continuous differentiable function
X(ρ(x)) > 0 for all ρ(x) ∈ P that satisfies G(ρ) X(ρ)CT

1 (ρ) B1(ρ)
C1(ρ)X(ρ) −I 0

BT
1 (ρ) 0 −γ2I

 < 0, (17)

where

G(ρ)=−
m

∑
i=1
±
(

νi
∂X
∂ρi

)
+Â(ρ)X(ρ)+X(ρ)ÂT(ρ)−B2(ρ)BT

2(ρ)

and Â(ρ) = A(ρ)− B2(ρ)C2(ρ), then, with state-feedback
law

u =−(BT
2 (ρ)X−1(ρ)+C2(ρ))x, (18)

the closed-loop system has L2 gain ≤ γ for all parameter
trajectories ρ(x) ∈ Fν

P .
Note that (17) actually represents 2m inequalities and

∑±(·) indicates that every combination +(·) and −(·) should
be satisfied. A practical scheme ([12], [7]) can be used to
solve the infinite dimensional convex optimization problem
represented by (17). First, choose a set of C 1 functions,
{ fi(ρ(x))}M

i=1, as base for X(ρ), i.e.,

X(ρ(x)) =
M

∑
i=1

fi(ρ(x))Xi,

where Xi ∈ Sn×n is the matrix coefficient for fi(ρ(x)).
Second, the parameters set P is divided in L points,

{ρk}L
k=1, in each dimension. Since (17) consists in 2m entries,

a total of (2m +1)Lm matrix inequalities in term of matrices
{Xi} should be solved.

IV. GAIT-PATTERN ADAPTATION ALGORITHM

In this section, an adaptation algorithm is used to generate
the trajectory parameter Tcadap , according to the interaction
between the orthosis and the patient.

Considering Eq. 12, the proposed algorithm, based on the
inverse dynamics of the orthosis-patient system, works by
minimizing the following functional,

J (δqr,F) = ∑

∥∥∥τpat,act (F)(k)−δτ (δqr)(k)
∥∥∥2

2
,

where F represents the interaction forces between patient and
orthosis and δqr is the reference trajectory change due to
Tc variation [6]. The torque variation produced by a change
in the reference trajectory, δτ(δqr), is computed from the
orthosis-patient dynamics as

δτ (δqr) =Mort+pat (qr +δqr)
(

q̈r + δ̈qr

)
+Cort+pat

(
qr +δqr, q̇r + δ̇qr

)
+Gort+pat (qr +δqr)−Mpat,ort (qr) q̈r

−Cpat,ort (qr, q̇r)−Gpat,ort (qr) ,

where qr, q̇r and q̈r are the reference trajectory and its first
and second derivatives, respectively.

V. NEURAL NETWORK SYSTEM

The proposed optimization system employs two Multilayer
Perceptron NNs, Figure 4. The first NN is trained off-
line using the orthosis-patient dynamics and the reference
trajectory change, δqr, to give the torque variation, δτ(δqr).
The use of the NN to approximate the torque variation is
justified because, in this case, the ZMP optimization is not
analytically performed. This procedure is time-consuming.

4478



The first NN is composed by 3 input neurons, related
to the current value of Tc, Tcactual , the adapted value of
Tc, Tcadap , and the actual instant of time, t. Also, there
are 12 hidden neurons and 7 output neurons, related to
the torque variation, δτ(δqr). The following parameters
were considered during the training phase (6000 epochs):
t ∈ [0;0.90] s; Tcadap ∈ [0.80;0.90] s; Tcactual ∈ [0.80;0.90]
s; learning rate, α = 0.4 and momentum, ω = 0.89. It is
necessary to include the current value of the step time, Tcactual ,
since, in every optimization step, δτ(δqr) is computed as a
variation from the current trajectory.

The second NN is trained on-line, after each complete step.
The objective of this NN is to find Tcadap that minimizes the
functional J. Hence, the input to the backpropagation phase
is the gradient of J with relation to Tcadap . This value is
computed using the first NN. The input value for the second
NN is Tcactual , the actual value of the step time, t, and the
output is Tcadap , the adapted value. This NN is composed
by 12 hidden neurons and the convergence occurs after
10 epochs. Both NNs used logistic activation function for
all neurons. The inputs and outputs were normalized using
maximum and minimum values for each variable.

Fig. 4. Structure of Neural Network-based system.

VI. SIMULATION RESULTS

The orthosis used for the exoskeleton for lower limbs cor-
responds to one Reciprocating Gait Orthosis LSU (Lousiana
State University). Figure 5 shows the orthosis and the exo-
skeleton design. It is considered that all joint in the sagittal
plane will be driven by an Series Elastic Actuator (SEA).
SEA can performed force and impedance controls, which can
be used to generate a variable impedance controller [10].

The dynamic parameters of the orthosis, shown in Tab. I,
was obtained by the Solid Edge model. It is also presented
the parameters of the patient considered in the simulation,
obtained from [11], considering a 85 kg, 1.74 m individual.

An analytical model of the orthosis, considering the patient
interaction and ground reaction forces, is developed using the
Symbolic Toolbox of the Matlab. Figure 6 shows the motion
animation of the orthosis-patient system for a simulation of
two steps. In the initial step it is considered Ds = 0.5 and
Tc = 0.9. For the second step Ds = 0.5 and Tc = 0.82 (Tc

Fig. 5. RGO orthosis and exoskeleton design (Solid Edge).

desired). Only the orthosis representation is shown since the
patient dynamic is incorporated in the orthosis dynamics.

TABLE I
ORTHOSIS AND PATIENT DYNAMIC PARAMETERS.

Orthosis Patient
Mtotal,ort 4.8 Mtotal,pat 85
Ltotal,ort 1.0 Ltotal,pat 1.74

Limb Mass (kg)
Mtigh,ort 0.95 Mtigh,pat 8.5
Mleg+ f oot,ort 0.72 Mleg+ f oot,pat 5.2

Mtorso,ort 1.49 Mtorso,pat 57.6
Limb Length (m) - z direction

Ltigh,ort 0.39 Ltigh,pat 0.39
Lleg+ f oot,ort 0.49 Lleg+ f oot,pat 0.49

Ltorso,ort 0.12 Ltorso,pat 0.87

Fig. 6. Motion animation of the orthosis-patient system.

In this section, the neural network-based gait-pattern
adaptation algorithm presented in Sections IV and V is
implemented in the model of the orthosis of Fig. 5. The initial
trajectory, considered here as the nominal one, is defined by
Ds = 0.5 and Tc = 0.9.

Because only simulation is performed in this work, the
interaction torque between orthosis and patient (active pa-
tient torque) must be artificially estimated from a definite
trajectory. In this work, this value is computed through the
comparison between the desired trajectory for the patient,
qd

pat and the actual desired trajectory, qd . It is assumed that
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the interaction torque results of a spring type virtual coupling
between the patient desired position and the real position,

τpat,act = K
(

qd
pat −qd

)
. (19)

The spring stiffness is adjusted in order to take realistic
magnitudes of the active patient torque. For sake of simplic-
ity, the desired trajectory of the patient is defined by Ds = 0.5
and Tc = 0.82. These parameters represent an increase of
approximately 10% in the walking velocity. The adaptation
of the parameter Tc is conducted at the end of the step,
considering five equally spaced points throughout the step
time.

The value of the adapted parameter is then updated as
actual parameter and a new step of the orthosis-patient
model simulation is performed. The final adapted parameter
after three steps or 2.9s, that is, after three sequences of
optimization of the parameters, is Tcadap = 0.8218. The values
of Tc attained for each one for the three optimizations in
this simulation were 0.8286,0.8187 and 0.8218, respectively.
Figure 7 presents the nominal, patient desired, adapted and
actual trajectories of the left shin, referring three steps,
initiating with the right leg in stance. Note that at the second
step, after t = 1.05 s, the adapted trajectory comes close to
the patient desired trajectory.

Fig. 7. Nominal, patient desired, adapted and actual trajectories of the left
shin, absolute angle.

It can be observed that the algorithm obtained satisfactory
results with relation to the adaptation of the parameters used
in the patient desired trajectory. Note that the algorithm has
good results just at the beginning of the second walking cycle
(after the first step). Thus, the necessary time for the adap-
tation of the trajectory is small, showing the functionality of
the algorithm.

It was also observed that the proposed NN-based algorithm
presented a decrease of approximately 70% in the processing
time, compared with the model-based algorithms. The results
show that the proposed NN-based algorithm is suitable for
application in an actual active orthosis.

External disturbances acting in the patient-orthosis joints
can be simulated as additional torques applied to the actua-
tors. In this paper, it is considered in the simulation external
disturbances composed of normal and sine functions, see [8]
for details. From Figure 7 it can be verified that the robust
controller rejected the external disturbances applied at the
initial part of each step.

VII. CONCLUSIONS

This paper presents a neural network-based gait-pattern
adaptation algorithm which considers orthosis-patient inter-
action forces and the ZMP criterion, allowing to the patient
to modify the gait-pattern as his/her degree of voluntary
locomotion still maintaining the walking stability. Two neural
network (NN) are used, the first one approximates the inverse
dynamics and the ZMP optimization, while the second one
works in the optimization procedure. Also, a robust controller
is proposed to attenuate the deviations from the desired tra-
jectories due to external disturbances and parametric uncer-
tainties. The simulation results show the proposed adaptation
algorithms can be applied in the actual exoskeleton being
constructed to assist people with disabilities in walking.
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