
Action-Related Place-Based Mobile Manipulation

Freek Stulp, Andreas Fedrizzi, Michael Beetz
Intelligent Autonomous Systems Group, Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany

{stulp,fedrizzi,beetz}@cs.tum.edu

Abstract— In mobile manipulation, the position to which the
robot navigates has a large influence on the ease with which a
subsequent manipulation action can be performed. Whether
a manipulation action succeeds depends on many factors,
such as the robot’s hardware configuration, the controllers
the robot uses to achieve navigation and manipulation, the
task context, and uncertainties in state estimation. In this
paper, we present ‘ARPLACE’, an action-related place which
takes these factors, and the context in which the actions are
performed into account. Through experience-based learning,
the robot first learns a so-called generalized success model,
which discerns between positions from which manipulation
succeeds or fails. On-line, this model is used to compute a
ARPLACE, a probability distribution that maps positions to a
predicted probability of successful manipulation, and takes the
uncertainty in the robot and object’s position into account. In
an empirical evaluation, we demonstrate that using ARPLACEs
for least-commitment navigation improves the success rate of
subsequent manipulation tasks substantially.

I. INTRODUCTION

A key aspect of mobile manipulation research is that
navigation and manipulation are not considered in isolation,
but that the focus is on developing methods to navigate in
order to manipulate. The close coupling between navigation
and manipulation becomes apparent in Fig. 1, where the
robot’s task is to approach the table in order to grasp a cup.
A trivial approach to solving this task is simply going to a
position such that the target object is well-in-reach. However,
a more careful look at the question raises some serious
issues: What is a good place in the context of an intended
manipulation action? Does well-in-reach always imply that
the target object can really be reached, given the hardware
and control software of the robot? How can such a concept
of ‘place’ take into account uncertainties about the robot’s
self-localization and estimated target object position?

We address these questions by developing an action-
related place, denoted ARPLACE, that takes into account
the manipulation and navigation skills of a robot, as well
as its hardware configuration. ARPLACE is represented as a
probability distribution, that maps (estimations of) the target
object’s and robot’s position to a probability that the target
object will be successfully grasped from that position.

Fig. 2 visualizes an ARPLACE for a given target object po-
sition. ARPLACE implements a least commitment realization
of positions. This means that the robot does not commit itself
to a specific goal position, but can refine it as the robot learns
more about the task context, e.g. better estimations of the
target object’s pose, observed clutter in the environment, etc.
ARPLACE is very flexible representation of place and can
also be used to find good positions for manipulating multiple

Fig. 1. Mobile manipulation task considered in this paper. Example of a
successful and a failed attempt. This figure is explained in more detail in
Section IV.

objects, to optimize the place for executing a sequence of
manipulation actions, or to optimize secondary constraints
such as execution duration.

Fig. 2. Probability distribution of successful manipulation, given a pose
estimation of the cup. This is the robot’s ARPLACE for this task.

By actively considering a multitude of appropriate ma-
nipulation positions in a least-commitment way, ARPLACE
forestalls and avoids positions from which manipulation is
difficult. Our empirical evaluation demonstrates that this
leads to more robust mobile manipulation.

Manually designing an explicit model of ARPLACE that
takes all the questions in the first paragraph into account
is tedious and error-prone due to the large state space. We
therefore believe that the robot should acquire ARPLACE
1) autonomously, through learning from interactions with the
environment 2) with respect to its own capabilities, which are
limited by the hardware and control programs.

As depicted in the computational model of our approach
in Fig. 3, the robot learns ARPLACEs for a task by first

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 3115

gathering experience in simulation. By using Support Vec-
tor Machines, we then acquire classification boundaries. A
classification boundary models regions from which a certain
manipulation task was successfully executed. As a final step
of model creation we compile the multiple classification
boundaries into one generalized success models (GSM).
This is done by using a Point Distribution Model (PDM).
During online task execution, the robot queries the GSM
to determine positions that are appropriate for starting the
manipulation task.

Fig. 3. Computational model (Numbers refer to sections in the paper).

The rest of this paper is structured as follows. In the
next section, we discuss related work. We then describe the
rationale behind ARPLACE in Section III. How the GSM
is learned is explained in Section IV. Section V shows how
the GSM is used to compute an ARPLACE. In Section VI
we present an empirical evaluation of the system, and we
conclude with Section VII.

II. RELATED WORK

Berenson et al. [3] deal with the problem of finding opti-
mal start and goal configurations for manipulating objects in
pick-and-place operations. They explicitly take the placement
of the mobile base into account. But as they are interested in
the optimal start and goal configurations, they do not have a
probabilistic representation of the whole space.

The capability map is another option to model robot con-
figurations that lead to successful grasping [16]. Capability
maps can be used to find regions where the dexterity of a
manipulator is high. As they only consider the kinematics of
a robot, they are not optimized for a given skill repertoire or
environment; in short, they are not action-related. Although
there are methods that use the capability map for computing
arm motions to reach a certain pose [16], these methods do
not cope with the problem of uncertain pose estimations.

Learning success models is a form of pre-condition learn-
ing. In robotics, the focus in pre-condition learning is on
grounding pre-conditions in robot experience. For instance,
‘Dexter’ learns sequences of manipulation skills such as
searching and then grasping an object [9]. Declarative knowl-
edge such as the length of its arm is learned from experience.
Learning success models has also been done in the context
of robotic soccer, for instance learning the success rate of
passing [5], or approaching the ball [14]. Our methods extend
these approaches by explicitly representing the region in
which successful instances were observed, and computing
generalized success models from these regions.

Friedman and Weld demonstrated the advantages of least
commitment planning in [7]. They showed that setting open

conditions to abstract actions and later refining this choice to
a particular concrete action can lead to exponential savings.

III. ARPLACE: A PROBABILISTIC LEAST-COMMITMENT
REPRESENTATION OF PLACE

We propose ARPLACE as a powerful and flexible repre-
sentation of the utility of positions in the context of action-
related mobile manipulation. Instead of committing to a
specific position in advance, an ARPLACE enables least-
commitment planning, as a whole range of positions are
predicted to be successful, or at least probable. The robot will
start to move to a position that is good enough to execute
the subsequent manipulation action and will refine the goal
position while it moves. In the context of our scenario of
grasping a cup from a table, this would mean that ARPLACE
finds a solution area that is good enough for the robot to
start moving. For instance, the robot could choose any of the
positions for which P (succ|t) > 0.95∗max(P (succ|t)). As
the robot approaches the table, new sensor data comes in, and
the robot’s state estimate is updated (i.e. accuracy of the cup
position, information on clutteredness of regions, etc.). As a
consequence the ARPLACE is updated, and becomes more
and more precise.

The principle of least commitment is especially powerful
in real environments, where complete information, required
to compute optimal goal positions, is not available. Even if
the environment is completely observable, dynamic proper-
ties could make an optimal pre-planned position suboptimal
or unaccessible. A least-commitment implementation can
delay decisions as long as possible, and therefore is more
flexible while reducing the need for replanning.

ARPLACE is implemented as a continuous probability
distribution that represents the probability of successfully
grasping the target object when standing at a certain position.
A position p is a 3-tuple given by p := {(x, y, a) | x ∈
R, y ∈ R, a ∈] − 2π, .., 2π]}. Given an estimation of the
target object’s pose po, the covariance matrix of the pose
estimation C(po), and the covariance matrix of the robot’s lo-
calization estimation C(pr), ARPLACE assigns a probability
value to all positions p, so that P (p) = f(po, C(po), C(pr)).
How a representation of an ARPLACE looks like can be seen
in Fig. 2. A video that shows how changes in C(po) and
C(pr) affects the ARPLACE is submitted as supplementary
material to this paper.

The most probable position is not always the one with the
highest utility. ARPLACE can be easily transfered to a utility-
based representation by providing heuristics that consider
arbitrary secondary constraints like power consumption, time,
end-effector-movement, or torque-change. Selecting subgoal
parameters such that they optimize secondary criteria is
known as subgoal refinement [14].

Finally, ARPLACEs for multiple actions can be composed
by intersecting them. Assume we have computed ARPLACEs
for two different actions (a1 and a2). If the success proba-
bilities of the ARPLACEs is independent, we can compute
the ARPLACE for executing both actions in parallel by
multiplying the probabilities of the ARPLACEs of a1 and
a2. Fig. 4 illustrates this for the task of concurrently grasping

3116

two cups. This composition would be impossible if the robot
commits itself to specific positions in advance.

Fig. 4. Left distribution: grasp cup with left gripper. Center distribution:
grasp cup with right gripper. Right distribution: Grab both cups with
left/right gripper respectively. It is the product of the other two distributions.

IV. LEARNING A GENERALIZED SUCCESS
MODEL FOR ARPLACE

In this section, we describe the implementation of the off-
line learning of the GSM, as depicted in the upper row of
the computational model in Fig. 3. The rest of this section
is structured according to Algorithm 1, which is explained
throughout this section.

input : T ; (task relevant parameters (cup positions))
#episodes ; (#experiments per parameter setting)1

output : gsm ; (generalized success model)

forall cupxy in T do2
experience set.clear();3
for i=1:#episodes do4

robotxy = randompos(cupxy);5
success? = executescenario(robotxy , cupxy);6
experience set.add(〈cupxy , robotxy , success?〉);7

end8
boundary = classify(experience set) ; (With SVM)9
boundary set.add(〈cupxy , boundary〉);10

end11
H = alignpoints(boundary set);12
〈H,P,B〉 = computePDM(H);13
W = [1 T]/BT ; (Mapping from task relevant parameters to B)14

gsm = 〈H,P,W〉15
Algorithm 1: Computing a Generalized Success Model.

A. Acquiring Training Data (Line 2-6)

The robot first gathers training data by repeatedly exe-
cuting a navigate-reach-grasp action sequence. In Fig. 1, two
experiment runs with different samples for the robot position
are depicted. The navigate-reach-grasp sequence in the upper
row succeeds. It fails in the lower sequence because the
robot is too far away from the cup. To acquire sufficient
data in little time, we perform the training experiments in the
Gazebo simulator. This allows us to perform approximately
70 training experiments per hour. The model that is used and
evaluated in this paper was learned from the experience gath-
ered in 4200 training experiments. So the offline computation
time was 60 hours, or 2.5 days. Note that most of the time
is spent on restarting software modules for each episode. We
are currently optimizing the communication between these
modules so they need not be restarted, and we expect this
to reduce the off-line time by more than 50%. The robot is
modeled accurately, and thus the simulator provides training

data that is also valid for the real robot. The action sequence
is executed for a variety of task-relevant parameters. In our
scenario the robot grasps a cup at the handle with its right
arm. The task-relevant parameters were the x, y position of
the cup on a table. The 12 cup positions on the table with
which the robot is trained are depicted in Fig. 5. For each
cup position, the action sequence was executed 350 times.
The initial position for reaching and grasping was randomly
sampled, and the result whether the robot was able to grasp
the cup or not was stored in a log-file. Please note that
the logged training data does not contain noise, because the
simulator allows us to precisely know the initial cup position
and the sampled initial position of the robot. Ground truth
data from simulation thus allows us to learn an accurate
model of the task. Of course, uncertainties arise on-line due
to the robot’s perception. How this is dealt with is described
in Section V.

B. Computing Classification Boundaries (Line 9-10)
To acquire success models, we compute a classification

boundary around the successful samples using Support Vec-
tor Machines (SVM), using the implementation by [13]. We
used SVM with a Gaussian kernel σ=0.03 and cost parameter
C=20.0. The latter controls the trade off between allowing
training errors and forcing rigid margins. Fig. 5 depicts the
resulting classification boundaries for different configurations
of task-relevant parameters. To us, the data and the clusters
are shifted a bit more to the right (from the robot’s point of
view) than we would have expected when grasping the cup
with the right arm. This is due to the hardware and kinematics
of the robot, which are not very human-like. This supports
our approach of experience-based learning compared to hand-
coding, as our intuitions about a good ’place’ for robot
manipulation apparently do not always correspond to the
’place’ that is really the best for a particular robot.

The models on average classify 5% of examples wrongly
when using a training/test set that contain 66%/33% of the
data respectively, and 3% when using the training data as the
test data.

C. Computing the Point Distribution Model (Line 12-13)
As input a PDM requires n points that are distributed

over the contour. We distribute 20 points equidistantly over
each boundary, and determine the correspondence between
points on different boundaries by minimizing the sum of the
distances between corresponding points, while maintaining
order between the points on the boundary.

Given the aligned points on the boundaries, we compute a
PDM. Although PDMs are most well-known for their use in
computer vision, we use the notation by Roduit et al. [12],
who focus on robotic applications. First, the 2D boundaries
are merged into one 40x12 matrix H, where the columns
are the concatenation of the x and y coordinates of the 20
points along the classification boundary. Each row represents
one boundary. The next step is to compute P, which is the
matrix of eigenvectors of the covariance matrix of H. Given
P, we can decompose each boundary hk in the set into the
mean boundary and a linear combination of the columns of

3117

Fig. 5. Successful grasp positions and their classification boundaries. Every
sub-image shows the boundary that corresponds to the cup position that is
visualized with the black cup. The cup positions on the table are drawn
to scale, as is the B21 robot. To save space, the table on which the cup
is placed is only shown in the right-most graphs, and not all failed data
points are drawn. Data points correspond to the center of the robot base.
In this figure and the following ones, the horizontal axis always represents
the x coordinate, and the vertical axis the y coordinate of the robot, both
in meters.

P as follows hk = H + P · bk. Here, bk is the so-called
deformation mode of the kth boundary. This is the Point
Distribution Model. To get an intuition for what the PDM
represents, the first two deformation modes are depicted in
Fig. 6(a), where the values of the first and second column of
B are varied between their maximal and minimal value.

(a) First and second deformation mode in B. (b) Reconstructing the
boundaries from Fig. 5.

Fig. 6. A generalized success model based on a Point Distribution Model.

By inspecting the eigenvalues of the covariance matrix of
H, we determined that the first 2 components already contain
96% of the deformation energy. Therefore, we use only the
first 2 deformation modes, without losing much accuracy.
Fig. 6(b) demonstrates that the original 12 boundaries can
be reconstructed well when using combinations of only the
first two deformation modes.

The advantage of the PDM is not only that it substantially
reduces the high dimensionality of the initial 40D boundaries.
It also allows us to interpolate between them in a principled
way using only two deformation parameters. The PDM is
therefore a compact, general, yet accurate model for the
classification boundaries.

D. Relation to Task-relevant Parameters (Line 14)
The final step of model learning is to relate the specific

deformation of each boundary, contained in B, to the values
of the task-relevant parameters T, which in this case are
all 12 combinations of the x and y coordinates of cup
position, which are {-0.3 -0.2 -0.1 -0.0} and {-0.2 0.0 0.2}
respectively. Since the correlation coefficients between the
first and second deformation modes B and the task relevant
parameters T are 0.99 and 0.97 respectively, we simply com-
pute the linear relation between them with W = [1 T]/BT .
Given a novel position tnew = 〈xnew, ynew〉 of the cup on
the table, the GSM allows to quickly compute the area from
which a successful grasp can be expected for this specific
situation. First, we compute the appropriate deformation
values from the cup position with bnew = ([1 tnew] ·W)T .
Then the boundary is computed with hnew = H+P ·bnew.
This boundary estimates the area in which the robot should
stand to be able to make a successful grasp.

V. COMPUTING ARPLACES ON-LINE

In this section, we describe how appropriate ARPLACEs
for manipulation are determined on-line. We call this module
’planning for manipulation’ (PLA4MAN). As can be seen in
the computational model in Fig. 3, this module takes the
GSM and the probabilistic belief state as input, and returns
an ARPLACE such as depicted in Fig. 2 or Fig. 4. The rest
of this section is structured according to Algorithm 2, which
is explained throughout this section.

input : gsm = 〈H,P,W〉 ; (generalized success model)
objectposition ; (probability distribution, estimated)1
robotposition ; (probability distribution, estimated)2

output : arplace ; (probability map)

for i=1 to #samples do3
ts = samplefromdistribution(objectposition);4
bs = ([1 ts] ·W)T ;5
classif boundary set.add(H + P · bs);6

end7
arplace =

P#samples
i=1 grid(boundary seti) / #samples;8

arplace = arplace * robotposition ; (Convolution)9
Algorithm 2: Computing ARPLACE.

A. Uncertainty in Object Position (Line 3-8)
At the end of the previous section, we demonstrated

how a hnew classification boundary is reconstructed, given
specific task relevant parameters tnew = 〈xnew, ynew〉.
Due to sensor noise and other factors that influence the
state estimation, the task relevant parameters can never be
known exactly, and uncertainty must be modeled. The belief
state therefore also associates a covariance matrix with each
position:

(σ2
xx σ

2
yx

σ2
xy σ

2
yy

)
, computed by our vision-based object

localization module [11].

3118

Because of this uncertainty, it does not suffice to compute
only one classification boundary given the most probable
position of the cup as the ARPLACE from which to grasp.
This might lead to a failure if the cup is not at the position
where it was expected. To solve this problem, we use a
Monte-Carlo simulation to generate a probabilistic advice on
where to navigate to grasp the cup. This is done by taking 100
samples from the Gaussian distribution of the cup position,
given its mean and covariance matrix. This yields a matrix
of task relevant parameters ts = [xs ys]. The corresponding
classification boundaries hs are computed for the samples
by using the method described above. In Fig. 7(a), 30 out of
the 100 boundaries are depicted. These were generated from
the task relevant parameters x=-0.3, y=0.1, σxx=σyy=0.05,
σxy=σyx=0.

(a) Sampled classification boundaries
(hs).

(b) Discretized relative sum
of the boundaries.

Fig. 7. Monte-Carlo simulation of classification boundaries to compute
ARPLACE.

We then generate a discrete grid in which each cell
measures 2.5×2.5cm, and compute for each cell the number
of classification boundaries that classify this cell as a success.
Dividing the number of successful classification boundaries
by the overall number of boundaries yields an approximation
of the probability that grasping the cup will succeed from
this cell. The corresponding probability map, which takes
the uncertainty of the cup position into account, is depicted
in Fig. 7(b) (2D), as well as in Fig. 2 (3D).

It is interesting to note the steep decline on the right side
of the distribution (in the direction of the table). This is
intuitive, as the table is located on the right side, and the
robot bumps into the table when moving to the sampled
initial position, leading to an unsuccessful navigate-reach-
grasp sequence. Therefore, none of the 12 boundaries contain
this area, and the variation in P on the right side of the
PDM is low. Variations in B do not have a large effect on
this boundary, as can be seen in Fig. 7(b). When summing
over the sampled boundaries, this leads to a steep decline in
success probability in the direction of the table.

B. Uncertainty in Robot Position (Line 9)
The Adaptive Monte Carlo Localization from the Player

project [8] also returns a covariance matrix for the robot’s
position. This uncertainty must be taken into account in
ARPLACE. For instance, although any position near to the

left of the steep incline in Fig. 7(b) is predicted to be success-
ful, they might still fail if the robot is actually more to the
right than expected. Therefore, we convolve the ARPLACE
as depicted in Fig. 7(b) with the discretized (2.5 × 2.5cm)
probability distribution of the robot’s position. The result can
be seen in Fig. 8. Note that this convolution also works for
multi-modal distributions as returned by particle filters.

Fig. 8. Final distribution, after convoluting the uncertainty in the robot
pose with a distribution as depicted in Fig. 7(b). This distribution represent
the robot’s probabilistic least-commitment ARPLACE, which is task-related,
skill-specific, and grounded in experience. This is a distribution for param-
eters: x=-0.3, y=0.1, σxx=σyy=0.05.

The distribution in Fig. 8 is the robot’s ARPLACE for
this task, and takes into account the uncertainty in both the
pose of the robot and the target object. These distributions
are generated from a model that is very much grounded
in observed experience, as it was learned from observation.
Note that this ARPLACE is also specific for the task context
and the skills of the robot. Using a different robot or
controller would lead to different observations, and hence
to a different ARPLACE. It is the developmental process of
learning ARPLACE that allows us to apply it to a wide range
of robots and controllers.

Fig. 9. These images show how varying certain task-relevant parameters
affects the shape of the distribution. The table and the cup are drawn to
scale in the xy-plane.

Fig. 9 depicts how the probability distribution is affected
by varying task-relevant parameters. Row 1 demonstrates
how it becomes ‘more difficult’ (i.e. less likely to succeed)
to grasp the cup as the it moves away from the edge.

VI. EMPIRICAL EVALUATION

At a day of open house, our B21 mobile manipulation plat-
form continually performed an application scenario, where it

3119

locates, grasps, and lifts a cup from the table and moves
it to the kitchen oven. The robot performed this scenario
50 times in approximately 6 hours, which has convinced
us that the robot hardware and software are robust enough
to be deployed amongst the general public. After the open
day, we ran the same experiment, but this time with the
PLA4MAN module included. The focus of this experiment
was on our error-recovery system described in [1]. That is
why the improved robot performance cannot quantitatively
be attributed to the PLA4MAN module or the error-recovery
system. However, a major qualitative improvement we cer-
tainly can attribute to the PLA4MAN module was that the
cup can now be grasped from a much larger area on the
table.

Fig. 10. Result of the empirical evalua-
tion. The x-axis shows experiments with
different values for C(po). The y-axis
shows the success rate.

An empirical
evaluation was done in
the Gazebo simulator.
We compared the
PLA4MAN module to
another strategy which
we call FIXED. FIXED
is implemented by
always moving to a
location that has the
same relative offset to
the target object. The
relative location was
chosen to be the offset
with the best possible
overall performance.
The cup was placed in
three different locations.
In one simulated
experimental episode,
we first determine the
observed position of
the cup, by sampling from the distribution given by the
real position po of the cup and the covariance matrix
C(po). The latter two are the controlled variables for each
experiment. Given the estimated cup position, the robot then
uses the PLA4MAN or well-in-reach module to compute
an ARPLACE and performs the manipulation action. When
the robot is able to perform the manipulation task after
moving to the proposed position we mark the experiment as
SUCCESS. Otherwise we mark the experiment as FAILED.

Fig. 10 shows the results of the evaluation. Naturally, the
performance of both methods decreases, as the robot becomes
more and more uncertain about the pose of the cup. One
result is that PLA4MAN always performs better than FIXED.
Another important result is that while the uncertainty rises,
the performance of FIXED suffers more than the performance
of PLA4MAN.

VII. CONCLUSION

In this paper, we have presented a system that enables
robots to learn an action-related concept of place, called
‘ARPLACE’, that is compact, grounded in observed expe-
rience, and tailored to the robot’s hardware and controller.

ARPLACE is modelled as a probability distribution, which
enables the robot to perform least-commitment planning,
instead of prematurely committing itself to specific positions
that could be suboptimal. Optimizing the probability of
successful grasping resulted in more robust behavior on our
mobile manipulation platform.

We are currently extending our approach in several di-
rections. We are applying our approach to more complex
scenarios, and different domains. For instance, we are learn-
ing higher-dimensional ARPLACEs. New aspects that we are
taking into account are different kinds of objects which re-
quire different kinds of grasps, two-handed manipulation, and
using secondary constraints to model more complex utility
functions. We are also investigating extensions and other
machine learning algorithms that will enable our methods
to generalize over larger spaces.

ACKNOWLEDGEMENTS

This work was supported by the DFG project ActAR
(Action Awareness in Autonomous Robots) and the cluster
of excellence COTESYS (Cognition for Technical Systems).

REFERENCES

[1] M. Beetz, F. Stulp, et al. Generality and legibility in mobile ma-
nipulation. Autonomous Robots Journal, Special Issue on Mobile
Manipulation (submitted for review), 2009.

[2] D. Berenson, R. Diankov, K. Nishiwaki, S. Kagami, and J. Kuffner.
Grasp planning in complex scenes. In IEEE-RAS International
Conference on Humanoid Robots, 2007.

[3] D. Berenson, H. Choset, and J. Kuffner. An Optimization Approach to
Planning for Mobile Manipulation. In Proc. of the IEEE International
Conference on Robotics and Automation, 2008.

[4] R. Bohlin, and L. E. Kavraki. Path Planning using lazy PRM. In IEEE
International Conference on Robotics and Automation, 2000.

[5] S. Buck and M. Riedmiller, Learning situation dependent success
rates of actions in a RoboCup scenario. In Pacific Rim International
Conference on Artificial Intelligence, 2000.

[6] B. Clement, E. Durfee, and A. Barrett. Abstract reasoning for planning
and coordination. J. of Artificial Intelligence Research, 28, 2007.

[7] M. Friedman, and D. S. Weld. Least commitment action-selection. In
Proc. of the International Conf. on AI Planning Systems, 3, 1996.

[8] B. Gerkey, R. T. Vaughan, and A. Howard. The Player/Stage Project:
Tools for multi-robot and distributed sensor systems. In Proceedings
of the 11th International Conference on Advanced Robotics, 2003.

[9] S. Hart, S. Ou, J. Sweeney, and R. Grupen. A framework for learning
declarative structure. In RSS-06 Workshop: Manipulation for Human
Environments, 2006.

[10] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with
nonlinear dynamical systems in humanoid robots. In International
Conference on Robotics and Automation (ICRA2002), 2002.

[11] U. Klank, M. Z. Zia, and M. Beetz. 3D Model Selection from an
Internet Database for Robotic Vision. In International Conference on
Robotics and Automation (ICRA), 2009.

[12] P. Roduit, A. Martinoli, and J. Jacot. A quantitative method for com-
paring trajectories of mobile robots using point distribution models.
In Proceedings of IROS, pages 2441–2448, 2007.

[13] S. Sonnenburg, G. Raetsch, C. Schaefer, and B. Schoelkopf. Large
scale multiple kernel learning. Journal of Machine Learning Research,
7:1531–1565, 2006.

[14] F. Stulp and M. Beetz. Refining the execution of abstract actions with
learned action models. JAIR, 32, June 2008.

[15] M. Wimmer, F. Stulp, S. Pietzsch, and B. Radig. Learning local
objective functions for robust face model fitting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 30(8):1357–1370, 2008.

[16] F. Zacharias, Ch. Borst, and G. Hirzinger. Positioning Mobile Ma-
nipulators to Perform Constrained Linear Trajectories. In Proc. of the
IEEE/RSJ International Conf. on Intelligent Robots and Systems, 2008.

3120

