
Optimization of Tasks Warping and Scheduling for Smooth Sequencing

of Robotic Actions

François Keith1,4, Nicolas Mansard2, Sylvain Miossec3, and Abderrahmane Kheddar1,4

1CNRS-UM2 LIRMM, Montpellier, France
2CNRS-LAAS, Toulouse, France

3PRISME-Univ. d’Orléans, Bourges, France
4CNRS-AIST JRL, UMI3218/CRT, Tsukuba, Japan

{keith, kheddar}@lirmm.fr, nmansard@laas.fr, sylvain.miossec@bourges.univ-orleans.fr

Abstract— This paper presents a method for sequencing a
set of robotic tasks in an optimal way. Tasks description and
execution are based on the task-function approach, which en-
ables to build complex whole-body behaviors from local control
laws. A naive solution to this problem would be to schedule
the execution of the tasks sequentially, avoiding concurrency.
This solution does not exploit full robot capabilities such as
redundancy and have poor performance in terms of execution
time or energy. However, reasoning on concurrent tasks is
difficult while accounting for all the physical constraints of
the robot. Our contribution is to determine the time-optimal
realization of the mission taking into account robotic constraints
that may be as complex as collision avoidance. Our approach
achieves more than a simple scheduling; its originality lies in
maintaining the task approach in the formulated optimization of
the task sequencing problem. This theory is exemplified through
a complete experiment on the real HRP-2 robot.

I. INTRODUCTION

A robot is designed to perform missions in various appli-

cation contexts. When the environment is well or partially

structured most missions can be hierarchically decomposed.

That is, missions undergo functional objective decomposition

into a set of processes or operations that can be defined

as templates. Each operation can be decomposed into a set

of tasks (i.e. generic sensory-motor functions), and each

task can be easily mapped into robot execution. The whole

scheme may constitute an exploitable generic skill/behavior.

Yet, various levels of decomposition can be achieved de-

pending on the envisaged software/hardware implementation,

additional environment constraints, the human-machine inter-

face, etc. In the end, the robot is assigned with a sequence

of tasks to realize a given mission.

Numerous works have been proposed to compute such

a sequence of tasks from a given mission and a set of

causal paradigms [2], [5]. However, they generally produce

a symbolic plan, where the only numerical precisions lie

on the scheduled time data. Its robotic application into the

real world requires the time sequence to be refined, typically

through an applicative path planner [9], that will compute the

trajectories to be followed by the robot. Yet, the meaning

of the symbolic plan is lost in the global trajectory. Such

low-level methods lack of robustness to environment changes

or uncertainties. Consequently, the remaining trajectory may

have to be recomputed several times while the mission is

being achieved. Moreover, it is difficult (and then often

specifically hard coded) to enhance the numerical trajectory

with symbolic data, that would help re-computing only part

of the plan [16] or distort locally the trajectory to apprehend

small environment changes [17], [8].

Rather than using a trajectory planner between the tem-

poral reasoning and its real robotic execution, we propose

to use a sensory-motor control approach based on task

components. The task function [18] or the operational space

formulations [7] are elegant approaches to produce intuitively

robot objectives. They also allow to address the control

problem directly in the sensor space, improving robustness

of the action execution against environment uncertainties and

variability [3]. They are trajectory free, which means that it

is not necessary to explicitly compute all trajectories before

the execution or during the execution, namely in response to

environment changes. Moreover, since a same task space is

valid for a large set of robots, a control scheme based on task

formalism is certainly portable and easy to modify and to

maintain. In addition, these methods include a kinematics or

dynamic formulation that decouples the task space from the

null-space (i.e. the joint space that let the task invariant) [11],

[6]. A secondary task can then be applied in the null-space,

and, recursively, a hierarchic set of tasks (or stack of tasks,

or SoT) can be considered [15], [21]. Hierarchy of tasks

are becoming popular to build complex behavior for very

redundant robot such as humanoids [1], [13], [20], [19].

The formalism introduced in [13] proved to be efficient in

dealing with complex humanoid missions: the SoT is mainly

a hierarchy of tasks driving the robot while ensuring locally

a given set of constraints to be satisfied. We make use of

this formalism (Section II).

A task (i.e. a task function [18]) can be directly linked to

the symbols on which the task temporal network is reasoning

(e.g. reaching an object to be grasped is a task that requires

the robot arm to be available, and whose post-condition is to

have the gripper on the object – it is also directly described

by a sensory-motor function applicable to the SoT).

Mission decomposition is thus executable directly by a

SoT, which guarantees good robustness and avoid unne-

cessary trajectory (re)computation. However, exclusive task

sequencing on the robot produces generally jerky movements

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 1609

which may look to humans as monotonous automated mo-

tions. On the other hand, it is difficult for the temporal

network to produce a scheduling with task overlapping when

the tasks concurrency is restricted by physical limitations of

the robot (for example obstacles or dynamical constraints on

a humanoid). Since the problem is not in a standard discreet

form, symbol-based task scheduling techniques can not apply

straightforwardly. On the other hand, semi-infinite optimiza-

tion techniques [10][14] have been used to generate low

level trajectories for the overall execution, while accounting

for such constraints. Such trajectory-based approaches are

generally insufficiently robust to environment uncertainties.

In this paper, we propose to rely on task for both the

overall symbolic reasoning and the control on the robot.

In between, we propose to use semi-infinite optimization

to refine the symbolic schedule and account for (numeric)

robotic constraints. Given a set of elementary tasks sequence

to achieve a given mission, our solution returns for each task,

the optimal times at which it is put and removed from the

SoT and also the optimal parameters for the task execution

(e.g. control gain). We additionally expect from this method

a smooth tasks sequencing (i.e. smooth transitions of tasks

through task overlapping). The originality of our approach

lies in keeping the task component in the optimization

formulation of this problem, which can roughly translate

to optimizing tasks overlapping by manipulating tasks, i.e.

the controllers, as variables of the optimization problem.

The task formulation details are first recalled in Section II.

A generic solution for optimizing a task sequence is then

detailed in Section III. The theory is finally exemplified

through an experiment with a real HRP-2 robot, the mission

consisting in getting a can from a fridge.

II. GENERIC TASK SEQUENCING

A. Task function formalism and Stack of Tasks

Defining the motion of the robot in terms of task simply

consists in choosing several control laws to be applied on a

subpart of the robot degrees of freedom (DOF).

A task is defined by a vector e (typically, the error between

a signal s and its desired value, e = s−s∗). The Jacobian of

the task is noted J = ∂e
∂q

, where q is the robot configuration

vector. In the following, we consider that the robot input

control is the joint velocity q̇. The equation of motion is

thus reduced to the kinematics:

ė = Jq̇ (1)

Considering a reference behavior ė
∗ to be applied in the task

space, the control law to be applied on the robot whole body

is given by the least-square solution:

q̇ = J+ė
∗ + Pz (2)

where J+ is the least-square inverse of J, P = I − J+J

is the null-space of J and z is any secondary criterion that

will be applied without disturbing the main task thanks to

the projection into P1. A typical requested behavior is the

1Eq. (2) is the least-square solution when z = 0

regulation of the error, which can be obtained through an

exponential decrease by setting:

ė
∗ = −λe (3)

As mentioned earlier, (2) enables to compose a complex

behavior from a set of tasks [21], [1], [19]: z can be used to

fulfil a secondary task, without disturbing the main task hav-

ing priority. This nice decoupling can be extended recursively

to a set of n tasks, each new task being fulfilled without

disturbing the previous ones. The complete implementation

of this approach is proposed in [12] under the name Stack of

Tasks (SoT). The structure enables to easily add or remove a

task, or to swap the priority order between two tasks, during

the control. Constraints (such as joints limit) can be taken

into account. The continuity of the control law is preserved

even at the instant of change.

B. Gain handling

The simple attractor presented in (3) has the advantage to

introduce a nice exponential decrease. However, it can be

penalizing, since q̇ is directly proportional to e (3) . At the

beginning of the task, ‖e‖ reaches its higher value (strong

acceleration), while at the end of the task, ‖e‖ decreases

slowly (slow convergence).

A very classical ‘trick’ when regulating a task is to rather

use an adaptive gain λ = λ(e(t)) that depends on the norm

of the error of the task. To keep the nice property of the

attraction, the gain only adapts with the error, and not directly

with the time. We choose the following function:

λ(e) = (λF − λI) exp

(

−‖e‖β

λF − λI

)

+ λI (4)

with λI the gain at infinity, λF the gain at regulation (such

as λI ≤ λF) and β the slope at regulation.

C. Sequence of tasks

A task sequence is a finite set of tasks sorted by order of

realization, and eventually linked to each other. Any pair of

tasks can be either independent (i.e. they can be achieved in

parallel) or constrained (i.e. one may have to wait for another

one to be achieved, so as to make sense or to be doable).

The sequence can be formulated into a classical temporal

network scheduling, starting at t0 and ending at tEnd. Both

values are finite and the sequence does not loop. Besides,

we may consider for the sake of clarity but without loss of

generality that each task appears only once in the sequence.

The position of a task in the sequence is defined by the

time interval during which it is maintained in the SoT. For

a given task i, this interval is noted [tIi , t
F
i]: the task enters

in the SoT at tIi and is removed at tFi . These instants are

defined with respect to the beginning of the sequence at t0.

However, they do not indicate the achievement level of the

task: tFi may apply before the task regulation. Let’s ǫi be

the tolerance on the task regulation: a task is considered

as regulated when ‖ei(t)‖ ≤ ǫi. The regulation time tRi is

defined by ‖ei(t
R
i)‖ = ǫi.

1610

j begins once i has begun

tIi ≤ tIj

j begins once i is realized

tRi ≤ tIj

j begins once i has ended

tFi ≤ tIj

j ends once i is realized

tRi ≤ tFj

j ends once i has ended

tFi ≤ tFj

Fig. 1. Five time-dependency relations are considered.

A task sequence is characterized by a set of time-

constraints binding the schedules of two tasks ei and ej.

They can be defined as follow2: ei must begin or end once

ej has begun, has ended or has been regulated.

We use the graphical representation given by Fig. 1 and

the following notation to describe the sets of pairs of tasks

ei and ej that undergo these dependencies (ei is the direct

predecessor of ej) :

SI,I = {(ei, ej) | tIi ≤ tIj} (5a)

SR,I = {(ei, ej) | tRi ≤ tIj} (5b)

SF,I = {(ei, ej) | tFi ≤ tIj} (5c)

SR,F = {(ei, ej) | tRi ≤ tFj } (5d)

SF,F = {(ei, ej) | tFi ≤ tFj } (5e)

For example, the robot has first to grasp an object and

maintain the force closure on it (eA) before moving it (eB).
The task (eB) can only start once the task (eA) has been

realized, and must end before the task (eA).

III. CONTINUOUS OPTIMIZATION OF SEQUENCE OF

TASKS

Given a set of hypothesis described using (5), we now

propose a generic solution to automatically compute an

optimal set of task-behavior parameters and their sequencing

plan to be executed by the SoT.

A. General problem formulation

An optimization problem is composed of a criterion to

minimize, and of a set of equality and inequality constraints

that must be satisfied. Our chosen criterion is to minimize

the regulation duration of the mission. The variables of our

problem are for each task: (i) the time of its entry, (ii)

the time of its removal (from the SoT), and (iii) the gains

(λI , λF , β) which describe the task execution behavior.

2contrary to Allen Logic, that only considers the start and end points of
the time interval, here is also considered the regulation time t

R

The general optimization problem is written as follows:

min
x

tEnd (6a)

subject to q̇ = SoTx(q, t) (6b)

seq(q) < 0 (6c)

φ(q) < 0 (6d)

∀i, tFi ≤ tEnd (6e)

The vector x = [tI1, t
F
1 , λI

1, λ
F
1 , β1, . . . , t

I
n, tFn , λI

n, λF
n , βn, tEnd]

gathers the optimization variables of each task and tEnd, the

duration of the mission. seq(q) and φ(q) are respectively

the sequencing and the robotic constraints.

The optimization criterion tEnd is computed indirectly.

An equivalent explicit definition could be given by tEnd =
max

i
(tFi). However this constraint is not smooth. Giving

only (6b), the problem is smooth and properly defined: at

the optimal solution, tEnd will be equal to the maximum

termination time of all tasks’ tFi .

Vector q is in fact a vector of functions of time, hence

constraints φ(q) are semi-infinite, i.e. taking place for all

the values of the continuous variable t ∈ [t0, tEnd].

It can be shown that (6) defines a continuous optimization

problem. However, it cannot be solved directly because of

the semi-infinite nature of the constraints. Therefore we

expanded the semi-infinite constraint into a discreet form.

B. Constraints

Parameter x must satisfy both the sequencing and the

robotic time-constraints enumerated hereafter:

1) Tasks constraints, noted seq(q): gather the task se-

quence conditions of (5) and the following constraints:

For each task i:

Time coherence 0 ≤ tIi < tFi ≤ tEnd (7a)

Termination condition ‖s∗i − si(t
F
i)‖ < ǫi (7b)

Gain consistency λI
i ≤ λF

i (7c)

The constraints (5a), (5c), (5e), (7a) and (7c) are linear.

On the contrary, the constraint (7b) is impossible to compute

directly using x, and is determined from a simulation of the

execution. Care has to be taken while resolving the condition

described by (5b) and (5d). Indeed, discretizing tR to the

closest simulation step will produce discontinuities which

may disturb the optimization process. A rather fastidious

solution to this continuity problem would be to determine

this point by interpolation. Another solution is to reformulate

them by evaluating the regulation of the task i instead. The

constraint (5b) and (5d) becomes respectively:

∀(i, j) ∈ SR,I , ‖s
∗

i − si(t
I
j)‖ ≤ ǫi (8a)

∀(i, j) ∈ SR,F , ‖s∗i − si(t
F
j)‖ ≤ ǫi (8b)

1611

2) Robot constraints : φ(q): Those constraints are mainly

due to hardware intrinsic limitations of the robot:

Joint limits qmin ≤ q ≤ qmax (9a)

Velocity limits q̇min ≤ q̇ ≤ q̇max (9b)

Collision avoidance 0 ≤ dij (9c)

qmin, qmax, q̇min, q̇max are respectively the lower and

upper joint limits and the lower and upper velocity limits.

dij is the distance between objects i and j. Object designate

those found in the mission’s environments and each link of

the robotic system. Hence, both collision with the environ-

ment and self-collision of the robot have to be evaluated.

All of those constraints are semi-infinite: the following

section presents how they have been tackled.

C. Technical aspects of the optimization resolution

1) Semi-infinite constraints: In a first approach, we tried

to discretize the semi-infinite constraints on the basis of the

simulation steps grid. However, since the number of the grid

sample points changes in function of tEnd, the number of

constraints is variable. Subsequently a classical optimization

solver can not handle them.

Let c be the evaluation value of a given constraint:

(∀t ∈ [t0, tEnd], c(t) < 0). We considered associating only

one value to the constraint, cV , that is computed as follows:

If the constraint is always satisfied, then cV is the higher

value of c(t). Otherwise, it is the sum of all the violations

found at each time step. Considering that the time step can

change (e.g. when adding an interpolation point), we choose

to weight the added value by the time step δt.

2) Constraint by task: Each task appears only once

in the sequence, but a same action can be associated to

many tasks. Associating the constraints φ(q) to the whole

simulation can thus raise an issue: a violated constraint can

not be linked to the responsible task. In order to compensate

this problem, we consider nT additional sets of constraint

φ(q), noted φi(q), i ∈ [1 . . . nT], (with nT the number of

tasks in the sequence). Each set φi(q) is computed only

when the task i is in the SoT.

3) Scaling: Since the constraints are not homogeneous

(times, angles, velocities, distances), they have to be

normalized based on the constraint values obtained while

executing the sequence corresponding to the initial set of

parameters x0. This simple scaling improves significantly

the convergence of the optimization.

D. Absolute versus relative timing

In this parameterization, the tasks are described with an

absolute time. As it is, decreasing tIi for a task i will not

have any direct effect on tFi : we have also to decrease

tFi then decrease tEnd: it is thus necessary to propagate the

reduction for all the following tasks. To avoid this, another

parameterization consists in describing the SoT entry time of

a given task with respect (i.e. relatively) to the previous one.

We introduce a relative timing: each task is now described by

two delays (instead of the absolute times tI and tF), namely:

1) dtI : is the delay which occurs between (i) the maxi-

mum time of entry or of end of the preceding tasks,

and (ii) the SoT entry time of the task in question.

tIi = max

(

max
(j,i)∈SI,I

{tIj}, max
(j,i)∈SF,I

{tFj }

)

+ dtI (10)

2) dtF : is the delay between the SoT entry and the

removal times of the task in question.

tFi = tIi + dtFi (11)

Subsequently, the new parameter vector is noted :

x′ = [dtI1, dtF1 , λI
1, λ

F
1 , β1, . . . , dtIn, dtFn , λI

n, λF
n , βn, tEnd].

If the task sequence is only a chain of tasks realized one

after the other, we directly have x′ = f(x), with f a linear

function, and tEnd =
∑

i

(dtIi + dtFi)

Considering this new set of parameters, the formulation of

the optimization problem changes: some tasks constraints of

seq(q) are modified. The previous constraints (5a), (5c) and

(7a) are replaced by these constraints on the delay:

∀i,0 ≤ dtIi (12a)

∀i,0 < dtFi (12b)

IV. IMPLEMENTATION

A. Optimization

At each optimization step, the solver chooses a new set of

parameters x. It then computes the constraints. Constraints

(5e) and (7c), (12a) and (12b), can be evaluated directly. As

stated previously, the other constraints can not be directly

computed (since they do not write in an analytical formula-

tion). They are thus evaluated using a complete simulation of

their execution. The chosen value of the current optimization

variable vector x is transmitted by the optimization solver to

the simulation engine. The simulation returns the evaluation

of the constraints and the optimization solver computes a

new step vector x, until convergence.

Our optimization problem is a non-linear contrained para-

metric problem. We chose the SQP algorithm from the

MATLAB optimization toolbox, which is suitable to this kind

of problem.

B. Simulation

In section II, we presented the computation of desired

joint velocities for a hierarchy of tasks, as (6). The

simulation is basically a numerical integration of this

equation (we used an explicit Euler integration method with

a fixed step ∆t = 0.005sec). The entry and exit times tIi
and tFi are continuous variables that are not aligned with

the grid. Those instants are important since they correspond

to a change in the SoT and thus a change in the control. If

postponing the change of control to the next time step (like

on a real system) we will not have a continuous problem

(hence potentially raising the same problem described in

section III-B). To solve this problem, the entry time ta is

1612

added as an integration point during the time step [t, t+∆t],
splitting it into the two smaller ones [t, ta] and [ta, t + ∆t].

Initialization

[tI1, t
F
1 , . . . , tIn, tFn] = computeTimes (x)

tEnd

Sim
= maxi

(

tFi
)

, t = 0
while (t < max (tEnd, tEnd

Sim
)) do

∆t′ = findTimeStep(t)

handleStackOfTasks (t)

updateConstraints()

t = t + ∆t′

end
Algorithm 1: Tasks sequencing simulation

The algorithm 1 describes the simulation. The function

computeTimes computes the absolute times using the

relative times. The function findTimeStep computes the

required time step for the Euler integration: the initial ∆t,

or a smaller one if needed, due to the need of splitting

this interval in two. The function handleStackOfTasks

computes the velocity of the robot induced by the tasks exe-

cution and integrates it, altogether with any other simulated

objects or processes, to obtain the new positions.

The simulation engine runs under the AMELIF framework

[4], an interactive dynamic simulator for virtual avatars

which includes collision detection and task handling accor-

ding to the SoT formalism. The execution for both simulation

and real-robot control is performed by a generic control

framework based on [12].

V. EXPERIMENT

A. Temporal network

The sequence of tasks (Fig. 2) describes a robot taking

out a can from the fridge. The corresponding tasks are:

• Tasks of the right arm:

(e0): open the gripper, (e1): move it to the fridge

handle, (e2): close it, (e3): open the fridge, (e4): close

the fridge

• Tasks of the left arm:

(e5): open the gripper, (e6): move it in the fridge area,

(e7): move it to the can, (e8): close it, (e9): lift the

can, (e10): remove the can out of the fridge,

The task e6 is an intermediary task introduced as a way

point: its tolerance on task regulation ǫ6 is large so that the

arm does not have to stop. This is part of the optimization

decision, in order to reduce the execution time.

This is a complex mission that can not be split into smaller

sequences. Indeed, the sequence is centered on the fridge: the

grasping part does not make sense if the fridge is closed.

Instead of adding explicit timing conditions between the

tasks to ensure that this will never occur, we choose to

consider as constraint the collision between the left arm and

the door, in order to allow task overlapping.

The constraints considered for this problem are thus se-

quencing and robotic constraints (joint position and velocity

limits), and collision avoidance with the fridge.

Fig. 2. Sequence describing the HRP-2 taking the can in the fridge

Fig. 3. Results of the optimization of the sequence of task: when the task
is added in the SoT, its error is first regulated (this is the dark part (red or
dark blue) of the block). From t

R

i
, the error is nearly null and the task is

kept in the SoT (light part (yellow or cyan) of the block) until t
F

i
.

B. Results of the optimization

We ran the optimization on a 3GHz desktop PC running

under Windows OS. The sequence found is described on

Fig. 3. Each task is described by two periods: the dark one

is the achievement period [tIi , t
R
i], the bright one is the SoT

presence period [tIi , t
F
i].

The overlaps between the tasks of the left and the right

arm appear clearly: the left arm starts to move before the

fridge is open. It then starts to move toward the can pose

even if the fridge is not completely open. And finally, the

right arm starts to close the fridge before the left arm has

completely left the fridge area. The whole task sequence lasts

47sec. Without these two overlaps, the robot will move to

and grasp the can (e7) only after the fridge is fully opened

(e3) and it will close the fridge (e4) only after the can is

completely taken out (e10); consequently the total mission

would have taken at least 71sec.

C. Experiment on the real robot

The task sequence is experimented on the upper body of

the HRP-2 humanoid robot. Only the described tasks are used

to compute the control law (which means that no additional

care is taken for ensuring the constraints). For the tasks

requiring a haptic interaction (i.e. opening and closing the

fridge) the force sensor of the robot is used to close the loop

and compensate for position uncertainties.

The robot manages to grasp the can without colliding any

obstacle or joint limits, and respecting the given velocity

limits. The obtained execution is plotted on Fig. 4. Thanks to

the optimized gain, the convergence of the error of the tasks

1613

0 5 10 15 20 25 30 35 40 45 50
0

1

2

E
rr

o
r

L
e
ft

 H
a
n
d

Approach

Grasp

Open fridge

Close fridge

0 5 10 15 20 25 30 35 40 45 50
0

1

2

E
rr

o
r

R
ig

h
t

H
a
n
d

Approach can

Grasp can

Lift can

Approach final

final

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

Time(sec)

E
rr

o
r

G
ri
p

p
e

rs

OpenL

CloseL

OpenR

CloseR

Fig. 4. Experiment on HRP-2: errors diminish when optimized task
scheduling is applied: (top) right arm tasks (middle) left arm tasks (bottom)
gripper tasks. The concurrency between the tasks is clearly visible.

that require a good precision (grasping the fridge handle and

the can) is achieved as quickly as allowed by joint velocity

limits. Snapshots of the execution are given in Fig. 53.

Fig. 5. HRP-2 grasping a can in the fridge.

VI. CONCLUSION

We devise a method which allows to optimize both the

behavior and the overlapping scheduling of a sequence of

tasks composing a robotic mission. The solution derives from

an optimization formulation of the tasks scheduling keeping

the formalism built on the top of a task-function based

control. This allows to include the robot limitations as well as

collision avoidance as constraints. Our method is exemplified

through a complete simulation of a complex mission, where

we demonstrated an improvement in the smoothness of the

generated motion. For the time being, our method still needs

a predefined ordered sequence. As a future work we will

increase the autonomy by determining automatically the

3www.laas.fr/˜fkeith/iros09.avi, the video is also attached
to the paper

ordered sequence and compute all the necessary subtasks

from definitions of actions/objects associations. We will

also focus on more complex scenario using in particular

perception tasks such as visual interaction.

ACKNOWLEDGMENT

This work is partly supported by the European project FP6

ROBOT@CWE www.robot-at-cwe.eu.

REFERENCES

[1] P. Baerlocher and R. Boulic. An inverse kinematic architecture
enforcing an arbitrary number of strict priority levels. The Visual

Computer, 6(20):402–417, Aug. 2004.
[2] R. Dechter. Constraint Processing, chapter 12, Temporal Constraint

Network. Morgan Kaufmann, 2003.
[3] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual

servoing in robotics. IEEE Trans. Robot. Autom., 8(3):313–326, 1992.
[4] P. Evrard, F. Keith, J.-R. Chardonnet, and A. Kheddar. Framework for

haptic interaction with virtual avatars. In IEEE Int. Symp. on Robot

and Human Interact. Comm. (RO-MAN’08).
[5] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning:

Theory and Practice. Morgan Kauffmann Publishers, 2004.
[6] H. Hanafusa, T. Yoshikawa, and Y. Nakamura. Analysis and control

of articulated robot with redundancy. In IFAC, 8th Triennal World

Congress, volume 4, pages 1927–1932, Kyoto, Japan, 1981.
[7] O. Khatib. A unified approach for motion and force control of

robot manipulators: The operational space formulation. International

Journal of Robotics Research, 3(1):43–53, Feb. 1987.
[8] F. Lamiraux, D. Bonnafous, and O. Lefebvre. Reactive path deforma-

tion for nonholonomic mobile robots. IEEE Trans. Robot., 2004.
[9] S. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[10] S-H. Lee, J. Kim, F.C. Park, M. Kim, and J. Bobrow. Newton-type
algorithms for dynamics-based robot movement optimization. IEEE

Transactions on Robotics, 21(4):657–667, August 2005.
[11] A. Liégeois. Automatic supervisory control of the configuration and

behavior of multibody mechanisms. IEEE Trans. on Systems, Man

and Cybernetics, 7(12):868–871, December 1977.
[12] N. Mansard and F. Chaumette. Task sequencing for sensor-based

control. IEEE Trans. on Robotics, 23(1):60–72, Feb. 2007.
[13] N. Mansard, O. Stasse, F. Chaumette, and K. Yokoi. Visually-guided

grasping while walking on a humanoid robot. In IEEE Int. Conf.

Robot. Autom. (ICRA’07), pages 3041–3047, Roma, Italia, Apr. 2007.
[14] S. Miossec, K. Yokoi, and A. Kheddar. Development of a software

for motion optimization of robots– application to the kick motion of
the HRP-2 robot. In ROBIO’06, 2006.

[15] Y. Nakamura, H. Hanafusa, and T. Yoshikawa. Task-priority based
redundancy control of robot manipulators. International Journal of

Robotics Research, 6(2):3–15, Feb. 1987.
[16] F. Py and F. Ingrand. Dependable execution control for autonomous

robots. In IEEE/RSJ Int. Conf. Intelligent Rob. Sys. (IROS’04), pages
1136–1141, Sendai, Japan, Sep. 2004.

[17] S. Quinlan and O. Khatib. Elastic bands: Connecting path planning and
robot control. In IEEE Int. Conf. Robot. Autom. (ICRA’93), volume 2,
pages 802–807, Atlanta, USA, May 1993.

[18] C. Samson, M. Le Borgne, and B. Espiau. Robot Control: the Task

Function Approach. Clarendon Press, Oxford, United Kingdom, 1991.
[19] L. Sentis and O. Khatib. A whole-body control framework for

humanoids operating in human environments. In IEEE Int. Conf.

Robot. Autom. (ICRA’06), 2006.
[20] N. Sian, K. Yokoi, S. Kajita, F. Kanehiro, and K Tanie. A switching

command-based whole-body operation method for humanoid robots.
IEEE/ASME Transactions on Mechatronics, 10(5):546–559, Oct. 2005.

[21] B. Siciliano and J-J. Slotine. A general framework for managing
multiple tasks in highly redundant robotic systems. In IEEE Int. Conf.

on Adv. Rob. (ICAR’91), 1991.

1614

