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Abstract— Autonomous estimation of the altitude of an Un-
manned Aerial Vehicle (UAV) is extremely important when
dealing with flight maneuvers like landing, steady flight, etc.
Vision based techniques for solving this problem have been
underutilized. In this paper, we propose a new algorithm to
estimate the altitude of a UAV from top-down aerial images
taken from a single on-board camera. We use a semi-supervised
machine learning approach to solve the problem. The basic idea
of our technique is to learn the mapping between the texture
information contained in an image to a possible altitude value.
We learn an over complete sparse basis set from a corpus
of unlabeled images capturing the texture variations. This is
followed by regression of this basis set against a training set of
altitudes. Finally, a spatio-temporal Markov Random Field is
modeled over the altitudes in test images, which is maximized
over the posterior distribution using the MAP estimate by
solving a quadratic optimization problem with L1 regularity
constraints. The method is evaluated in a laboratory setting
with a real helicopter and is found to provide promising results
with sufficiently fast turnaround time.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have been an active
area of research in the recent years. UAVs have been found
to be an ideal platform for a number of civilian and military
tasks like visual surveillance, inspection, firefighting, polic-
ing civil disturbances or reconnaissance support in natural
disasters. The ability of UAVs to fly at low speeds, hover
or fly laterally and perform maneuvers in narrow spaces
facilitate them for these tasks. One of the most important
tasks in achieving UAV autonomy is autonomous navigation,
which needs good altitude estimation techniques. The main
surge in mini-UAV designs these days have been on opti-
mizing and miniaturizing the hardware and putting multiple
functionalities into the same device. On-board cameras are
indispensible components of a UAV, enabling it for environ-
ment monitoring, tracking etc. Compared to other sensors,
(e.g. laser), video cameras are quite light and less power
hungry. In this paper, we investigate the idea of estimating
the altitude of a UAV from the images taken from a single
on board camera using machine learning techniques.

Vision based control of an autonomous helicopter has
been investigated quite thoroughly in the previous years.
Different camera systems and arrangements have been tried.
A downward-looking camera with a standard lens has been
investigated in [11], [4], [15], but the state estimation of
their approach is relative to the specifics of a given landing

pad. In [9], a multi view geometry based approach to build a
digital map of the ground is suggested. They use aerial image
sequences taken from a side looking helicopter camera,
with the assumption that there are uniquely recognizable
features in the vicinity of the UAV to correlate the images in
the sequence. An application of omni directional cameras
for vision based navigation is described in [14], but the
environment over which this is used seems very restrictive. A
reinforcement learning strategy for performing various flight
maneuvers have been investigated in [10], but they do not
use any vision based techniques.

To the best of our knowledge, this is the first time that
the problem of altitude estimation of a UAV has been
studied exclusively and a machine learning framework being
suggested. The motivation for this research stems from the
recent developments in the area of 3D reconstruction using
monocular cues. In [2], [1] and [3] Saxena et. al. proposes
an algorithm for building a depth map from a single image.
The algorithm uses a Markov Random Field (MRF) based
supervised learning to build a model of the variation of depth
at each pixel in a given image against a set of feature vectors
computed from those pixels. But we found that their method
cannot be applied to our problem due to the following
reasons: (i) we have top-down aerial views, (ii) there is little
structure compared to images taken on ground and (iii) we
assume that the ground plane is flat; thus needing to compute
only a single altitude from the entire image. We also assume
that the UAV does not make sudden changes in altitude such
that the deviation of altitude from one image to its preceding
images is smooth. We incorporate this information also into
our model to refine the predicted altitude. To account for
issue (ii), we suggest a semi-supervised learning method
for learning a sparse overcomplete basis from a corpus of
possible terrain images. This is in lines of the Self-Taught
Learning strategy proposed in [12]. Self-taught learning is a
kind of transfer learning which is based on the assumption
that any image consists of some basic ingredients like edges,
textures, etc and thus learning a sparse overcomplete bases
over a random set of images provide a powerful represen-
tation system to model any given image as a sparse linear
combination of these bases. But our approach is not transfer
learning and we use only aerial images of terrains where the
UAV will fly. Later, we do supervised regression over this
basis using the altitudes we have from a given training set.
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Finally, we introduce a novel spatio-temporal MRF model to
estimate the altitude of a patch in the image to the altitude of
other patches in the same image and patches across images
in the earlier time frames. The MRF model is later solved for
the Maximum A Posteriori (MAP) estimate of the altitude.

The rest of the document is organized as follows: We
begin with an overview of our motivation for using texture
based techniques for altitude estimation in Section II, which
precedes a discussion on computing the feature vectors.
In Section III, we propose a probability model for the
problem and optimization techniques for solving it. Section
IV discusses our experiments and we conclude in section V.

II. FEATURE VECTOR

Given a video of altitude variations taken using a fixed
focal length moving camera, humans will not have much
of a difficulty in inferring the altitudes across frames. For
example, we can easily say if an image was taken too close to
the ground or far away or how much is the relative difference
in altitudes between two given images. This is not only
attributed to our prior knowledge about the environment,
but also to our capability for using monocular cues such as
texture variations, known object sizes, haze, focus/de-focus,
etc in the inference. Texture gradients capture the distribution
of the direction of the edges. It is a valuable source of depth
cues and has been used quite effectively in papers like [2],
[1] for 3D reconstruction.

When dealing with aerial images taken from a UAV, we
have to face some more issues that cannot be adequately
captured by texture variations alone. For example, most of
the images are too noisy, have a variety of illumination
differences, or are often blurred by the motion of the UAV.
Moreover, aerial images lack structure compared to images
taken on ground. For example, in ground images, we can
probably assume that there is a ground plane, all objects
stand on the ground, etc. But aerial images with top-down
views look like random patches and application of con-
ventional filters like autocorrelation filters, fourier/wavelets
based filters, texture gradient filters like Nevatia-Babu, Laws
masks filters, etc cannot effectively capture the texture varia-
tions to the respective altitude variations. Fig. 1 shows a few
sample images that we will be working with in this paper.
They were taken in our laboratory setting and the altitude
at which each image was taken is also mentioned. Note the
variation in texture as the altitude increases.

The motivation for our approach to solve this problem
stems from the recent developments in sparse coding for
compressed sensing [5], where information is encoded using
a sparse overcomplete basis which effectively captures higher
level information in the data, leading to a close to perfect
reconstruction. The method was found to be robust to noise
and relatively immune to illumination variations. In sparse
coding, only a very few vectors from the basis set are needed
to reconstruct a given image patch. Thus, a regression of
this active set against altitudes provide a good representative
relationship between altitude variations against the texture
differences. Also, we would like to reduce the computational

Fig. 1. Sample images of the top-down aerial views from an onboard
camera of a UAV in the laboratory setting. The altitude at which each
subimage was taken is also shown.

time for feature extraction and at the same time not com-
promising on the generality of the representation. We felt,
conventional approaches using filter banks might not adhere
to this requirement. For example, in [2], a filter bank of 510
dimensions is suggested. This increases the feature extraction
time as well as the altitude prediction time. Fast turn-around
time is a critical aspect in our application.

In [12], an efficient framework for learning such a sparse
overcomplete basis is suggested, which is later used for
object classification. Our problem is different from their
approach, in that we do not learn basis from completely
random images, but from aerial images of various terrains.
Thus our philosophy is closer to a semi-supervised learning
[17] setting, although we use their model to learn the basis.
In order to prove the generality of our approach to arbitrary
scenarios, we used random aerial images of various terrains
from the internet to build our basis set. A few sample images
that we used for this purpose are shown in Fig. 2.

Fig. 2. Random aerial images downloaded from the internet for learning
the basis set.

Given a large corpus of image patches I = {I1, ..., IN},
each patch is vectorized as a k dimensional input vector y.
The goal of sparse coding is to represent these vectors as a
sparse approximate weighted linear combination of n basis
vectors. That is, for the ith input vector yi ε Rk ,

yi ≈
n∑
j=1

bja
i
j = Bai (1)

where b1, b2, ..., bn ε Rk are the basis vectors and ai ε Rn is
a sparse vector of coefficients. Unlike similar methods such
as PCA, the basis set B that we use here can be overcomplete
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(n > k), and can represent nonlinear features of y. To find
the optimal B and ai’s, we solve the following optimization
problem as formulated by [12]:

min
b,a

∑
i

‖yi −
∑
j

aijbj‖22 + β‖ai‖1 (2)

s.t. ‖bj‖2 ≤ 1, ∀ j ε {1, ..., n}

The optimization objective of (2) balances two terms:
(i) the first quadratic term encourages each input yi to
be reconstructed well, as a weighted linear combination
of the basis bj with the corresponding weights given by
the activations aij , and (ii) it encourages the activations to
have low L1 norm, which encourages ai to be sparse. The
optimization problem is convex over each subset of variables
a and b, but is not jointly convex. More specifically, the
problem on activations a is an L1 constrained least squares
problem, where as the one on the basis b is an L2 regularized
least squares problem. The paper [7] provides an algorithm
to solve these two sub-problems efficiently. Fig. 3 shows
a basis set learnt using the above algorithm using random
aerial images downloaded from the internet.

Once a sparse basis set B ε <k×n is obtained, we can
construct a feature vector f for a given vectorized image
patch p of dimension k by computing the activations on the
basis that will produce this patch. That is,

min
f
‖p−

∑
j

fjbj‖22 + β‖f‖1 (3)

The feature vectors f from all the patches p in a given image
are stacked up to form the feature vector set F that is used
in the following sections.

Fig. 3. 350 basis vectors each of size 16x16 learned using 50000 patches
from random internet aerial images.

III. THE INFERENCE MODEL

Now that we have a comprehensive representation of the
texture of an image as a linear combination of the basis, a
supervised learning algorithm modeled on a spatio-temporal
Gaussian Markov Random Field (MRF) [13] is deployed to
estimate the posterior distribution of the altitude for every
pixel block in the image. We model the posterior distribution
of altitude d given the feature vectors set F and parameters
σ and θ as:

P (d|F ;σ, θ) =
1
Z
exp(−Eσ,θ(d, F )) (4)

where

Eσ,θ(d, F ) =
n∑
i=1

(di − F ′iθ)2

σ2
a

+
T∑
j=1

n∑
i=1

(dit−j − di)2

σ2
j

+β
n∑
i=1

n∑
j=1,j 6=i

|di − dj | (5)

Here, Z is a normalization constant, Eσ,θ(d, F ) defines the
Gibbs energy function and Fi is the feature vector at pixel
block i of the image computed using (3). The first term in
(5) models the raw altitude at the pixel block i in terms of
feature vectors Fi through the regressor θ. As it is apparent,
we use a linear relationship between Fi and d. Linear least
squares regression over the training set is used to find the
vector θ.

We assume that the altitude of the UAV will not change
abruptly, but rather smoothly. Thus the altitude predicted
from one image frame to the next frame should not have
drastic deviations in the predicted altitudes. This is formu-
lated by the second term in (5), which constrains the altitude
at pixel block i at time t, to be smooth to the pixel block i
of the image frame at time t− j. The third term in Eq. (5)
captures the relationship between the altitude predicted at
pixel block i to all other blocks in the same image. Since
we are working with aerial images with top-down view, and
since we assume that the ground is flat, there will be only
a single altitude value for the whole image. Thus we would
like to constrain the altitudes predicted from different pixel
blocks of one frame to be as equal as possible. That is, if
di and dj represent the altitudes at any two pixel blocks in
the same frame, then (di− dj) should be as close to zero as
possible. Fig. 4 shows a schema of the MRF setup we are
assuming in our computations.

Fig. 4. The MRF model we assume. The schema represents the dependency
of the altitude at pixel block i to other pixel blocks as modeled by the spatio-
temporal MRF. In the schema we show frames at times t, t − 1,...,t − T .
Each solid black dot di

t shows the altitude at patch i at time t. The solid
lines show the equality constraints we impose for the altitude predictions
and dotted lines capture the smoothness across frames.

The parameter σa ensures smoothness of our raw predic-
tions of altitude. From our experiments, we found that there
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was heteroskedasticity in the data, i.e., the variance of the
prediction error varied with the texture of the image. In order
to accomodate for this variation, a separate σa parameter was
estimated for each image by projecting the individual feature
vectors Fi in the image patches to a regression hyperplane
S that captures the expected error. That is, a hyperplane S is
first estimated by linear least squares over E[(di−Fiθ)2] =
STFi from the training data. Later, given the feature vectors
Fi from a test image, we calculate σa = E[‖STFi‖], i.e. by
averaging over the individual feature vectors projected on to
S.

A different strategy was used to find the σj parameters.
These parameters capture the variance of the altitude esti-
mates across frames. We assume that the altitude variations
are smooth and also they are consistent across all the patches
in a single image. We estimate the hyperplane parameter
Sj from the Eigen analysis of (di − dit−j), where di is
the true altitude from the training data and dit−j represents
the estimated altitude of ith pixel block at the jth earlier
time step from the current step t. The covariance matrix is
formed by stacking up the predicted error across patches in
a column and the variations across frames in rows. Finally,
σj = ‖STj dit−j‖ is computed. Note that in the Eigen analysis,
we assume that the error in dit−j is Normal distributed and
di = E(dit−j) for varying j. The parameter β in the model
controls how much the predicted altitudes in a frame di and
dj are close and is computed experimentally through cross
validation.

Once the parameters are estimated from the training data,
given a test frame, we use the Maximum A Posteriori (MAP)
over d to estimate the altitude d over the entire image. The
MAP problem can be stated as follows.

min
d

Eσ,θ(d, F ). (6)

To solve this problem, first (5) is reformulated as an L1 and
L2 constrained optimization problem through the following
linear algebra transformations. Let D is an n×1 vector built
by stacking up all the altitude values d over the entire image.
Let Y is also an n × 1 vector created by stacking up the
corresponding F ′iθ values. Further, let E and I be n2 × n
matrices defined as follows:

E =


1n 0 0 0 0 0
0 1n 0 0 0 0
. . . . . .
. . . . . .
0 0 0 0 0 1n

 , I =


In×n
In×n
.
.
.

In×n

 ,

where 1n is a vector of n ones and In×n denotes an n× n
identity matrix. Thus (6) in terms of (5) can be rewritten as

min
D

‖D − Y )‖22
σ2
a

+
T∑
j=1

‖D −Dj‖22
σ2
j

+ β‖(E − I)D‖1 (7)

Assuming X = (E − I)D, this becomes a standard L1 and
L2 constrained quadratic optimization problem, which can

be solved efficiently by a modified version of the Feature-
Sign-Search algorithm depicted in [7]. The basic idea of
this algorithm is that if we can infer the correct signs of
the elements in the vector X , then the L1 minimization
problem can be converted to a standard L2 minimization
problem which can be solved efficiently using conventional
optimization techniques.

IV. EXPERIMENTS AND RESULTS

A. UAV System

The experiments in this paper were conducted in a labora-
tory setting using a Blade CX2 helicopter from E-Flite [8].
Fig. 5 shows the helicopter with the position and orientation
of the video camera. We used an Eyecam 2.4 GHz Color
Micro Wireless Video Camera System [6] onboard that
captures NTSC video at 250K pixels and transmits it using
a frequency set in the 2.5 GHz spectrum. To track the
position of the helicopter during test flights, 6 Vicon high-
resolution MX-40 grayscale cameras [16] with a resolution
of 2352× 1728 pixels was deployed along the perimeter of
the lab as shown in Fig. 6, giving an experimental area of
4.5m × 4.5m × 2m. The Vicon cameras send information
every 7ms through high speed Ethernet cables to a central
router, which collates the data, providing it to a PC running
the ViconIQ software recording the true altitude.

Fig. 5. The Blade CX2 helicopter that was used for the experiments. It
is a coaxial helicopter with a rotor diameter of 34.5 cms, a height of 18.3
cms and weighs approximately 220g (with battery).

B. Learning Setup

To learn the basis set, we collected approximately 250
random aerial images (640 × 480) from the internet. Each
image was converted to gray scale, which preceds segre-
gating the images into patches of size 10 × 10, vectorizing
them, and later using (2) to build the basis. Fig. 7 shows the
plot of the mean absolute error in altitude prediction against
various choices of the basis set size. Trading-off between the
accuracy of altitude prediction (as seen from Fig. 7) and the
computational time, we fixed on 200 basis vectors for our
experiments. The parameters of the MRF model were then
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Fig. 6. The experimental setup for tracking the position of the helicopter.
6 high-resolution Vicon cameras (only three shown in the picture) were
placed along the perimeter of the lab that tracks the reflective markers on
the helicopter (seen with bright dots in the picture) determining the position.

estimated by regressing the basis on patches from a training
set of 200 images taken using the camera on the helicopter.
These images were of the kind shown in Fig. 1. Finally
the model was tested on pre-recorded lab flight sessions by
minimizing (7). Each test image in the video sequence was
first applied with Wiener filters to account for the motion blur
and later convoluted with Gaussian filters for smoothing. To
improve the speed of prediction, we used only the middle
100× 100 section of each image.

All the algorithms were implemented in Matlab. Testing
the framework took less than 0.5 seconds per image on a PC
with a 2Ghz Pentium processor and 2GB RAM. Fig. 8 plots
the true and predicted altitudes for various experimental UAV
flight sessions. As is seen from the plots, predicted altitude
gives a very good approximation to the true altitude most of
the times. The prediction error increases as true altitude of
the UAV goes high. This is expected, as at higher altitudes,
the ground is seen as almost textureless. Thus our algorithm
is mostly applicable to low altitude situations, like landing or
low altitude flight, unless we have a more powerful camera
onboard.

To evaluate the robustness of our algorithm with non-
flat surfaces and across varying ground textures, we placed
boxes of varying textures in the experimental area and the
helicopter made to fly over them. Fig. 9 shows the results
of this experiment. As is seen, our algorithm performs well
in finding the altitude variations due to the presence of the
obstacles. We repeated the experiments with boxes of high
illumination and with non-textured surfaces, the outputs of
which are shown in Fig. 10. As expected, in this case,
the algorithm gets confused between textureless surfaces to
textures at high altitudes and performs poorly. A summary of
the various experiments showing the minimum, maximum,
mean and the standard deviations of the errrors respectively
is given in Table I.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigated the possibility of predicting
the altitude of a UAV from ground looking image sequences
taken from a single onboard camera. We found that sparse
coding can effectively capture the texture in an image. Super-

Fig. 7. A plot of the mean absolute error of prediction (y axis in m)
against the number of basis vectors used (x axis). Each basis vector is of
size 100× 1.

Experiment Min Max Mean Std.
Error(m) Error(m) Error(m) Dev.

Without boxes 0.0 1.13 0.35 0.26
With boxes 0.0 1.56 0.48 0.36

TABLE I
A SUMMARY OF THE VARIOUS FLIGHT EXPERIMENTS.

vised regression using this sparse basis against a training set
of altitudes provided a good prediction setup. Later, a spatio-
temporal MRF was modeled and its MAP estimate with
respect to the altitude was computed. The effectiveness of our
approach was substantiated through laboratory experiments.
We found that as the altitude of the UAV goes over a certain
height, the images become textureless (which depends on
the specific environment though) and our algorithm performs
poorly. Thus our mechanism is most suited for situations
where the UAV flies at low altitudes and at low speeds.
Also, since the prediction is based on the texture variations in
the image, the mechanism performs poorly when the ground
surface is textureless. A way to improve our algorithm in
such a situation will be to incorporate information from other
sensors like ultrasonic/infra-red as priors to the MRF model.
Another direction to carry forward this work would be to
extend our framework to forward-looking onboard cameras.
Such a setup could enable not only altitude estimation but
also visual navigation and obstacle avoidance. These are
topics for future research.
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