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Abstract— When a robot travels in urban area, Global Posi-
tional System (GPS) signals might be obstructed by buildings.
Hence visual odometry is a choice. We notice that the vertical
edges from high buildings and poles of street lights are a very
stable set of features that can be easily extracted. Thus, we
develop a monocular vision-based odometry system that utilizes
the vertical edges from the scene to estimate the robot ego-
motion. Since it only takes a single vertical line pair to estimate
the robot ego-motion on the road plane, here we model the
ego-motion estimation process and analyze how the choice of
different vertical line pair impacts the accuracy of the ego-
motion estimation process. The resulting closed form error
model can assist to choose an appropriate pair of vertical lines
to reduce the error in computation. We have implemented the
proposed method and validated the error analysis results in
physical experiments.

I. INTRODUCTION

When a robot travels in urban area, high buildings of-
ten block the view of sky and Global Positional System
(GPS) signals are sometimes unavailable. Since wheel-
encoder based or inertial measurement unit (IMU)-based
dead reckoning methods cannot provide sufficient accuracy
for navigation needs, visual odometry is a natural choice.
Realizing that the vertical edges in the scene, such as the
vertical boundaries of buildings and poles of street lights,
provide a stable and rich set of features that are easy to
extract and recognize, we are interested in developing visual
odometry techniques utilizing the vertical line features.

As illustrated in Fig. 1, we start with the simplest con-
figuration where the robot only has one camera. When the
robot/camera travels on the streets, images are taken with
vertical lines extracted from the scene. We compare the
translation of the corresponding vertical lines’ movements
in adjacent image frames and estimate the robot ego-motion.
Since it only takes a single vertical line pair to estimate
the robot ego-motion on the road plane, here we model the
ego-motion estimation process and analyze how the choice
of different vertical line pair impacts the accuracy of the
ego-motion estimation process. The resulting closed form
error model can assist to choose an appropriate pair of
vertical lines in the scene to achieve the best visual odometry
accuracy. We have implemented the proposed method and
validated the error analysis results in physical experiments.
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Fig. 1. An illustration of monocular visual odometry using vertical lines. (a)
An image frame taken by the robot with vertical lines highlighted in orange
color. (b) Corresponding vertical lines in two consecutive frames after the
robot moving forward along the optical axis direction of the camera by 10
meters. The corresponding vertical lines before and after the movement are
represented in solid and dash lines, respectively. The robot can utilize the
vertical lines’ displacements to estimate its ego-motion.

II. RELATED WORK

Using one or more cameras to assist robot navigation
has become a popular research direction in the past decade.
Depending on the purpose of the system, researchers focus
on different aspects such as vision-based navigation [1] in
general, simultaneous localization and mapping (SLAM) [2]
and visual odometry [3]. In this paper, our work only focuses
on visual odometry.

A line is a special type of edge in feature extraction.
Using edge features to assist robots in navigation is a popular
approach. Edges are robust features that are not sensitive
to lighting conditions and shadow. The property makes
them suitable to outdoor applications. Edges can be easily
extracted from images using edge detectors [4]. In vision-
based navigation, edge features are widely used in lane
detection [5], road following [6], road edge detection [7], and
vehicle motion planning [8], [9]. Inspired by the success of
applications in different domains, we zoom in vertical lines,
which are a very unique set of edges that exist in urban
applications. It becomes possible to precisely and automat-
ically extract these features and hence open the possibility
for odometry applications where the accuracy requirement
for features are more critical than other applications.

Visual odometry is to estimate vehicle ego-motion using
images taken by the onboard camera. It is often used in
locations where GPS signals are challenged or not avail-
able. Successful applications of visual odometry include
unmanned aerial vehicles [10], unmanned underwater ve-
hicles [11], legged robots [12], and ground mobile robots
where the wheels often skid [13], [14]. The application of
visual odometry on Mars rovers is a famous example [15]–
[17]. One challenge of visual odometry is to autonomously
identify rigid/static features from the scene. Utilizing the
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special structure of the scene, we focus on applications for
ground robots navigating in urban area and hence propose
to use vertical lines to decrease the difficulty of identifying
features.

An early work by Zhou and Li [18] shows that the vertical
lines can be automatically extracted even the camera optical
axis is not perfectly horizontal. Hence the road plane can
be estimated. Building on this, we develop visual odometry
techniques using vertical lines and analyze how different
vertical line features impact the accuracy of visual odometry.

III. PROBLEM DEFINITION

The robot periodically takes frames to calculate its dis-
placement in each step, which is the ego-motion estimation.
To define the problem and focus our effort on the most
relevant issues, we have the following assumptions.
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Fig. 2. Superimposed camera coordinate systems (a) and image coordinate
systems (b) for vertical lines 1 and 2 over frames k−1, k, k+1, respectively.

A. Assumptions

1) We assume that the robot displacement of the initial
step is known as a reference. This is the requirement
for the monocular vision system. Otherwise the ego-
motion estimation is only up to similarity.

2) We assume that the robot moves on a flat ground that
could be approximated by a plane, which is named as
the road plane.

3) We assume that vertical lines, such as poles and
buildings’ vertical edges, are stationary, hence have the
same angle to the road plane. The vertical lines are not
necessarily perpendicular to the road plane because the
road plane is not necessarily horizontal.

4) We assume that the intrinsic camera parameters and
camera orientations are known from pre-calibration
or potentiometers. The calibration also removes lens
distortion. The camera has square pixels and a zero
skew factor. For simplicity of the analysis, we assume
that the camera focal length is one unit, and the image

planes are always perpendicular to the road plane, and
parallel to each other. For other cases, we can always
use a homography matrix to rotate them to satisfy the
condition. Since the camera orientation is known, the
homography matrix can be easily constructed [19].

B. Notations and Coordinate Systems

In this paper, all the coordinate systems are right hand
systems. For the camera coordinate system (CCS), we define
z-axis as the camera optical axis, and y-axis to point upward
toward sky. The corresponding image coordinate systems
(ICS) is defined on the image plane parallel to the x − y
plane of CCS with its u-axis and v-axis parallel to x-axis
and y-axis, respectively. The camera principle axis intersects
ICS at its origin on the image plane. To maintain a right hand
coordinate system, the x-axis of CCS and its corresponding
u-axis in ICS have to point left as illustrated in Fig. 2.

Since the image planes are perpendicular to the road plane,
and parallel to each other, the CCSs are iso-oriented during
the computation, therefore the displacement of the robot on
the road plane in different CCSs is equivalent to the displace-
ment of the vertical lines in a fixed CCS in the opposite
direction. Fig. 2(a) illustrates the superimposed CCSs for
three consecutive frames k−1, k and k +1, respectively. At
time k, k ∈ N+, let (x(i,k−1), z(i,k−1)), (x(i,k), z(i,k)), and
(x(i,k+1), z(i,k+1)) be the (x, z) coordinate of the intersection
between the corresponding vertical line i, i = 1, 2 and x− z
plane for frames k − 1, k, and k + 1, respectively. Let (dx

k ,
dz

k) be the vertical line pair’s displacement from frame k−1
to k, we have dx

k = x(i,k) − x(i,k−1), dz
k = z(i,k) − z(i,k−1).

Fig. 2(b) shows the corresponding superimposed ICSs for
frames k− 1, k and k + 1. Let u(i,k−1), u(i,k), and u(i,k+1)

be the u-coordinate of the intersections between vertical line
i and u-axis for frames k−1, k, and k+1, respectively. With
the above notations and coordinate systems defined, we are
ready to describe our task.

C. Problem Description

If the robot knows its displacement of the pervious
step: dk = [dx

k, dz
k]T , it can calculate the displacement

of the current step: dk+1 = [dx
k+1, d

z
k+1]

T using the
vertical line pair’s positions in the three images, ui =
[u(i,k−1), u(i,k), u(i,k+1)]T , i = 1, 2, as follows,

dk+1 = F(dk,u1,u2), (1)

where function F(·) will be determined later in the paper.
Eq. (1) provides a recursive format for us to estimate the

robot ego-motion represented by dk+1. However, in each
step of calculation, errors are brought into the system. We
do not know the actual value of dk,u1, and u2. Instead, we
have their measured value d̂k, û1, and û2 with corresponding
error ed

k = d̂k − dk, eu
1 = û1 − u1, and eu

2 = û2 − u2. As
a convention in the paper, error value ea of a variable a is
defined as ea = â− a. Hence, (1) becomes

dk+1 + ed
k+1 = F(dk + ed

k ,u1 + eu
1 ,u2 + eu

2 ). (2)
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Since we are interested in how errors propagate in the
computation, we want to derive the following relationship
from (2),

ed
k+1 = G(ed

k , eu
1 , eu

2 ). (3)

When errors are small, function G can be approximated by
a linear expression

ed
k+1 =

[
P2×2 | Q2×3 | R2×3

]



ed
k

eu
1

eu
2


 , (4)

where P = ∂F/∂ed
k , Q = ∂F/∂eu

1 , and R = ∂F/∂eu
2 are

Jacobian matrices. Hence our problem can be defined as

Definition 1: Given dk, u1, and u2, derive F(·), and com-
pute P, Q, and R. Based on the results, perform sensitivity
analysis to study error propagation.

IV. MODELING ERROR PROPAGATION

To solve the problem, we begin with deriving the expres-
sion of F(·) in (1).

A. Deriving F: Incremental Displacement Computing

Since the camera has square pixels, a zero skew factor,
and the focal length of one unit, we can use the pin hole
camera model to obtain the following relationship between
(x(i,k), z(i,k)) and u(i,k),

u(i,k) =
x(i,k)

z(i,k)
, i = 1, 2. (5)

Combining (5) with x(1,k−1) = x(1,k) − dx
k , x(1,k+1) =

x(1,k)+dx
k+1, z(1,k−1) = z(1,k)−dz

k, z(1,k+1) = z(1,k)+dz
k+1,

we have

u(1,k−1) =
x(1,k−1)

z(1,k−1)
=

(x(1,k) − dx
k)

(z(1,k) − dz
k)

, (6)

u(1,k) =
x(1,k)

z(1,k)
, (7)

u(1,k+1) =
x(1,k+1)

z(1,k+1)
=

(x(1,k) + dx
k+1)

(z(1,k) + dx
k+1)

. (8)

Combining (6-8) to eliminate x(1,k) and z(1,k), we have

dx
k+1 + a1d

z
k+1 = b1, (9)

where a1 = −u(1,k+1) and b1 = u(1,k+1)−u(1,k)

u(1,k)−u(1,k−1)
(dx

k −
u(1,k−1)d

z
k).

Similarly, we have the following for vertical line 2,

dx
k+1 + a2d

z
k+1 = b2, (10)

where a2 = −u(2,k+1) and b2 = u(2,k+1)−u(2,k)

u(2,k)−u(2,k−1)
(dx

k −
u(2,k−1)d

z
k).

Combine (9) and (10), we have the F(·) function

dk+1 = M−1
k+1Mkdk, (11)

where

Mk =
[

u(1,k+1) − u(1,k) −u(1,k−1)(u(1,k+1) − u(1,k))
u(2,k+1) − u(2,k) −u(2,k−1)(u(2,k+1) − u(2,k))

]
,

Mk+1 =[
u(1,k) − u(1,k−1) −u(1,k+1)(u(1,k) − u(1,k−1))
u(2,k) − u(2,k−1) −u(2,k+1)(u(2,k) − u(2,k−1))

]
.

B. Computing Jacobian Matrices

Now we can compute Jacobian matrices to see how errors
get propagated. It is possible to take an algebraic approach by
directly computing Jacobian. However, it is more intuitive to
use a geometric approach, which helps understand the error
propagation process.
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Fig. 3. Computing Jacobian matrices using a geometric approach.

Fig. 3 illustrates the geometric approach. Let l1 be the
line described by (9), which intersects with x-axis at x = b1

with angle α1. Recalling a1 defined in (9), we have tanα1 =
−1/a1 = 1/u(1,k+1). Similarly, let l2 be the line described
by (10), which intersects with x-axis at x = b2 with angle
α2. Also, we have tanα2 = 1/a2 = −1/u(2,k+1). l1 and l2
intersect at point A, which is the robot displacement dk+1.

Let eα
1 , eb

1 be the parameter errors of α1, b1, respectively.
Due to the existence of eb

1, l1 shifts to l′1, where l′1 is a
line parallel to l1. Due to the existence of eα

1 , l′1 shifts to
l′′1 , where l′′1 is a line intersects with l′1 on x. Let eα

2 , eb
2 be

the parameter errors of α2, b2, respectively. Similarly, we
have lines l′2 and l′′2 . Accordingly, the intersection between
l1, l2 becomes that of l′′1 , l′′2 , locating at point C, which is
the estimated displacement d̂k+1. The difference between C
and A is the robot ego-motion estimation error ed

k+1.
Let B be the intersection between l1 and l′′2 , and D be

the intersection between l′′1 and l2. Since eα
1 and eα

2 are both
very small, we can approximate ABCD as a parallelogram.
Thus, we have

ex
k+1 = |AB| cos α1 − |AD| cos α2, (12)

ez
k+1 = |AB| sinα1 + |AD| sinα2. (13)

From the geometry relationship, we have

|AD| = − eb
1 sin(α1)

sin(α1 + α2)
+

eα
1 (b2 − b1) sin(α2)
sin2(α1 + α2)

. (14)

Let ea
1 be the parameter error of a1 in (9), Since a1 =

−1/ tanα1, we have ea
1 = eα

1 / sin2 α1. At the same time,
using u(1,k+1) = 1/ tanα1 and u(2,k+1) = −1/ tanα2, (14)
becomes

|AD| = η/ sinα2, (15)
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where η = −eb
1

u(1,k+1)−u(2,k+1)
+ ea

1 (b2−b1)
(u(1,k+1)−u(2,k+1))2

. Similarly,
we have

|AB| = µ/ sinα1, (16)

where µ = eb
2

u(1,k+1)−u(2,k+1)
+ ea

2 (b2−b1)
(u(1,k+1)−u(2,k+1))2

. Substitut-
ing (15) and (16) into (12) and (13), and using u(1,k+1) =
1/ tanα1 and u(2,k+1) = −1/ tanα2, we have

ex
k+1 = µu(1,k+1) + ηu(2,k+1), (17)

ez
k+1 = µ + η. (18)

Recalling a1 in (9), we have

ea
1 = −eu

(1,k+1). (19)

From (6), (7), we have u(1,k) − u(1,k−1) = (dx
k −

u(1,k−1)d
z
k)/z(1,k). Let du

(i,k) be the displacement of vertical
line i from frame k − 1 to k, we have du

(i,k) = u(i,k) −
u(i,k−1). After derivation of b1 in (9) and substitution of the
above equations, we have

eb
1 =eu

(1,k+1)z(1,k) − eu
(1,k)z(1,k)(1 +

du
(1,k+1)

du
(1,k)

)

+ eu
(1,k−1)z(1,k−1)

du
(1,k+1)

du
(1,k)

+ (ex
k − u(1,k−1)e

z
k)

du
(1,k+1)

du
(1,k)

. (20)

Substituting (19), (20), b1, and b2 into the expression of η in
(15), and applying the same substitution that we used in (20),
we have the expression of η, and similarly, the expression of
µ in (16). Then, we substitute η and µ into (17) and (18).
Finally, we can obtain the Jacobian matrices as shown in
(21-23).

V. SENSITIVITY ANALYSIS

With Jacobian matrices ready, we can analyze how errors
are introduced and propagated over the computation. The
first analysis we conduct is to study which dimension of the
ego-motion estimation error dk+1 is more suspectable to the
error introduced by edge detection error. In this case, matrix
Q is scrutinized. We have the following result.

Theorem 1: Let Qi,j be the (i, j)-th entry of Q. If the
camera horizontal field of view (HFOV) is no bigger than
50◦, then |Q1,j/Q2,j | ≤ 0.46, j = 1, 2, 3.

Proof: From (22), we have

Q1,j/Q2,j = u(2,k+1), j = 1, 2, 3. (24)

Since the HFOV is no bigger than 50◦, we have

− tan 25◦ ≤ x(2,k+1)

z(2,k+1)
≤ tan 25◦. (25)

Combining (25) with (5), we have

−0.46 ≤ u(2,k+1) ≤ 0.46. (26)

Thus
|Q1,j/Q2,j | ≤ 0.46, j = 1, 2, 3. (27)

This theorem indicates that the introduced error in x-
direction is smaller than that in z-direction. The result could
also be explained by Fig. 3, where point C only moves
inside ∠BAD. Since the HFOV is no bigger than 50◦, angles
α1 and α2 are bounded inside set [65◦, 90◦]. Hence the
quadrilateral ABCD is long in z-direction and narrow in x-
direction. Since a regular camera has HFOV less than 50◦,
the conclusion is that the depth error is at least twice more
than the lateral error.

Another interesting question is how the ego-motion es-
timation error ed

k+1 relates to the position of the vertical
line pair. In other words, if there are many vertical line
pairs available in the scene, we need to find the pair that
provides the most accurate ego-motion estimation. Define
δu
k+1 = u(1,k+1) − u(2,k+1) as the distance between the two

vertical lines in ICS. Recall that z(1,k+1) is the depth of
vertical line 1. We have,

Theorem 2: ∂|Q2,j |/∂|δu
k+1| ≤ 0, ∂|Qi,j |/∂z(1,k+1) ≥ 0,

i = 1, 2, j = 1, 2, 3.

Proof: The first step is to prove ∂|Q2,j |/∂|δu
k+1| ≤ 0,

j = 1, 2, 3. We prove the inequality for the case of j = 1
because other cases can be proved similarly. From (22), we
have

Q2,1 = −
du
(1,k+1)z(1,k−1)

du
(1,k)(u(1,k+1) − u(2,k+1))

. (28)

Since δu
k+1 = u(1,k+1) − u(2,k+1), we have

∂Q2,1

∂δu
k+1

=
du
(1,k+1)z(1,k−1)

du
(1,k)δ

u
k+1

2 = −Q2,1

δu
k+1

. (29)

For the case when Q2,1 ≥ 0 and δu
k+1 > 0, or the case when

Q2,1 < 0 and δu
k+1 < 0, we have

∂ |Q2,1|/∂
∣∣δu

k+1

∣∣ = −Q2,1/δu
k+1 ≤ 0. (30)

For the case when Q2,1 ≥ 0 and δu
k+1 < 0, or the case when

Q2,1 < 0 and δu
k+1 > 0, we have

∂ |Q2,1|/∂
∣∣δu

k+1

∣∣ = Q2,1/δu
k+1 ≤ 0. (31)

Thus,
∂ |Q2,1|/∂

∣∣δu
k+1

∣∣ ≤ 0. (32)

The second step is to prove ∂|Qi,j |/∂z(1,k+1) ≥ 0, i =
1, 2, j = 1, 2, 3. We prove the inequality for i = 1 and j = 1.
All other cases with different i and j values can be proved
similarly. From (22), we have

Q1,1 = −
du
(1,k+1)u(2,k+1)z(1,k−1)

du
(1,k)(u(1,k+1) − u(2,k+1))

. (33)

Substituting z(1,k−1) = z(1,k+1) − dz
k − dz

k+1 into (33), we
have

∂Q1,1

∂z(1,k+1)
=

−du
(1,k+1)u(2,k+1)

du
(1,k)(u(1,k+1) − u(2,k+1))

=
Q1,1

z(1,k−1)
. (34)

Since z(1,k−1) > 0, when Q1,1 ≥ 0, we have

∂ |Q1,1|/∂z(1,k+1) = Q1,1/z(1,k−1) ≥ 0. (35)
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P =
−1

u(1,k+1) − u(2,k+1)




du
(1,k+1)

du
(1,k)

u(2,k+1) − du
(2,k+1)

du
(2,k)

u(1,k+1) −du
(1,k+1)

du
(1,k)

u(2,k+1)u(1,k−1) +
du
(2,k+1)

du
(2,k)

u(1,k+1)u(2,k−1)

du
(1,k+1)

du
(1,k)

− du
(2,k+1)

du
(2,k)

−du
(1,k+1)

du
(1,k)

u(1,k−1) +
du
(2,k+1)

du
(2,k)

u(2,k−1)


 ,

(21)

Q =
−1

u(1,k+1) − u(2,k+1)




du
(1,k+1)

du
(1,k)

u(2,k+1)z(1,k−1) −(1 +
du
(1,k+1)

du
(1,k)

)u(2,k+1)z(1,k) u(2,k+1)z(1,k+1)

du
(1,k+1)

du
(1,k)

z(1,k−1) −(1 +
du
(1,k+1)

du
(1,k)

)z(1,k) z(1,k+1)


 , (22)

R =
1

u(1,k+1) − u(2,k+1)




du
(2,k+1)

du
(2,k)

u(1,k+1)z(2,k−1) −(1 +
du
(2,k+1)

du
(2,k)

)u(1,k+1)z(2,k) u(1,k+1)z(2,k+1)

du
(2,k+1)

du
(2,k)

z(2,k−1) −(1 +
du
(2,k+1)

du
(2,k)

)z(2,k) z(2,k+1)


 . (23)

When Q1,1 < 0 we have

∂ |Q1,1|/∂z(1,k+1) = −Q1,1/z(1,k−1) > 0. (36)

Thus,
∂ |Q1,1|/∂z(1,k+1) ≥ 0. (37)

This theorem indicates that the ego-motion estimation
error dk+1 grows as the depth of the vertical line z(1,k+1)

increases. Also the depth error, which is the z-direction
of dk+1, decreases as |δu

k+1| increases. From Theorem 1,
we know that the depth error dominates the lateral error.
Therefore, choosing the vertical line pair with short depth
and a large distance between the two lines can improve the
accuracy of the ego-motion estimation.

VI. EXPERIMENTS

We use a Sony DSC-F828 Camera mounted on a four-
wheeled robot in the experiment. The robot has a dimension
of 43.7×31.0cm2. Its wheel diameter is 17.2cm. The camera
HFOV is set to 50◦ with a resolution of 640× 480 pixels.

Fig. 4. Experiment setup. We use the vertical edges on the frontal plane
of the interdisciplinary life sciences building on Texas A&M University
campus. The vertical edges are numbered in pairs. This is the closest view
to the building among all the image frames.

As illustrated in Fig. 4, we place the camera/robot in
front of a building on Texas A&M University campus. We
use eight pairs of vertical lines on the frontal plane of the
building. In Fig. 4, two lines with the same number belong
to the same pair. The relative distance between the two lines
in each pair is defined as δ. During the experiment the
camera has to face the frontal plane to obtain edge position
readings. Hence, we use z-direction to refer to the direction
perpendicular to the frontal plane of the building and x-
direction to the direction parallel to the frontal plane of the
building.

During each trial, the robot moves along a straight line
with 11 incremental steps and the step length of 0.5 meters.
The robot takes one image at each of the 12 positions
introduced by the 11-step movement. The robot displacement
of the first step is given as a reference. For the subsequent
10 steps, we compute the robot ego-motion using (11) and
compare it with the actual measurements from tape measurer
for each step. Each trial is the average of the outcome of the
10 steps.

To facilitate the comparison we use relative error metrics.
Let dx and dz be the robot real displacements in x- and z-
directions, respectively. dx and dz are obtained by using a
tape measurer. Let d̂x and d̂z be the estimated displacements
from the algorithm. The two relative error metrics used to
measure the ego-motion estimation error are defined as

εx = |d̂x − dx|/
√

d2
x + d2

z, (38)

εz = |d̂z − dz|/
√

d2
x + d2

z. (39)

The combination of four different experimental setups is
tested in different trials:

1) Two different robot headings including x- and z-
directions,

2) Eight different relative distance settings δ between the
vertical lines,

3) Eight different depth of vertical lines z. The initial
positions of the robot with respect to the frontal plane
is from 8 different depth settings ranging from 35m to
70m with 5m intervals, and

4) Camera rotation vs. no camera rotation. For cases
without camera rotation, we adjust camera pan and tilt
in the experiment to force CCSs to be iso-oriented.
For cases with camera rotation, we introduce CCSs
with ±10◦ orientational difference.

Therefore, we have conducted a total of 256 trials in the
experiments.

Fig. 5 illustrates experiment results. As shown in Fig. 5(a),
regardless of the robot moving directions, the ego-motion
estimation error in depth direction εz is always over two
times bigger than that in lateral direction εx, which confirms
Theorem 1.

Since the depth error εz is the dominating error, we only
compare the depth error. Fig. 5(c) illustrates how εz changes
with respect to different δ settings. It is clear that as δ
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Fig. 5. Statistical experiment results. Note that the red line is the mean
value, the blue box represents the population ranging from 25 percentile to
75 percentile, and the black dashed intervals indicate the data range. (a) εz

vs. εx. (b) Camera rotation vs. no camera rotation. (c) εz vs. δ. (d) εz vs.
z. The number in the parenthesis is the number of trials used to compute
the statistics.

increases, εz decreases. Fig. 5(d) illustrates how εz changes
as z changes. There is a trend that εz decreases as z decreases
although the trend is not clear when z is relatively small since
factors other than z dominate the error. These results confirm
Theorem 2.

Additionally, Fig. 5(b) illustrates how camera rotation
might impact εx and εz . It is clear that there is no significant
difference between the two cases for either εx or εz . This
result shows that assuming the CCSs are iso-oriented during
the computation is reasonable.

VII. CONCLUSION AND FUTURE WORK

We developed a monocular vision-based odometry system
that utilizes the vertical edges from the scene to estimate the
robot ego-motion. We modeled the ego-motion estimation
process and analyzed how the choice of different vertical
line pair impacts the accuracy of the ego-motion estimation
process. The resulting closed form error model can assist
to choose an appropriate pair of vertical lines to reduce the
error in computation. Two conclusions have been identified
through the analysis: 1) the depth error is always a dominat-
ing error for regular cameras with HFOV less than 50◦, and
2) a vertical line pair that is closer to the camera and has
longer relative distance between the two vertical lines gives
more accurate ego-motion estimation. We have implemented
the proposed method and validated the error analysis results
in physical experiments.

In the future, we will build on the approach by actively
selecting a subset of vertical lines from a potential large
number of vertical lines to compose multiple vertical line
pairs to achieve the optimal estimation accuracy. We will
also work on approaches that utilize both vertical lines and
horizontal lines that provide possibility for vertical motion
estimation.

ACKNOWLEDGEMENT

We thank Dr. J. Yi for his insightful inputs and discussions.
Thanks Y. Xu, C. Kim, A. Aghamohammadi, and Z. Bing
for their contributions to NetBot Laboratory in Texas A&M
University.

REFERENCES

[1] D. Song, H. Lee, and J. Yi, “On the analysis of the depth error on the
road plane for monocular vision-based robot navigation,” in The Eighth
International Workshop on the Algorithmic Foundations of Robotics
(WAFR), Dec. 7-9, 2008, Guanajuato, Mxico, 2008.

[2] A. Davison, L. Reid, N. Molton, and O. Stasse, “Monoslam: Real-
time single camera slam,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 29, no. 6, pp. 1052–1067, June 2007.

[3] D. Scaramuzza and R. Siegwart, “Appearance-guided monocular om-
nidirectional visual odometry for outdoor ground vehicles,” IEEE
Transactions on Robotics, vol. 24, no. 5, pp. 1015–1026, Oct. 2008.

[4] D. Ziou and S. Tabbone, “Edge detection techniques - an overview,”
International Journal of Pattern Recognition and Image Analysis,
vol. 8, no. 4, pp. 537–559, 1998.

[5] A. Broggi and S. Berte, “Vision-based road detection in automotive
systems: A real-time expectation-driven approach,” Journal of Artifi-
cial Intelligence Research, vol. 3, pp. 325–348, 1995.

[6] M. Bertozzi and A. Broggi, “Gold: A parallel real-time stereo vision
system for generic obstacle and lane detection,” IEEE Transaction on
Image Processing, vol. 7, no. 1, pp. 62–81, January 1998.

[7] M. Ekinci, F. W. J. Gibbs, and B. T. Thomas, “Knowledge-based nav-
igation for autonomous road vehicles,” Turkish Journal of Electrical
Engineering & Computer Sciences, vol. 8, no. 1, pp. 1–29, May 2000.

[8] Y. He, H. Wang, and B. Zhang, “Color-based road detection in
urban traffic scenes,” IEEE Transactions on Intelligent Transportation
Systems, vol. 5, no. 4, pp. 309– 318, December 2004.

[9] D. Song, H. Lee, J. Yi, and A. Levandowski, “Vision-based motion
planning for an autonomous motorcycle on ill-structured roads,”
Autonomous Robots, vol. 23, no. 3, pp. 197–212, Oct. 2007.

[10] O. Amidi, T. Kanade, and J. Miller, “Vision-based autonomous he-
licopter research at carnegie mellon robotics institute 1991-1997,” in
American Helicopter Society International Conference, Heli, japan,
April 1998.

[11] R. Marks, H. Wang, M. Lee, and S. Rock, “Automatic visual station
keeping of an underwater robot,” in Oceans Engineering for Today’s
Technology and Tomorrow’s Preservation, vol. 2, Brest, France, Sep.
1994, pp. 137–142.

[12] R. Ozawa, Y. Takaoka, Y. Kida, and et al, “Using visual odometry
to create 3D maps for online footstep planning,” in 2005 IEEE
International Conference on Systems, Man and Cybernetics, vol. 3,
Oct. 2005, pp. 2643–2648.

[13] P. Corke, D. Strelow, and S. Singh, “Omnidirectional visual odometry
for a planetary rover,” in 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Sendai, Japan, Sep. 2004, pp. 4007–
4012.

[14] M. Agrawal and K. Konolige, “Rough terrain visual odometry,” in
International Conference on Advanced Robotics, Aug. 2007.

[15] M. Maimone, Y. Cheng, and L. Matthies, “Two years of visual
odometry on the mars exploration rovers,” Journal of Field Robotics,
vol. 24, no. 2, pp. 169–186, March 2007.

[16] Y. Cheng, M. Maimone, and L. Matthies, “Visual odometry on the
mars exploration rovers,” in 2005 IEEE International Conference on
Systems, Man and Cybernetics, vol. 1, Oct. 2005, pp. 903– 910.

[17] D. Helmick, Y. Cheng, and D. Clouse, “Path following using visual
odometry for a mars rover in high-slip environments,” in 2004 IEEE
Aerospace Conference, vol. 2, March 2004, pp. 772–789.

[18] J. Zhou and B. Li, “Exploiting vertical lines in vision-based navigation
for mobile robot platforms,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Honolulu, Hawaii,
USA, April 2007, pp. I–465–I–468.

[19] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd Edition. Cambridge University Press, 2004.

3491


