
  

  

Abstract— It is known that biologically inspired neural 
systems could exhibit natural dynamics efficiently and robustly 
for motion control, especially for rhythmic motion tasks. In 
addition, humans or animals exhibit natural adaptive motions 
without considering their kinematic configurations against 
unexpected disturbances or environment changes. In this paper, 
we focus on rhythmic arm motions that can be achieved by using 
a controller based on neural oscillators and virtual force. In 
comparison with conventional researches, this work treats 
neither trajectories planning nor inverse kinematics. Instead of 
those, a few desired points in task-space and a control method 
with Jacobian transpose and joint velocity damping are merely 
adopted. In addition, if the joints of robotic arms are coupled to 
neural oscillators, they may be capable of achieving biologically 
inspired motions corresponding to environmental changes. To 
verify the proposed control scheme, we perform some 
simulations to trace a desired motion and show the potential 
features related with self-adaptation that enables a three-link 
planar arm to make adaptive changes from the given motion to 
a compliant motion. Specifically, we investigate that human-like 
movements and motion repeatability are satisfied under 
kinematic redundancy of joints.  

I. INTRODUCTION 
n general, the neural oscillator based circuits on the spinal 
cord known as Central Pattern Generators (CPGs) might 

contribute to efficient motor movement and novel stability 
properties in biological motions of animal and human. Based 
on the CPGs, most animals locomote stably using inherent 
rhythmic movements adapted to the natural frequency of their 
body dynamics in spite of differences in their sensors and 
actuators. In our daily lives, natural rhythmic movements 
such as running, swimming, flying, breathing, etc and 
human-like motions such as turning a steering wheel, rotating 
a crank, etc. are dependent upon the interaction between the 
musculo-skeletal system and the nervous system. The CPGs 
composed of neural oscillator networks coupled to limbs 
efficiently provides alternate motor commands for the 
muscles through afferent feedback of sensory signal and 
enables the musculoskeletal system of an animal to deal with 
environmental perturbations properly. Also, they seem to 
appropriately give desired inputs for driving motors to the 
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muscles according to environmental changes without 
precisely considering kinematic configurations and kinematic 
redundancy of joints. To accomplish the biologically inspired 
system, the CPG is mathematically designed and incorporated 
into an artificial neural oscillator network.  

The mathematical description of a neural oscillator was 
presented in Matsuoka’s works [1]. He proved that neurons 
generate the rhythmic patterned output and analyzed the 
conditions necessary for the steady state oscillations. He also 
investigated the mutual inhibition networks to control the 
frequency and pattern [2], but did not include the effect of the 
feedback on the neural oscillator performance. Employing 
Matsuoka’s neural oscillator model, Taga et al. investigated 
the sensory signal from the joint angles of a biped robot as 
feedback signals [3]-[4], showing that neural oscillators made 
the robot robust to the perturbation through entrainment. This 
approach was applied later to various locomotion systems 
[5]-[7]. Besides the examples of locomotion, various efforts 
have been made to strengthen the capability of robots from 
biological inspiration. Williamson created a humanoid arm 
motion based on postural primitives. The spring-like joint 
actuators allowed the arm to safely deal with unexpected 
collisions sustaining cyclic motions [8]. He also proposed the 
neuro-mechanical system that was coupled with the neural 
oscillator for controlling rhythmic arm motions [9]. Arsenio 
[10] suggested the multiple-input describing function 
technique to control multivariable systems connected to 
multiple neural oscillators.  

Even though natural adaptive motions were accomplished 
by the coupling between the arm joints and neural oscillators, 
the correctness of the desired motion was not guaranteed. 
Specifically, robot arms are required to exhibit complex 
behaviors or to trace a trajectory for certain type of tasks, 
where the substantial difficulty of parameter tuning emerges. 
The authors have presented encouraging simulation and 
experiment results in controlling the arm trajectory 
incorporating neural oscillators for a desired task [11]-[13]. 
Apart from such the proposed parameter optimization method, 
we newly address an intuitive and efficient approach for a 
desired task of the neural oscillator based control. In addition, 
we show an impressive capability such as self-adapting 
motions against an unknown disturbance and solving 
ill-posedness of inverse kinematics under redundancy of 
degrees of freedom (DOFs) sustaining motion repeatability of 
the joints. For achieving this, virtual force constraints in 
terms of Jacobian transpose and damping factors 
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corresponding to the velocity of joints [14] are employed 
simply to the oscillator based controller as desired torques. 

In the following section, a neural controller is briefly 
explained. The proposed control scheme is described in 
Section III to design the parameters of the neural oscillator an 
external force for a desired task. Details of dynamic responses 
for the verification of the proposed method through 
simulations are described and discussed in Section IV and V, 
respectively. Finally, conclusions are drawn in Section VI. 

II. RHYTHMIC MOVEMENT USING A NEURAL OSCILLATOR 
We use Matsuoka’s neural oscillator consisting of two 

simulated neurons arranged in mutual inhibition as shown in 
Fig. 1. If gains are properly tuned, the system exhibits limit 
cycle behaviors. Now we propose the control method for 
dynamic systems that closely interacts with the environment 
exploiting the natural dynamics of Matsuoka’s oscillator.  

 
 
 
 
 
 

(1) 
 
 
 
where xei and xfi indicate the inner state of the i-th neuron for 
i=1~n, which represents the firing rate. Here, the subscripts 
‘e’ and ‘f’ denote the extensor and flexor neurons, 
respectively. ve(f)i represents the degree of adaptation and b is 
the adaptation constant or self-inhibition effect of the i-th 
neuron. The output of each neuron ye(f)i is taken as the positive 
part of xi and the output of the oscillator is the difference in 
the output between the extensor and flexor neurons. wij is a 
connecting weight from the j-th neuron to the i-th neuron: wij 
are 0 for i≠j and 1 for i=j. wijyi represents the total input from 
the neurons arranged to excite one neuron and to inhibit the 
other, respectively. Those inputs are scaled by the gain ki. Tr 
and Ta are the time constants of the inner state and the 
adaptation effect, respectively, and si is an external input with 
a constant rate. we(f)i is a weight of the extensor neuron or the 

flexor neuron and gi indicates a sensory input from the 
coupled system which is scaled by the gain ki. 

Fig. 2 shows two types of mechanical systems connected to 
the neural oscillator. The desired torque signal to the i-th joint 
can be given by 

 

( ) ,i oi i odi i ik q q b qτ = − − − &                                                           (2) 
 

where koi is the stiffness of the joint, bi the damping 
coefficient, qi the joint angle, and qodi is the output of the 
neural oscillator that produces rhythmic commands of the i-th 
joint. The neural oscillator follows the sensory signal from 
the joints, thus the output of the neural oscillator may change 
corresponding to the sensory input. This is what is called 
“entrainment” that can be considered as the tracking of 
sensory feedback signals so that the mechanical system can 
exhibit adaptive behavior interacting with the environment.  

 

III. CONTROL SCHEME 

 
The neural oscillator is a non-linear system, thus it is 

generally difficult to analyze the dynamic system when the 
oscillator is connected to it. Therefore a graphical approach 
known as the describing function analysis has been proposed 
earlier [15]. The main idea is to plot the system response in 
the complex plane and find the intersection points between 
two Nyquist plots of the dynamic system and the neural 
oscillator. The intersection points indicate limit cycle 
solutions. However, even if a rhythmic motion of the dynamic 

Fig. 3. Schematic robot arm control model coupled with neural oscillators

Fig. 1.  Schematic diagram of Matsuoka Neural Oscillator 

 
Fig. 2.  Mechanical system coupled to the neural oscillator 
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system is generated by the neural oscillator, it is usually 
difficult to obtain the desired motion required by the task.  
This is because many oscillator parameters need to be tuned, 
and different responses occur according to the inter-oscillator 
network. Hence, we propose the control method that enables 
a robot system to perform a desired motion without precisely 
tuning parameters of the neural oscillator within the range of 
its well-known stable condition.  

Figure 3 illustrates a schematic model of a robot arm whose 
joints are coupled to the neural oscillators. And a virtual force 
leads the coupled robot arm to a given motion. The virtual 
force inducer (VFI) such as springs and dampers which is 
supposed to exist virtually at the target can be transformed 
into equivalent torques. This causes the end-effector of a 
robot arm to draw according to the target calculating position 
error. Also, it is shown that ill-posedness of inverse 
kinematics can be resolved in a natural way using without 
introducing any artificial optimization criterion [14], [16]. 
However, even in such a method kinematic configurations 
including redundant joints may not be guaranteed, even 
though the posture of a robot arm could be set only within a 
certain boundary.  

From this point of view, it would be advantageous if neural 
oscillators are hardly coupled to each joint of a robot arm. 
When the oscillators are implemented to a robotic arm, they 
provide a proper motor command considering the movements 
of the joints with sensory signals. Since biologically inspired 
motions of each joint as described in section II are attained by 
entrainment of the neural oscillator, the coupled joint can 
respond intuitively according to environmental change or 
unknown disturbance inputs performing an objective motion. 
In addition, each neural oscillator can be tuned in order to 
give the criterion with regard to motion limitation to the joints 
considering the amplitude of the sensory feedback signal. 

In general, dynamics of a robot system with n-th DOFs 
could be expressed as   
 

1( ) ( ) ( , ) ( ) ,
2

H q q H q S q q q g q u⎧ ⎫+ + + =⎨ ⎬
⎩ ⎭

&&& & &                               (3) 

 
where, H denotes the n×n inertia matrix of a robot, the second 
term in the right hand side of Eq.(3) stands for coriolis and 
centrifugal force, and the third term is the gravity effect. Then 
a control input for a rhythmic motion of the dynamic system 
shown in Eq. (3) is introduced as follows;   
 

0 ( ) ( ),T
ou C q J k x k x k q g qς= − − Δ + − Δ +& &                              (4) 

 
where  

0 1 2diag( ,  , , )nC c c c= L  

0
1

,  ( 1,  2,  ,  )
n

i ij
j

c k H i nς
=

⎡ ⎤= =⎣ ⎦∑ L  

dx x xΔ = −  

odq q qΔ = −  
 
where k and ς0 is the spring stiffness and damping coefficient, 
respectively for the virtual components. C0 is the joint 
damping. ko and qodi are the stiffness gain and the output of 
the neural oscillator that produces rhythmic commands, 
respectively.  

The control inputs as seen in Eq. (4) consist of two control 
schemes. One is based on Virtual spring-damper Hypothesis 
[14], [16] and the other is determined in terms of the output of 
the neural oscillator as illustrated in Eq. (2). In the control 
input of Eq. (4), the first term describes a joint damping for 
restraining a certain self-motion which could be occurred in a 
robot system with redundancy, and the second term means 
PD control in task space by using of Jacobian transpose, and 
also a spring and a damper in the sense of physics. 
Appropriate selection of joint damping factors C0, stiffness k 
and damping coefficient ς render the closed-loop system 
dynamics convergent, that is, x is converged into xd and both 
of x&  and q&  are become 0 as time elapses. In general, the 
neural oscillators coupled to the joints perform the given 
motion successively interacting with a virtual constraint 
owing to the entrainment property, if gains of the neural 
oscillator are properly tuned [12]-[13]. In the proposed 
control method, the VFI is considered as a virtual constraint. 
Also, the coupled model enables a robotic system to naturally 
exhibit a biologically inspired motion employing sensory 
signals obtained from each joint under an unpredictable 
environment change.  
 
Then, closed-loop dynamics with Eq. (3) and Eq. (4) is 
expressed as   
 

0
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The inner product between q&  and the closed-loop dynamics 
of Eq. (5) yields   
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and 
 

0 0,T Td E q C q x k x
dt

ς= − − ≤& & & &                                               (7) 

 
where E stands for the total energy 
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In Eq. (8), the first term of the quantity E describes the kinetic 
energy of the robot system, the second term means an 
artificial potential energy caused by the error xΔ  in task 
space and the error qΔ  gives rise to an artificial potential 
energy corresponding to the third term in joint space. As it is 
well known in robot control, the energy balance relation of Eq. 
(7) shows that the input-output pair ( , )u q&  related to the 
motion of Eq. (6) satisfies passivity.  

IV. DYNAMIC MOTION ANALYSIS OF THREE LINK PLANAR 
ARM COUPLED TO NEURAL OSCILLATOR 

 

To validate the proposed control scheme, we evaluate 
arbitrary tasks employing a three-link planar arm whose 
joints are coupled to neural oscillators as seen in Fig. 4. Then, 
a neural oscillator network was designed and proposed for 
showing an efficient adaptive motion. The excitatory 
connection is adopted between the neural oscillators of the 
second and third joint. On the contrary, the VFI is coupled to 
the neural oscillator of the first joint with the inhibitory 
connection. Table I shows parameters of the neural oscillator 
and mechanical parameters of the three-link planar arm. With 
this, the gains for the outputs of the neural oscillators and the 
stiffness gains for the control inputs are tuned roughly under 
the condition of a bounded stable oscillation considering the 
amplitude of the gains of the VFI. 

In this section, we compare the simulation results between 
an approach of the VFI model only and that of the VFI with 
the neural oscillator. Various tasks in cases I through II with 
the results of Figure 5 and 6 are verified with respect to given 

motions. Specifically, an adaptive motion of the arm against 
environmental change is investigated through simulation of 
Case III. It is important to be verified whether the proposed 
control scheme brings about complementary characteristics in 
viewpoint of biologically inspired robotic motion or not. 

A. Case I: Point to Point Reaching Movement 

 
We first confirm a reaching motion of the three-link planar 

arm implementing the proposed control approach. In 
simulation of case I, the target position is set with (-1.7, 0.1) 
in Cartesian coordinates. We can observe that the 
end-effector of the robotic arm is precisely moved to the 
target position as shown in Fig. 5 (a) and (b). In particular, 
existing works exploiting the neural oscillator based control 
have been faced with problems that the correctness of the 
desired motion is not guaranteed. However, Fig. 5 (b) shows 
that the robotic arm coupled neural oscillators with the VFI 
can follow the given position. In addition, comparing Fig. 5 
(a) and (b), it can be verified that both of two models show 
smooth movements from the initial point to the target point. 

 

TABLE I 
PARAMETERS OF THE NEURAL OSCILLATORS WITH ROBOT ARM MODEL

Parameters of Neural Oscillators 
Inhibitory weight (w)                           
Time constant (Tr)                                

                          (Ta)                                
Sensory gain (k1,  k2,  k3)                      
Tonic input (s) 

 
2.5 

   0.16 
     0.32 

30,           15,            10 
  4.0 

Robot Arm Model 
 Mass1 (m1), Mass2 (m2), Mass3 (m3) 
 Inertia1 (I1), Inertia2 (I2), Inertia3 (I3) 
 Length1(l1), Length2(l2),  Length3(l3) 

 
0.5kg,            0.5kg,            0.5kg 
0.042kgm2,  0.042kgm2,   0.042kgm2

1.0m,             1.0m,             1.0m 

 
Fig. 4. Three-link planar arm model coupled with neural oscillators 
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(b) 
Fig. 5. The trajectory drawn by the end-effector of the robot arm without 
coupling to the neural oscillator (a) and with coupling to the neural 
oscillator (b) 
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B. Case II: Dynamic Motion in Given Trajectory 

  
In case II, the end-effector of the planar arm performs a 

circular motion as illustrated in Fig. 6. Figure 7 (a), (b) and (c) 
show the joint angle trajectories corresponding to Fig. 6 (a), 
(b) and (c), respectively. As expected, it can be observed 
through Fig. 7 (a) that a problem in kinematic configurations 
regards as repeatability is exposed. Coupling the neural 
oscillators to each joint of the robot arm, the related weakness 
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(c) 
Fig. 7. The joint angle trajectories actuated by the neural oscillator and the 
output of the neural oscillators. In graphs, the thin line is the first joint angle, 
the dashed line indicates the second joint angle and the third joint angle is 
drawn by the thick line. 

-2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

X[m]

Y[
m
]

(a) 

-2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4

-0.4

-0.2

0

0.2

0.4

0.6

X[m}

Y[
m
]

(b) 

-2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

X[m]

Y[
m
]

(c) 
Fig. 6. The trajectory drawn by the end-effector of the robot arm without 
coupling to the neural oscillator (a) and with coupling to the neural 
oscillator (b), (c) 
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can be complemented as mentioned in section III. In Figs. 7 
(b) and (c), we can confirm that repeatability of the joint angle 
trajectories is maintained owing that each neural oscillators 
entrain the joint angle trajectories properly. A change in the 
output of the neural oscillator causes a change in the joint 
torque. The difference of motion between Fig. 6 (b) and Fig. 6 
(c) is induced according to internal network of neural 
oscillators. We use independently the neural oscillators in 
simulation of Fig. 6 (b) and the better result in the circle 
motion of Fig. 6 (c) is caused by efficiently connecting the 
neural oscillators corresponding to adequate joint motion.  

C. Case III: Dynamic Motion under Unknown  

 

 

 
Now, we will examine what happens in the arm motion if 

additive external disturbances exist. For this, an arbitrary wall 
is considered as seen in Fig. 4. The wall is modeled as a 
spring with a damper vertically. Figure 8 in case III illustrates 
the simulation result with respect to the trajectory of the 
end-effector of the robot arm. Figure 8 (b) shows better 
adaptive motion than motion of the VFI model only seen in 
Fig. 8 (a). This is because that though a desired task changes 
unexpectedly owing to an unknown environment, the 
entrainment function of the neural oscillator adjusts the 
control commands in an adaptive way so as to maintain 
rhythmic movement. It is also demonstrated through the 
related experiment as shown in Figs. 9 and 10. The 
end-effector of the robot arm was collided against an arbitrary 
wall 7s to 15s and 19s to 27s sequentially. Fig. 9 shows the 
snap shots of the circular motion by the robot arm, where we 
can observe that the end-effector traces the circle well, and 
adapts its motion when an external force in terms of unknown 
environmental change such as the wall is applied to it. Thus 
we can observe from experiment of Fig. 10 that the robotic 
arm is well moved along the wall. From these results, it is 
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Fig. 10. The trajectory drawn by the end-effector of the real robot arm 

Fig. 9. Snap shots of the arm motion in collision 
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Fig. 8. The trajectory drawn by the end-effector of the robot arm without 
coupling to the neural oscillator (a) and with coupling to the neural 
oscillator (b) 
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confirmed that the neural oscillator enables the coupled joint 
to exhibit a biologically inspired motion to enhance adaptive 
property sustaining motion stability. Incorporating the 
proposed control approach to 7-DOF robotic arm, we finally 
verify a desired motion generation and the repeatability of 
each joint motion as seen in figure 11.  

 

V. CONCLUSION 
We have proposed a control scheme for technically 

attaining a biologically inspired robotic motion. The 
proposed control approach basically consists of the neural 
oscillator and the virtual force inducer (a spring and a 
damper) with the joint angle damper. In contrast to existing 
works that were only capable of rhythmic pattern generation, 
our approach allowed the robot arm to trace a trajectory 
correctly through entrainment. For achieving this, we exploit 
virtual components to easily carry out given tasks without 
calculating inverse dynamics and considering the 
ill-posedness problem in redundant systems. The neural 
oscillator coupled with each joint of a robot arm contributes 
to sustaining repeatability and naturally setting kinematic 
configurations of a robotic arm with redundancy. Simulation 
results showed the effectiveness of the proposed approach. 
Moreover, it was demonstrated that the robot arm could 
adaptively behave responding to environmental changes in 
experiment. This approach will be extended to a more 
complex behavior with a robotic arm of multi-DOFs toward 
the realization of biologically inspired robot control 
architectures. 
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Fig. 11.  Simulation result of 7-DOF robotic arm with respect to a circular 
motion 
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