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Abstract— Skid-steered vehicles are often used as outdoor
mobile robots due to their robust mechanical structure and
high maneuverability. Sliding along with rolling is inherent to
general curvilinear motion, which makes both kinematic and
dynamic modeling difficult. For the purpose of motion planning
this paper develops and experimentally verifies dynamic models
of a skid-steered wheeled vehicle for general planar (2D) motion
and for linear 3D motion. These models are characterized by the
coefficient of rolling resistance, the coefficient of friction, and
the shear deformation modulus, which have terrain-dependent
values. The dynamic models also include motor saturation and
motor power limitations, which enable correct prediction of
vehicle velocities when traversing hills. It is shown that the
closed-loop system that results from inclusion of the dynamics
of the (PID) speed controllers for each set of wheels does a much
better job than the open loop model of predicting the vehicle
linear and angular velocities. Hence, the closed-loop model is
recommended for motion planning.

I. INTRODUCTION

Dynamic models of autonomous ground vehicles are
needed to enable realistic motion predictions in unstructured,
outdoor environments that have substantial changes in ele-
vation, consist of a variety of terrain surfaces, and/or require
frequent accelerations and decelerations. At least 4 different
planning tasks can be accomplished using appropriate dy-
namic models: 1) time optimal motion planning, 2) energy
efficient motion planning, 3) planning in the presence of a
fault, 4) reduction in the frequency of replanning.

Ackerman steering, differential steering, and skid steering
are the most widely applied steering mechanisms for wheeled
and tracked vehicles. Ackerman steering has the advantage
of good controllability [1], but has the disadvantages of
low maneuverability and a complex steering subsystem [2].
Differential steering is popular because it provides high
maneuverability with a zero turning radius and has a simple
steering configuration [1]. However, it has limited mobility
on outdoor terrains. Like differential steering, skid steering
leads to high maneuverability [1], [3] and also has a simple
and robust mechanical structure [4], [5]. In contrast, it has
good mobility on a variety of terrains, which makes it
suitable for all-terrain traversal.

A skid-steered vehicle can be characterized by two fea-
tures [1], [2]. First, the vehicle steering depends on control-
ling the relative velocities of the left and right side wheels.
Second, all wheels or tracks point to the longitudinal axis
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of the vehicle and vehicle turning requires slippage of the
wheels or tracks. Due to identical steering mechanisms,
wheeled and tracked skid-steered vehicles share many prop-
erties [2], [5], [6], [7]. Many of the difficulties associated
with modeling and operating both classes of skid-steered
vehicles arise from the complex wheel (or track) and terrain
interaction [2], [7]. For Ackerman-steered or differential-
steered vehicles, the wheel motions may often be accurately
modeled by pure rolling, while for skid-steered vehicles in
general curvilinear motion, the wheels (or tracks) roll and
slide at the same time [2], [5], [7], [8]. This makes it difficult
to develop kinematic and dynamic models that accurately
describe the motion. Other disadvantages are that the motion
tends to be energy inefficient, difficult to control [4], [9], and
for wheeled vehicles, the tires tend to wear out faster.

A kinematic model of a skid-steered wheeled vehicle maps
the wheel velocities to the vehicle velocities and is an im-
portant component in the development of a dynamic model.
In contrast to the kinematic models for Ackerman-steered
and differentially-steered vehicles, the kinematic model of
a skid-steered vehicle is terrain-dependent [2], [10] and is
dependent on more than the physical dimensions of the
vehicle. In [2], [9] a kinematic model of a skid-steered
vehicle was developed by assuming a certain equivalence
with a kinematic model of a differential-steered vehicle.
This was accomplished by experimentally determining the
instantaneous centers of rotation (ICRs) of the sliding veloc-
ities of the left and right wheels. An alternative kinematic
model that is based on the slip ratios of the wheels has
been presented in [6], [10]. This model takes into account
the longitudinal slip ratios of the left and right wheels. The
difficulty in using this model is the actual detection of slip,
which cannot be computed analytically. Hence, developing
practical methods to experimentally determine the slip ratios
is an active research area [5], [6].

To date, there is very little published research on the
experimentally verified dynamic models for general motion
of skid-steered vehicles, especially wheeled vehicles. The
main reason is that it is hard to model the tire (or track) and
terrain interaction when slipping and skidding occur. (For
each vehicle wheel, if the wheel velocity computed using
the angular velocity of the wheel is larger than the actual
linear velocity of the wheel, slipping occurs, while if the
computed wheel velocity is smaller than the actual linear
velocity, skidding occurs.) The research of [3] developed a
dynamic model for planar motion by considering longitudinal
rolling resistance, lateral friction, moment of resistance for
the vehicle, and also the nonholonomic constraint for lateral
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skidding. In addition, a model-based nonlinear controller was
designed for trajectory tracking. However, this model uses
Coulomb friction to describe the lateral sliding friction and
moment of resistance, which contradicts empirical evidence
[10], [11]. In addition, it does not consider any of the motor
properties. Furthermore, the results of [3] are limited to
simulation without experimental verification.

The research of [4] developed a planar dynamic model of
a skid-steered vehicle, which is essentially that of [3], using
a different velocity vector (consisting of the longitudinal and
angular velocities of the vehicle instead of the longitudinal
and lateral velocities). In addition, the dynamics of the
motors, though not the power limitations, were added to
the model. Kinematic, dynamic and motor level control laws
were explored for trajectory tracking. However, as in [3],
Coulomb friction was used to describe the lateral friction
and moment of resistance, and the results are limited to
simulation.

The most thorough dynamic analysis of a skid-steered
vehicle is found in [10], [11], which consider steady-state
(i.e., constant linear and angular velocities) dynamic models
for circular motion of tracked vehicles. A primary contri-
bution of this research is that it proposes and then provides
experimental evidence that in the track-terrain interaction the
shear stress is a particular function of the shear displacement
(see eqn. (7) of Section III). This model differs from the
Coulomb model of friction, adopted in [3], [4], which es-
sentially assumes that the maximum shear stress is obtained
as soon as there is any relative movement between the track
and the ground. This research also provides detailed analysis
of the longitudinal and lateral forces that act on a tracked
vehicle. But their results had not been extended to skid-
steered wheeled vehicles. In addition, they do not consider
vehicle acceleration, terrain elevation, actuator limitations, or
the vehicle control system.

Building upon the research in [10], [11], this paper de-
velops dynamic models of a skid-steered wheeled vehicle
for general curvilinear planar (2D) motion and straight-line
3D motion. As in [10], [11] the modeling is based upon the
functional relationship of shear stress to shear displacement.
Practically, this means that for a vehicle tire the shear
stress varies with the turning radius. This research also
includes models of the saturation and power limitations of the
actuators as part of the overall vehicle model. In addition, it
shows that the closed-loop model yields substantially better
predictions of the vehicle velocity than the corresponding
open-loop model.

The paper is organized as follows. Section II describes
the terrain-dependent kinematic model needed for the de-
velopment of the dynamic model. Section III discusses
the wheel and terrain interaction of a skid-steered wheeled
vehicle and establishes the dynamic models. Section IV
describes the closed-loop model, including the discussion
of the PID controller, motor and motor controller. Section
V experimentally verifies the dynamic models in planar and
hill-climbing experiments. Finally, Section VI concludes the
paper and discusses future research.

II. KINEMATIC MODELS

In this section, the kinematic model of a skid-steered
wheeled vehicle is described and discussed. It is an important
component in the development of the overall dynamic model
of a skid-steered vehicle.

To mathematically describe the kinematic models that have
been developed for skid-steered vehicles, consider a wheeled
vehicle moving at constant velocity about an instantaneous
center of rotation (see Fig. 1 of Section III). The local
coordinate frame, attached to the body center of gravity, is
denoted by x-y, where x is the lateral coordinate and y is
the longitudinal coordinate.

For vehicles that are symmetric about the x and y axes,
an experimental kinematic model of a skid-steered wheeled
vehicle that is developed in [2] is given by,[

vy
ϕ̇

]
=

r

αB

[
αB
2

αB
2

−1 1

] [
ωl
ωr

]
, (1)

where ωl and ωr are respectively the angular velocities of
the left and right wheels, vy is the vehicle velocity in the
longitudinal direction, ϕ̇ is the vehicle angular velocity, B is
the vehicle width, r is the wheel radius, and α is a terrain-
dependent parameter that is a function of the ICRs. (Note
that the lateral velocity vx = 0.) Our experimental results
show that the larger the rolling resistance, the larger the
value of α. For a Pioneer 3-AT mobile robot (see Fig. 4
of Section V), α = 1.5 for a vinyl lab surface and α > 2
for a concrete surface. (More experiments are needed to
obtain the precise α for a concrete surface.) Equation (1)
shows that the kinematic model of a skid-steered wheeled
vehicle of width B is equivalent to the kinematic model of
a differential-steered wheeled vehicle of width αB.

A more rigorously derived kinematic model for a skid-
steered vehicle is presented in [6], [10]. This model takes
into account the longitudinal slip ratios il and ir of the left
and right wheels and for symmetric vehicles is given by[

vy
ϕ̇

]
=

r

B

[
(1−il)B

2
(1−ir)B

2
−(1− il) (1− ir)

] [
ωl
ωr

]
, (2)

where il , (rωl− vl a)/(rωl), ir , (rωr − vr a)/(rωr) and
vl a and vr a are the actual velocities of the left and right
wheels. We have found that when

il
ir

= −ωr
ωl

and α =
1

1− 2ilir
il+ir

, (3)

(1) and (2) are identical. Currently, to our knowledge no
analysis or experiments have been performed to verify the
left hand equation in (3) and analyze its physical significance.

III. DYNAMIC MODELS

This section develops dynamic models of a skid-steered,
wheeled vehicle for the cases of circular 2D motion and
linear 3D motion. In contrast to dynamic models described
in terms of the velocity vector of the vehicle [3], [4], the
dynamic models here are described in terms of the angular
velocity vector of the wheels. This is because the wheel
(specifically, the motor) velocities are actually commanded
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by the control system, so this model form is particularly
beneficial for control and planning.

Following [4], the dynamic model considering the non-
holonomic constraint is given by

Mq̈ + C(q, q̇) +G(q) = τ, (4)

where q = [θl θr]T is the angular displacement of the left
and right wheels, q̇ = [ωl ωr]T is the angular velocity of
the left and right wheels, τ = [τl τr]T is the torque of the
left and right motors, M is the mass matrix, C(q, q̇) is the
resistance term, and G(q) is the gravitational term.

A. 2D General Motion

When the vehicle is moving on a 2D surface, it follows
from the model given in [4], which is expressed in the local
x-y coordinates, and the kinematic model (1) that M(q) in
(4) is given by

M =

[
mr2

4 + r2I
αB2

mr2

4 −
r2I
αB2

mr2

4 −
r2I
αB2

mr2

4 + r2I
αB2

]
, (5)

where m and I are respectively the mass and moment
of inertia of the vehicle. Since we are considering planar
motion, G(q) = 0. C(q, q̇) represents the resistance resulting
from the interaction of the wheels and terrain, including
the rolling resistance, sliding frictions, and the moment
of resistance, the latter two of which are modeled using
Coulomb friction in [3], [4]. Assume that q̇ = [ωl ωr]T is a
known constant, then q̈ = 0 and (4) becomes

C(q, q̇) = τ. (6)

Based on the theory in [10], [11], the shear stress τss and
shear displacement j relationship can be described as,

τss = pµ(1− e−j/K), (7)

where p is the normal pressure, µ is the coefficient of
friction and K is the shear deformation modulus. K is a
terrain-dependent parameter, like the rolling resistance and
coefficient of friction [10].

Fig. 1 depicts a skid-steered wheeled vehicle moving
counterclockwise (CCW) at constant linear velocity v and
angular velocity ϕ̇ in a circle centered at O from position 1 to
position 2. X–Y denotes the global frame and the body-fixed
frames for the right and left wheels are given respectively by
the xr–yr and xl–yl. The four contact patches of the wheels
with the ground are shadowed in Fig. 1 and L and C are
the patch-related distances shown in Fig. 1. It is assumed
that the vehicle is symmetric and the center of gravity (CG)
is at the geometric center. Note that because ωl and ωr
are known, vy and ϕ̇ can be computed using the vehicle
kinematic model (1), which enables the determination of the
radius of curvature R since vy = Rϕ̇.

In the xr–yr frame consider an arbitrary point on the
contact patch of the front right wheel with coordinates
(xfr, yfr). This contact patch is not fixed on the tire, but
is the part of the tire that contacts the ground. The time

Fig. 1. Circular motion of a skid-steered wheeled vehicle

interval t for this point to travel from an initial contact point
(xfr, L/2) to (xfr, yfr) is,

t =
∫ L/2

yfr

1
rωr

dyr =
L/2− yfr

rωr
. (8)

During the same time, the vehicle has moved from position 1
to position 2 with an angular displacement of ϕ. The sliding
velocities of point (xfr, yfr) in the xr and yr directions are
denoted by vfr x and vfr y . Therefore,

vfr x = −yfrϕ̇, vfr y = (R+B/2 + xfr)ϕ̇− rωr. (9)

The resultant sliding velocity vfr and its angle γfr in the
xr-yr frame are

vfr =
√
v2
fr x + v2

fr y, γfr = π + arctan(
vfr y
vfr x

). (10)

Note that when the wheel is sliding, the direction of friction
is opposite to the sliding velocity, and if the vehicle is in
pure rolling, vfr x and vfr y are zero.

In order to calculate the shear displacement of this refer-
ence point, the sliding velocities need to be expressed in
the global X–Y frame. Let vfr X and vfr Y denote the
sliding velocities in the X and Y directions. Then, the
transformation between the local and global sliding velocities
is given by,[

vfr X
vfr Y

]
=
[

cosϕ − sinϕ
sinϕ cosϕ

] [
vfr x
vfr y

]
. (11)

The shear displacements jfr X and jfr Y in the X and Y
directions can be expressed as

jfr X =
∫ t

0

vfr Xdt =
∫ L/2

yfr

(vfr x cosϕ− vfr y sinϕ)
1
rωr

dyr

= (R+B/2 + xfr) · {cos[
(L/2− yfr)ϕ̇

rωr
]− 1}

− yfr sin[
(L/2− yfr)ϕ̇

rωr
], (12)
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jfr Y =
∫ t

0

vfr Y dt =
∫ L/2

yfr

(vfr x sinϕ+ vfr y cosϕ)
1
rωr

dyr

= (R+B/2 + xfr) · sin[
(L/2− yfr)ϕ̇

rωr
]− L/2

+ yfr cos[
(L/2− yfr)ϕ̇

rωr
]. (13)

The resultant shear displacement jfr in the X–Y frame is
given by jfr =

√
j2fr X + j2fr Y . Similarly, it can be shown

that for the reference point (xrr, yrr) in the rear right wheel
the angle of the sliding velocity γrr in the xr-yr frame is

γrr = arctan[
(R+B/2 + xrr)ϕ̇− rωr

−yrrϕ̇
], (14)

and the shear displacements jrr X and jrr Y are given by

jrr X = (R+B/2 + xrr) · {cos[
(−C/2− yrr)ϕ̇

rωr
]− 1}

− yrr sin[
(−C/2− yrr)ϕ̇

rωr
], (15)

jrr Y = (R+B/2 + xrr) · sin[
(−C/2− yrr)ϕ̇

rωr
] + C/2

+ yrr cos[
(−C/2− yrr)ϕ̇

rωr
]. (16)

and the magnitude of the resultant shear displacement jrr is
jrr =

√
j2rr X + j2rr Y .

The friction force points in the opposite direction of the
sliding velocity. Using jfr and jrr, derived above, with (7)
and integrating along the contact patches yields that the
longitudinal sliding friction of the right wheels Fr f can be
expressed as

Fr f =
∫ L/2

C/2

∫ b/2

−b/2
prµr(1− e−jfr/Kr ) sin(π + γfr)dxrdyr

+
∫ −C/2

−L/2

∫ b/2

−b/2
prµr(1− e−jrr/Kr ) sin(π + γrr)dxrdyr,

(17)

where pr, µr and Kr are respectively the normal pressure,
coefficient of friction, and shear deformation modulus of the
right wheels.

Let fr r denote the rolling resistance of the right wheels,
including the internal locomotion resistance such as resis-
tance from belts, motor windings and gearboxes [12]. The
complete resistance torque τr Res from the ground to the
right wheel is given by

τr Res = r(Fr f + fr r). (18)

Since ωr is constant, the input torque τr from right motor
will compensate for the resistance torque, such that

τr = τr Res. (19)

The above discussion is for the right wheel. Exploiting
the same derivation process, one can obtain analytical ex-
pressions for the shear displacements jfl and jrl of the front
and rear left wheels, and the angles of the sliding velocity γfl
and γrl. The longitudinal sliding friction of the left wheels
Fl f is then given by

Fl f =
∫ L/2

C/2

∫ b/2

−b/2
plµl(1− e−jfl/Kl) sin(π + γfl)dxldyl

+
∫ −C/2

−L/2

∫ b/2

−b/2
plµl(1− e−jrl/Kl) sin(π + γrl)dxldyl,

(20)

where pl, µl and Kl are respectively the normal pressure,
coefficient of friction, and shear deformation modulus of the
left wheels. Denote the rolling resistance of the left wheels
as fl r. The input torque τl of the left motor equals the
resistance torque of the left wheel τl Res, such that

τl = τl Res = r(Fl f + fl r). (21)
Using (19) and the left equation of (21) with (6) yields

C(q, q̇) = [τl Res τr Res]T . (22)
Substituting (5), (22) and G(q) = 0 into (4) yields a dynamic
model that can be used to predict 2D movement for the skid-
steered vehicle:[

mr2

4 + r2I
αB2

mr2

4 −
r2I
αB2

mr2

4 −
r2I
αB2

mr2

4 + r2I
αB2

]
q̈ +

[
τl Res
τr Res

]
=
[
τl
τr

]
.

(23)
In summary, in order to obtain (22), the shear displacement

calculation of (12), (13), (15) and (16) is the first step.
The inputs to these equations are the left and right wheel
angular velocities ωl and ωr. The shear displacements are
employed in (17) and (20) to obtain the right and left sliding
friction forces, Fr f and Fl f . Next, the sliding friction
forces and rolling resistances are substituted into (18) and
(21) to calculate the right and left resistance torques, which
determine C(q, q̇) using (22).
B. 3D Linear Motion

For 3D linear motion each wheel of the skid-steered
vehicle can be assumed to be in pure rolling. The Fr f
in (18) and Fl f in (21) are zero. Fig. 2 is the free body
diagram of a skid-steered wheeled vehicle for this case. It is
assumed that the surface elevation is described by Z = f(Y )
such that the left and right front wheels experience the same
elevation and likewise for the rear wheels. (However, the
below analysis can be extended to the more general case.) Let
β denote the angle between the global coordinate axis Y and
the body-fixed axis yr (which can be determined analytically
from Z = f(Y )), W the weight of vehicle, fr r the rolling
resistance of the right wheels, and Fr the traction force that
acts on the vehicle. The left wheel forces are identical to
those of the right wheels and are not shown in Fig. 2.

Fig. 2. Free-body diagram for vehicle hill climbing
The gravitational term G(q) is generally nonzero and is

given by
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G(q) =
mgrsinβ

2
[1 1]T . (24)

Substituting (5), (22) and (24) into (4) yields a dynamic
model that can be used to predict 3D motion, given the
assumption Z = f(Y ):[

mr2

4 + r2I
αB2

mr2

4 −
r2I
αB2

mr2

4 −
r2I
αB2

mr2

4 + r2I
αB2

]
q̈ +

[
τl Res
τr Res

]
+
[

mgr sin β
2

mgr sin β
2

]
=
[
τl
τr

]
. (25)

For the experimental verification in Section V, β is constant
since the experiments were performed on surfaces with
constant slopes.

IV. CLOSED-LOOP CONTROL SYSTEM

The dynamic models described above are essential parts
of simulation models used to predict the vehicle motion.
However, no matter how detailed the analysis, these models
will have uncertain parameters, e.g., the coefficient of rolling
resistance, coefficient of friction and shear modulus.

The models of open-loop and closed-loop control systems
that can be utilized to predict motion are shown in Fig. 3
for one side of the vehicle. The complete control system for
the vehicle is the combination of the two control systems for
each side of the vehicle. The open-loop system consists of
four parts: vehicle dynamics, terrain interaction, motor and
motor controller. The closed-loop control system additionally
includes the PID speed controller for the motor in a unity
feedback. As is experimentally illustrated in Fig. 10 of
Section V, the open-loop system is highly sensitive to these
uncertainties and hence can yield poor velocity predictions,
while the feedback system can dramatically reduce the
effects of the model uncertainty. In most of the experimental
results described in the next section, the closed-loop model
is employed as the simulation model.

Fig. 3. The open-loop and closed-loop control systems for the left or right
side of a skid-steered wheeled vehicle.

The vehicle dynamics and terrain-vehicle interaction were
described in Section III. The remaining three parts, the PID
controller, motor and motor controller, are described below.

In our research, a modified PID controller, for which the
input to the derivative term is the reference signal, not the
error signal, was adopted from [13]. The PID parameters are
tuned by following the rules in Chapter 9 of [13].

We assumed the moment of inertia and viscous friction of
the motor are small compared to the moment of inertia and

friction associated with the vehicle, so the dynamics of the
motor have been neglected. However, we included the speed
vs. current curve for a DC motor [14], which is of the form
ωm = −ηIm+b(Vm), where ωm and Im are respectively the
angular velocity and current of the motor, η > 0 such that the
slope is negative, and b(Vm) changes monotonically with the
motor voltage Vm. The motor must be constrained such that
Im < Imax, where Imax represents the maximum current
allowable before the motor is in danger of overheating and
burning out; this current constraint yields a safe region under
the speed vs. current curve.

The motor controller can be viewed as an electrical drive
system for the motor. The Maxon 4-Q-DC motor controller
has been utilized in this research and has a maximum output
voltage Vm,max, which has been modeled as a saturation
constraint.

V. EXPERIMENTAL VERIFICATION

This section describes parts of the experiments that have
been conducted to verify the closed-loop control system,
including the PID controller, motor controller, motor, vehicle
dynamics and terrain interaction. The model was simulated
in SIMULINK to provide the theoretical results, which were
compared with the experimental results.

The experimental platform is the modified Pioneer 3-AT
shown in Fig. 4. The original, nontransparent, speed con-
troller from the company was replaced by a PID controller
and motor controller. PC104 boards replaced the original
control system boards that came with the vehicle. Two
current sensors were mounted on each side of the vehicle
to provide real time measurement of the motors’ currents.

Fig. 4. Modified Pioneer 3-AT entering a white-board ramp

Let µsa denote the coefficient of friction for the wheels
when the current and angular velocity of the motor have the
same sign such that the motor applies a propulsive force. Let
µop denote the coefficient of friction for a wheel when the
two have the opposite sign, resulting in the motor applying a
braking force. The values of the parameters K, µsa and µop
are terrain dependent and are difficult to determine by direct
measurement. As a result, the values of K, µsa and µop are
computed by solving the non-linear optimization problem,

min
K,µsa,µop

N∑
i=1

[(∆τ (i)
l Res)

2 + (∆τ (i)
r Res)

2], (26)

where i denotes the ith of N experiments and ∆τ (i)
l Res

and ∆τ (i)
r Res are the values of the difference between
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TABLE I
K , µsa AND µop FOR DIFFERENT N

N K µsa µop N K µsa µop

2 0.00060 0.4609 0.3186 7 0.00054 0.4437 0.3093
3 0.00051 0.4567 0.3193 8 0.00056 0.4321 0.3033
4 0.00064 0.4521 0.3113 11 0.00054 0.4323 0.3061
5 0.00061 0.4510 0.3109 16 0.00052 0.4208 0.2981
6 0.00059 0.4400 0.3083 31 0.00050 0.4151 0.2964

TABLE II
PARAMETERS FOR CLOSED-LOOP SYSTEM MODEL

Vehicle
Mass (kg) m 30.6
Width of vehicle (m) B 0.40
Width of wheel (m) b 0.05
Length of L (m) L 0.31
Length of C (m) C 0.24
Radius of tire (m) r 0.1075

PID Controller
Proportional value Kp 30.25
Integral value Ki 151.25
Derivative value Kd 0.0605

Motor
Stall torque (Nm) τs 0.2775
No-load speed (rad/s) ωn 487.16
Nominal voltage (V) Vnom 12
Max Continuous Current (A) Imax 5.5
Torque constant KT 0.023
Gear ratio gr 49.8

Motor Controller
Pulse-width modulation PWM 0.95

Vinyl Lab Surface
Expansion factor α 1.5
Shear deformation modulus (m) K 0.00054
Coefficient of rolling resistance µroll,lab 0.0371
Coefficient of friction, of µsa µsa 0.4437
Coefficient of friction, of µop µop 0.3093

Asphalt Surface
Coefficient of rolling resistance µroll,asphalt 0.051

the steady-state simulation and experimental torques. The
commanded turning radius R is defined as the turning
radius resulting from applying the wheel speeds, ωl and
ωr, to the kinematic model (2) assuming no slip. The
set of experimental indices i given by {1, 2, . . . . , 31}
map to the set of commanded turning radii R given by
{0.2, 0.3, . . . , 1, 2, . . . , 101, 101.2, . . . , 102, 102.2, . . . , 103.2,
103.6, 104}. The optimal K, µsa and µop for various values
of N ∈ {2, 3, ..., 31} were found using the MATLAB
Optimization Toolbox function lsqnonlin and are given
in Table I. For each N the corresponding i were chosen to
be evenly spaced. Although as N increases, Table I shows
that the values of these parameters do appear to converge,
the variation from N = 2 to N = 31 is modest (16.7% for
K, 9.9% for µsa, and 7.0% for µop). Hence, these results
show that only a small number of experiments are needed
to determine the coefficients of friction and shear moduli.
All of the key parameters for the model of the closed-loop
system are listed in Table II.

A. 2D Circular Movement

In this subsection, 2D circular motion results are pre-
sented. When a skid-steered wheeled vehicle is in constant
velocity circular motion, the left and right wheel torques
are governed respectively by (21) and (18). The theoretical
and experimental torques for different commanded radii are

shown in Fig. 5. If shear stress is not a function of shear
displacement, but instead takes on a maximum value when
there is a small relative movement between wheel and terrain,
the left and right motor torques should be constant for
different commanded turning radii, a phenomenon not seen
in Fig. 5. Instead this figure shows the magnitudes of both
the left and right torques reduce as the commanded turning
radius increases. The same trend is found in [10], [11].

Fig. 5. Vehicle left and right wheel torque comparison during steady-
state CCW rotation for different commanded turning radii on the lab vinyl
surface.

Fig. 6. Closed-loop vehicle left and right wheels velocity comparison for
2D circular movement on the lab vinyl surface

The extreme case is that when the vehicle is in straight-line
movement, the sliding friction is zero, and the motor torque
only has to compensate for the rolling resistance torque. It
should be mentioned that if the load transfer from the left
wheel to the right wheel is not large, experimental results
have shown that the steady-state torques of the left and
right wheels for different commanded turning radii are nearly
the same for commanded linear velocities from 0.1 m/s to
0.6m/s, which is modeled accurately by (21) and (18).

Fig. 6 and Fig. 7 show the results when the vehicle is
commanded to rotate at a constant velocity, beginning from
a zero initial velocity. The commanded linear velocity and
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commanded radius to the vehicle are 0.2 m/s and 4m on
the lab vinyl surface. Note that there is some mismatch
between the experimental and simulation velocities during
the acceleration phase of the motion (< 1s). This is not
surprising since constant velocity was assumed in the de-
velopment of the resistance term C(q, q̇). Therefore, if the
vehicle has significant acceleration for a long time during
rotation, the prediction becomes increasingly inaccurate. It
should be noted that our current models are fairly precise in
taking into account the influence of acceleration through the
mass matrix (i.e., by Mq̈), which allows them to accurately
describe acceleration when moving linearly and take into
account some of the influence of acceleration when turning.

Fig. 7. Closed-loop trajectory comparison corresponding to Fig. 6

Fig. 8. Closed-loop vehicle velocity comparison when the vehicle is
commanded to 0.2 m/s for straight-line movement on the lab vinyl surface

B. 2D and 3D Linear Movement

Fig. 8, Fig. 9 and Fig. 10 show comparisons of both open-
loop and closed-loop experimental and simulation results
for linear 2D motion. The vehicle is commanded at an
acceleration of 1 m/s2 to a velocity of 0.2 m/s for straight-
line movement on the lab vinyl surface. Fig. 10 uses the
experimental torque of Fig. 9 as the system input. It is seen
that the closed-loop system gives a much better prediction
of the vehicle velocity than the open-loop system.

Fig. 11 shows the velocity comparison of closed-loop
experimental and simulation results for linear 2D motion
when the vehicle is commanded to an unachievable velocity
of 1.5 m/s. From Fig. 11, it can be seen that due to the
saturation and power limitation of actuators, the vehicle can

Fig. 9. Closed-loop motor torque comparison corresponding to Fig. 8

Fig. 10. Open-loop vehicle velocity comparison when the vehicle is
commanded at the same torque of Fig. 9

only reach the final velocity of around 0.93 m/s, but not the
desired 1.5 m/s.

Fig. 12, Fig. 13, and Fig. 14 illustrate hill-climbing for
these 3 cases: (a) the ability to traverse a ramp at the
commanded velocity, (b) the ability to traverse a ramp that
is so steep that the vehicle decelerates while climbing no
matter what the commanded velocity, and (c) the inability to
traverse a steep ramp because of inadequate initial velocity.
These results clearly demonstrate the ability of the model to
predict traversal times on undulating terrains and to predict
the inability of the vehicle to traverse a steep hill.

Fig. 11. Closed-loop vehicle velocity comparison when the vehicle is
commanded to 1.5 m/s for straight-line movement on the lab vinyl surface
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Fig. 12. Closed-loop vehicle velocity comparison when commanded linear
velocity=0.7 m/s for asphalt hill climbing with slope β = 5.4◦

Fig. 13. Closed-loop vehicle velocity comparison when commanded linear
velocity=1.2 m/s with 0.49m/s initial velocity for wood-board hill climbing
with slope β = 15.0◦

VI. CONCLUSION
This paper developed dynamic models for skid-steered

wheeled vehicles for general 2D motion and linear 3D
motion. Unlike most previous research these models were de-
veloped assuming a specific functional relationship between
the shear stress and shear displacement. This research also
considers the acceleration and gravitational terms in addition
to taking into account the PID controller, the motor and
motor controller. An important contribution of this research is
its focus on the closed-loop dynamics, which enable more ac-
curate predictions of the vehicle velocity than that achievable
with an open-loop model. The dynamic models are validated
using extensive experimentation and seen to yield accurate

Fig. 14. Closed-loop vehicle velocity comparison when commanded linear
velocity=1.2 m/s with 0.57m/s initial velocity for white-board hill climbing
with slope β = 13.5◦

predictions of velocity and reasonable predictions of torque.
One limitation of the research is that the resistance term

was developed using a constant velocity assumption and
hence, although the models tend to give good results for
linear motion in which the wheels are in pure rotation, they
tend to lead to prediction inaccuracies when the vehicle
is accelerating while turning. Another limitation is that no
model was developed for general 3D motion.

Future research will develop a model for general 3D
motion and seek models that are valid when the vehicle is
accelerating in turns. In addition, the models will be used for
motion planning, including energy efficient motion planning.
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