
Smooth Proximity Computation for Collision-Free Optimal Control of

Multiple Robotic Manipulators

J. Cascio, M. Karpenko, Q. Gong, P. Sekhavat, and I. M. Ross

Abstract— This paper presents a novel approach for tra-
jectory planning of multiple robot manipulators operating
amongst obstacles. Karush-Kuhn-Tucker (KKT) conditions are
exploited to compute the proximity between line-swept sphere
(LSS) bounding volumes used to model potentially colliding
objects. The KKT multipliers and the parameters giving the
minimum distance between LSS volumes are augmented into
the manipulator trajectory planning problem as dummy control
variables. These extra variables allow the planning problem
to be cast as a standard nonlinear optimal control problem
with smooth path constraints, which is then solved using the
pseudospectral method. The utility of the approach is demon-
strated by a trajectory planning example involving stationary
workspace obstacles and for a centralized multi-robot system
in which each robot acts as a dynamic obstacle that the other
should avoid. The optimal control formulation incorporates
practical constraints on the manipulator joint angles, velocities
and accelerations as well as limits on the control torque. The
computed collision-free optimal trajectories are executed on
a pair of experimental robots to verify the feasibility of the
numerical results.

I. INTRODUCTION

Computing optimal and collision-free joint trajectories

for robotic manipulators operating in the presence of static

and dynamic obstacles remains an open and widely studied

problem in the robotics literature. A key element in de-

veloping an optimization algorithm for generating collision-

free trajectories is a means for evaluating the proximity of

two potentially colliding objects. The Euclidean separation

distance, or shortest line segment joining two objects, is a

natural measure of this proximity [1]. Some of the most

general and versatile algorithms for computing separation

distance are based on the concept of bounding volumes [2],

in which potentially colliding objects are modeled using sim-

ple geometric primitives. The notion of bounding volumes,

especially spherical bounding volumes, has been extensively

employed in the development of path planners for robotic

manipulators (see for example [3]–[5]). Sphere-swept vol-

umes, such as the line-swept sphere (LSS), give another

approach for modeling the manipulator and obstacles with

increased accuracy [6].

In addition to the problem of avoiding collisions between

objects, robot trajectory planning also involves solving joint

motion and control profiles that maximize performance,
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subject to kinematic, dynamic and control constraints. This

adds complexity to the planning task because it is necessary

not only to find feasible collision-free paths for the robot

to follow, but also to select the one that gives the optimal

performance. Many authors have favored direct approaches

to solving this optimal control problem. Direct methods

convert the original problem into a nonlinear programming

(NLP) problem that can be solved numerically.

A common approach for reformulating the original tra-

jectory planning problem into a NLP is to discretize the

joint trajectories by splining together low-order polynomials.

Cubic polynomials [7], [8], clamped-cubic splines [4], and

B-splines [9] have all been used for parameterizing the

joint variables. Pseudospectral (PS) optimal control meth-

ods [10]–[13] have also been recently applied to discretize

the trajectory planning problem for a single robot [14]. PS

methods can be advantageous as they exploit the properties of

orthogonal polynomials evaluated on a set of non-uniformly

distributed quadrature nodes to improve the rate of conver-

gence towards the actual continuous time optimal solution.

The objective of this paper is to present a novel ap-

proach for manipulator trajectory planning in the presence

of static and dynamic obstacles and demonstrate its utility

on an experimental multi-arm robotic system. In particular,

a scheme is developed that integrates separation distance

computations into the PS optimal control framework, in a

smooth fashion. This is in contrast to the plethora of other

approaches for computation of separation distance between

LSS objects that rely on the evaluation of nested logical

structures for implementation [1], [15], [16]. In the optimal

control framework, use of these latter methods leads to

a problem formulation that is inherently more difficult to

solve. The difficulty arises because the Jacobian information

required by the NLP solver to find the search direction can

change erratically due to the non-smooth nature of the nested

logical operands.

To formulate the trajectory planning problem as a smooth

optimal control problem, we treat the separation distance

computations as minimization sub-problems with inequality

constraints. The Karush-Kuhn-Tucker (KKT) conditions [17]

are exploited to write the minimum distance, for each po-

tential collision, in terms of a set of KKT multipliers. These

KKT multipliers, along with the parameters defining the min-

imum distance between objects, are introduced as augmented

control variables. The number of decision variables increases

linearly as part of this process. However, non-smoothness

of the separation distance constraints is eliminated entirely

by utilizing the additional control variables to lift the di-
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mension of the optimization problem. The efficacy of the

proposed approach is demonstrated by trajectory planning

experiments involving stationary workspace obstacles and for

a centralized multi-robot system in which each robot acts as a

dynamic obstacle that the other should avoid. Constraints on

the manipulator joint angles, velocities and accelerations as

well as limits on the control torque are considered to ensure

feasibility of the results.

II. PROBLEM STATEMENT

A. Manipulator Dynamics

The dynamics of a rigid n-link robotic manipulator are

given by the Euler-Lagrange equations of motion [18]

τ = M(q)q̈ + C(q, q̇) + G(q) (1)

where q ∈ Rn is the vector of joint variables. Inertia

matrix M(q) is an n-dimensional square, symmetric, and

positive definite matrix. C(q, q̇) is the vector of centrifugal

and Coriolis terms and vector G(q) captures the gravitational

effects. The control torques applied by the actuators are given

by τ .

The inertia matrix is calculated as

M(q) =

n
∑

i=1

(

JT
vC,i

miJvC,i
+ JT

ωC,i
RiIiR

T
i JωC,i

)

(2)

where mi and Ii are the mass and inertia tensor for link i.

Matrix Ri is the link rotation matrix and matrices, JvC,i
and

JωC,i
are the link Jacobian submatrices.

The n elements, Ck, of the centrifugal/Coriolis vector are

calculated from

Ck(q, q̇) =

n
∑

i=1

n
∑

j=1

Γi,j,k q̇j q̇i (3)

where Γi,j,k are the Christoffel symbols [18]

Γi,j,k =
1

2

(

∂Mk,j

∂qi

+
∂Mk,i

∂qj

−
∂Mi,j

∂qk

)

(4)

The jth element of the gravity vector is

Gj(q) =

n
∑

i=1

mig
T
i Jj

vC,i
(5)

where gi denotes the gravitational vector with respect to

link i.

B. Optimal Control Problem

The objective of the optimal trajectory planning problem is

to synthesize joint motion and control profiles that maneuver

the robot arm between two locations in the workspace

while avoiding obstacles and minimizing a performance

index subject to physical constraints and actuator limits.

In this paper, the overall maneuver time, tf , is minimized.

Other measures of performance, such as control effort or

energy consumption, can be easily accommodated simply by

changing the objective function.

Selecting x
T = [qT | q̇T ] and u = [q̈T ], the optimal control

problem is defined as

minimize J [x,u, tf ] = tf
subject to ẋ(t) = f (x,u, t)

x(t0) = x0

e (xf , tf ) = 0

qL ≤ q(t) ≤ qU

q̇L ≤ q̇(t) ≤ q̇U

q̈L ≤ q̈(t) ≤ q̈U

τL ≤ τ(t) ≤ τU

δ2
min − δi,j(t)

2 ≤ 0

(6)

In (6), ẋ denotes the set of first-order differential equa-

tions describing the dynamics of the manipulator, derived

from (1). The initial conditions are given by x0 while

xf denotes the terminal state. The kinodynamic limits are

enforced by the box-constraints on the joint variables and

control torques. Obstacle avoidance is included by inequality

δ2
min − δi,j(t)

2 ≤ 0 where δi,j(t) and δmin refer to the

actual separation distance and specified minimum distance

threshold between any two potentially colliding objects.

Integration of smooth constraints on obstacle avoidance into

the optimal control problem is elaborated on in section III.

C. Pseudospectral Discretization

The theory underlying the Legendre PS optimal control

has been well documented elsewhere [11]–[13]. Therefore,

this section presents only a brief overview of the PS dis-

cretization in relation to optimal control of robotic manipu-

lators.

In the Legendre PS method, the joint trajectories, q(t),
are approximated by an N -th order Lagrange interpolating

polynomial, qN (t), evaluated at the Legnedre-Gauss-Lobatto

(LGL) nodes. The distribution of the LGL nodes is non-

uniform over the interval [−1, 1] with a high density of nodes

near the end points. This characteristic of the PS discretiza-

tion effectively inhibits the Runge phenomena, and improves

the rate of convergence towards the actual continuous time

optimal solution.

Letting parameter q̄N
k be the approximation of the joint

trajectory at node tk, the time history of the approximate

joint motion is given by

q(t) ≈ qN (t) =
N

∑

k=0

q̄N
k φk(t) (7)

where φk(t) is the Lagrange interpolating polynomial defined

as

φk(t) =
1

N(N + 1)LN(tk)

(t2 − 1)L̇N (t)

t − tk
(8)

In (8), LN (t) and L̇N (t) are the N -th order Legendre

polynomial and its time derivative, respectively. Since the

LGL nodes, tk, are the roots of L̇N(t), it can be shown that

φk(tj) = 1 if k = j and φ(tj) = 0 if k 6= j. This gives the

desirable property that the joint constraints translate directly

to limits on the trajectory parameters that are varied by the

NLP solver.
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The approximated joint velocities and accelerations are

computed from the derivatives of qN
i (t) at LGL node tk.

For example, the joint velocity is given by

q̇(t) ≈ qN
i (tk) =

N
∑

j=0

Dkj q̄
N
i (tj), i = 1, 2, . . . , n (9)

where D is a fixed N + 1 × N + 1 differentiation matrix

having elements

Dkj =
2

tf − t0



















LN (τk)
LN(τj)

1
τk−τj

, if k 6= j;

−N(N+1)
4 , if k = j = 0;

N(N+1)
4 , if k = j = N ;

0, otherwise

(10)

Given the PS approximation of the joint trajectory and its

derivatives, the path constraints on the joint torque profiles

can be evaluated directly by solving (1) at each node.

Moreover, since Lagrange polynomials converge rapidly to

actual extremal joint trajectories and Lagrange interpolation

can be applied exactly between the nodes, it is easy to verify

whether the continuous joint trajectories are in fact collision-

free.

III. OBSTACLE AVOIDANCE

The robot links and the workspace obstacles are modeled

using line-swept sphere (LSS) bounding volumes as shown

in Fig. 1. The LSS is the Minkowski sum of a sphere and

a line segment [6]. The advantage of this model lies in its

simplicity. In particular, the location and orientation of each

object is completely specified by the endpoints, PA and PB ,

and radius, r, of its LSS bounding volume. Thus, the obstacle

avoidance problem can be reduced to enforcing a minimum

distance threshold between a collection of continuous line

segments.

Fig. 1. Representation of robot links and workspace obstacles by line-
swept spheres for collision avoidance computation. (Spherical end-caps not
shown for clarity.)

Referring to Fig. 1, the distance between two LSS vol-

umes, representing link i and obstacle j, can be evaluated

using the parametric equations giving the loci of points lying

on the underlying primitives

Pi = PiA + (PiB − PiA)γi, γi ∈ [0, 1]

Pj = PjA + (PjB − PjA)γj , γj ∈ [0, 1]
(11)

The distance, δi,j , between the two line segments for arbi-

trary values of the parameters is given by the 2-norm

δi,j = ‖PiA + (PiB − PiA)γi − PjA − (PjB − PjA)γj‖
(12)

Squaring (12) and grouping terms gives,

δ2
i,j = Ai,jγ

2
i + 2Bi,jγi−

2Ci,jγiγj + 2Di,jγj + Ei,jγ
2
j + Fi,j

(13)

where

Ai,j = (PiB − PiA) · (PiB − PiA)

Bi,j = (PiB − PiA) · PiA − (PiB − PiA) · PjA

Ci,j = (PiB − PiA) · (PjB − PjA)

Di,j = (PjB − PjA) · PjA − (PjB − PjA) · PiA

Ei,j = (PjB − PjA) · (PjB − PjA)

Fi,j = PiA · PiA − 2(PiA · PjA) + PjA · PjA

(14)

In (14), operator (·) refers to the vector dot product.

Using (13), the minimum value of δ2
i,j can be found by

constrained optimization. The minimization problem has the

form

minimize Y (γi, γj) = Ai,jγ
2
i + 2Bi,jγi − 2Ci,jγiγj+

2Di,jγj + Ei,jγ
2
j + Fi,j

subject to −γi ≤ 0, −γj ≤ 0
γi − 1 ≤ 0, γj − 1 ≤ 0

(15)

Problem (15) can be solved by invoking the Karush-Kuhn-

Tucker (KKT) conditions [17]. In particular, the set of

parameters, γ̂i and γ̂j , that minimize δ2
i,j are those for which

the complementarity and stationarity conditions are satisfied.

The Lagrangian of (15) is

Ȳ (γi, γj, λ) = Y (γi, γj)−λi
1γi+λi

2(γi−1)−λ
j
1γj+λ

j
2(γj−1)

(16)

Stationarity of the Lagrangian yields,

Ai,jγi + Bi,j − Ci,jγj + 1
2 (−λi

1 + λi
2) = 0

−Ci,jγi + Di,j + Ei,jγj + 1
2 (−λ

j
1 + λ

j
2) = 0

(17)

while the complementarity conditions give

−λi
1γi = 0, λi

2(γi − 1) = 0

−λ
j
1γj = 0, λ

j
2(γj − 1) = 0

(18)

with (λi
1, λ

i
2, λ

j
1, λ

j
2)

T ≥ 0.

The system of equations formed by (17) and (18) cannot

be solved analytically. Therefore, we solve the values of γ̂i,

γ̂j and the Lagrange multipliers by integrating the above

minimization problem as part of the manipulator optimal

control problem (6). This is done by defining an augmented

control vector, u
T = (τT | ∆T

i,j | . . .), where ∆i,j =

(γ̂i, γ̂j , λ
i
1, λ

i
2, λ

j
1, λ

j
2)

T is the vector of unknown parameters

associated with problem (15). The associated stationarity and

complementarity conditions are enforced by smooth path

constraints that must be satisfied at each node.

By augmenting the control vector, the elements of vector

∆i,j can be solved concurrently with the collision-free
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link trajectories. In total, six additional dummy controls

and six additional path constraints are introduced for each

potential collision. Therefore, the proposed approach for

obstacle avoidance scales proportionally to the number of

obstacles. This is in contrast to other approaches for collision

avoidance, e.g. [4], where the complexity of the optimization

problem increases quadratically with the number of obsta-

cles.

IV. APPLICATION EXAMPLES

This section presents the results of two different motion

planning scenarios that demonstrate the efficacy of the pro-

posed approach for collision-free trajectory optimization with

stationary and dynamic obstacles. The trajectory optimiza-

tions were carried out using a commercially available imple-

mentation of the Legendre PS optimal control algorithm [19].

In each case, the feasibility of the numerical results were

confirmed by executing the computed trajectories on exper-

imental robotic manipulators (see Fig. 2). The robots are

Cyton Alpha manipulators manufactured by Robai [20]. Only

the base and shoulder joints of each robot were actuated in

order to emulate a simple two-link manipulator. The dynamic

model corresponding to this configuration is presented in

[14].

joint 2

joint 1

Fig. 2. Experimental robot manipulators.

Example 1: Static Obstacles

In this example, the objective is to complete a point-

to-point maneuver while avoiding collisions with two sta-

tionary obstacles located in the workspace. The collision-

free trajectory of the end-effector between initial and final

positions, Qi = (19, 28, 48)-cm and Qf = (2,−34, 48)-cm,

is shown in Fig. 3. It has been verified [21] that the trajectory

satisfies the necessary conditions for optimality. Therefore,

the collision-free trajectory is an extremal and a candidate

global optimum. A plot of the separation distance between

the robot and each obstacle is shown in Fig. 4. As is seen,

the imposed constraint on the separation distance, δmin = 10-

cm, has been satisfied. The corresponding values of dummy

control vector, ∆1,1, are shown in Fig. 5 for reference.

The time histories of the computed optimal position tra-

jectories for each link of the robot are shown in Fig. 6 (solid

lines). Referring to Fig. 6, the maneuver is completed in

1.16 sec. Fig. 6 also shows the experimentally measured

position trajectories (dashed lines) that were obtained by

executing the maneuver on the robot. Small discrepancies

between the desired and actual joint profiles are observed

due to practical nonidealities such as imperfect tracking

characteristics of the joint servo motors, uncertainty in the

robot inertial parameters, and unmodeled friction effects.

Nonetheless, the strong consistency between the desired

optimal trajectories and the experimental results confirms the

feasibility of the numerical results.

obstacle 1

obstacle 2

Fig. 3. Minimum-time maneuver in presence of stationary workspace
obstacles.
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Fig. 4. Separation distance between robot and workspace obstacles.

Example 2: Dynamic Obstacles

This example involves the application of the proposed

PS optimal control approach towards motion planning for
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Fig. 5. Elements of vector ∆1,1 at the nodes.
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link 1

link 2

Fig. 6. Joint angles for maneuver in presence of stationary workspace ob-
stacles. Legend: solid – computed optimal trajectory; dashed – experimental
measurements.

a multi-robot system. The objective is to reposition the end-

effector of robot 1 from Qi
1 = (19, 28, 48)-cm to Q

f
1 =

(−19,−37, 38)-cm and to move the end-effector of robot 2

from Qi
2 = (15,−60, 48)-cm to Q

f
2 = (−2,−6, 56)-cm as

quickly as possible, and without a collision. An acceptable

distance, δmin = 7.5 cm, should be maintained between the

two robots throughout the maneuver.

One way of approaching this problem is to solve the

optimal motion trajectories for each robot separately (in a

decentralized fashion) and then implement each maneuver

in sequence. This is an example of the time delay method

for collision avoidance [22]. Fig. 7 shows the separation

distances between the two robots corresponding to three

different maneuver sequences: (i) both maneuvers executed

simultaneously, (ii) robot 1 positioned first and then robot

2, and (iii) robot 2 positioned first followed by robot 1.

Fig. 7 shows that it is only possible to complete the maneuver

without violating the δmin constraint by repositioning robot 1

first followed by robot 2. The time delayed maneuver takes

over 1.5 sec to complete.

A better way to solve the multi-robot motion planning

problem is to generate the motion trajectories simultaneously,

in a centralized manner. In this approach, the state and

control vectors of each manipulator are stacked on top of

one another. An advantage is that the optimization solver

can consider the motion of each manipulator as a dynamic

obstacle that the other should avoid. Therefore, the collision-

free optimized trajectory for each robot can be executed

simultaneously. This allows the maneuver time to be mini-

mized while satisfying obstacle avoidance requirements. The

optimal end-effector trajectories solved using the centralized

PS optimal control approach are illustrated in Fig. 8, along

with snapshots of the orientations of each robot arm at

selected times during the maneuver. As before, the necessary

conditions for optimality have been satisfied. Fig. 8 shows

that the proposed algorithm has solved the trajectories of

each manipulator in such a way that the multi-robot ma-

neuver can be completed in 0.86 sec, while simultaneously

satisfying the collision constraints. The separation distance

between the two robots is reported in Fig. 9, which confirms

that the required minimum distance threshold is maintained

throughout the maneuver.

To verify the feasibility of the numerical results, the multi-

robot maneuver was implemented experimentally on two

robot manipulators. The robot position trajectories, shown

in Fig. 10, confirm that the experimental hardware can track

the desired optimal trajectories with a reasonable degree of

accuracy. The experimental robots were able to carryout the

maneuver without colliding, thus further substantiating the

utility of the proposed PS optimal control approach for multi-

robot trajectory planning.

0 0.5 1 1.5 2
0

10

20

30

40

time (sec)

d
is

ta
n

c
e

 (
c
m

)

 

 

Fig. 7. Separation distance between robots for different movement
sequences. Legend: solid – both maneuvers executed simultaneously; dashed
– robot 1 positioned first; dash-dot – robot 2 positioned first.

robot 2

robot 1

Fig. 8. Multi-robot maneuver solved using centralized PS optimal control
approach.
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Fig. 9. Separation distance between robots using centralized PS optimal
control approach.
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Fig. 10. Joint angles for multi-robot maneuver: (a) robot 1 joint angles; (b)
robot 2 joint angles. Legend: solid – computed optimal trajectory; dashed
– experimental measurements.

V. CONCLUSION

This paper presented a novel approach for robot manipula-

tor trajectory planning in the presence of static and dynamic

obstacles. A key feature of the approach was to incorporate

the computation of inter-object separation distances into the

manipulator optimal control problem as minimization sub-

problems through the use of KKT multipliers. By treating the

KKT multipliers as augmented controls, it was possible to lift

the dimension of the trajectory planning problem and solve

it as a nonlinear PS optimal control problem with smooth

constraints. Thus, non-smooth separation distance calcula-

tions, which are the crux of previous algorithmic approaches

developed for proximity computation, could be avoided. The

PS formulation also considered limits on the manipulator

joint angles, velocities, accelerations, and joint torques to en-

sure the results are physically realizable. The practical utility

of the proposed PS optimal control approach for collision-

free manipulator trajectory planning was demonstrated on

an experimental robot operating in the presence of several

static workspace obstacles. A second experiment involving

minimum-time centralized motion planning for a multi-robot

system, in which each manipulator acts as a dynamic obstacle

that the other should avoid, was also presented to further

substantiate the approach.
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