
 
 

 

Abstract Efficient methods have so far been proposed for 
planning dynamically stable walking pattern for humanoid 
robots. However, to guarantee that the reference joint 
trajectory will produce a safe movement despite modeling 
errors and perturbations, a stabilizer needs to be implemented 
on the robot. Though this stabilizer constitutes an essential part 
of the control strategy of most advanced humanoid platform, it 
is usually not open-source and dedicated to the own robot 
characteristics. The goal of this paper is to propose a general 
and practical strategy for designing a stabilizer for joint-
position controlled humanoid robots. The proposed method is 
based on a double inverted pendulum model and a decoupling 
approach thanks to which the position of the ZMP and the 
center of gravity can be controlled independently through the 
regulation of the ankle and hip joints. The stabilizer generates 
the expected stabilizing torques from the admissible joint 
position input. The resulting control algorithm is fast and can 
be easily executed on the robot. This algorithm was successfully 
implemented as real-time plugins for the OpenHRP simulator 
of the HRP2. Simulations showing the efficiency of the method 
are presented and discussed. 

I. INTRODUCTION 
Inspired by the model of human walking dynamics, 

different approaches have so far been proposed to control 
postural stability and locomotion of humanoid robots. 
Passive dynamic walking schemes were developed to 
reproduce cyclic energy transformation [1], virtual model 
control was proposed to introduce compliance into rigid 
robot dynamics [2], central pattern generator involving 
nonlinear oscillator was designed for locomotion [3] and 
hybrid zero dynamics was used for modeling the impact 
inherent in the dynamics of legged locomotion [4]. 
However, though these approaches provide interesting 
adaptive properties, they do not always lead to strongly 
controllable strategies and therefore cannot be easily applied 
for driving a robot in a constraint environment where each 
step need to be precisely positioned.  

For this reason, the control of most part of humanoid 
robots is rather based on the notion of Zero Moment Point 
(ZMP) [5], [6], [7], [8], from which it is possible to state a 
simple dynamic-based criterion to guarantee the rotational 
equilibrium of the robot along planned trajectories. This 
well-known approach, which allows the design of efficient 
control algorithms, is based on the measure of the moment 
of active forces at the contact with the ground. By 
combining the ZMP approach with the inverted pendulum 
representation, a clever table-cart dynamic model was 

proposed to relate the dynamics of the Center of Gravity 
(CoG) to the ZMP position [9]. As the control input of most 
part of humanoid robots is the joint position, the angular 
variation that allows to move the CoM in order to follow a 
reference ZMP trajectory can be easily computed from 
inverse kinematics. An important advantage of this approach 
is that it does not require the knowledge of a precise model 
of the robot dynamics, the mass being supposed to be 
concentrated in one point. However, as the model does not 
precisely represent the robot – the CoM position being for 
instance often considered at the center of the pelvis – the 
walking pattern alone is insufficient to guarantee the walk 
stability, even on a smooth horizontal floor. As a 
consequence, a stabilizer turns out to be necessary to 
maintain a zero error between the values of parameters 
provided by the walking pattern, and the measured ones. 
This stabilizer constitutes an essential part of the motion 
control system of any advanced humanoid robot. For 
instance, if a dynamically stable walking pattern is sent to 
the OpenHRP simulator of the humanoid robot HRP2 [13], 
while its stabilizer is inactivated, the robot loses rapidly its 
balance. However, though the stabilizer constitutes an 
essential part of the motion control system, it is usually not 
open-source. This regulation loop is then likely to be closely 
dependent on the own robot characteristics and, as a 
consequence, not described as a general algorithm that could 
be applied to other humanoid platforms. 

The goal of this paper is to propose a simple and practical 
strategy for designing a stabilizer for joint-position 
controlled humanoid robots. The proposed method is based 
on a model of double inverted pendulum and a decoupling 
approach, thanks to which the ZMP and the CoG position 
errors can be regulated by controlling the ankle and hip 
joints independently. The controller allows to generate the 
stabilizing torques from the admissible joint position input. 
The resulting control algorithm is fast and can be easily 
executed on the robot. It was successfully implemented as 
real-time plugins for the OpenHRP simulator of HRP2. 
Simulations showing the efficiency of the method will be 
presented and discussed.  

The paper is organized as follows: Section II recalls basic 
concepts related to the problem of humanoid robot’s 
stability. The double inverted pendulum model, which is 
used for the stabilization control, is presented in section III. 
Section IV describes the decoupled control strategy. Section 
V presents the implementation of the stabilizer on the 
OpenHRP simulator and provides experimental results and 
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discussion. The conclusion is given in section VI 

II. STABILIZATION CONTROL 
An efficient approach to produce a stable bipedal 

locomotion for humanoid robots is to determine a secure 
motion pattern for each joint by using the table-cart state 
space representation proposed in [9], which combines the 
3D linear Inverted Pendulum dynamics (3D-LIPM) [10], 
[11] and the ZMP criterion [5][6][12]. Under the hypothesis 
that the CoG remains within the horizontal plane of altitude 

cz , the ZMP coordinates, ),( ZMPZMP yx can be expressed as 
functions of the CoG position ( x , y ) and acceleration as 
follows: 

 x
g
z

xx c
ZMP &&−=  (1) 

 y
g
z

yy c
ZMP &&−=   (2) 

 

Using this relation, different motion generation algorithms 
were proposed in [8], [9], [11], and many other recent 
publications. The basic idea is to control the CoG in order to 
guarantee that the ZMP position will follow a prescribed 
safe trajectory. This is done through the computation of 
inverse kinematics which allows determine the appropriate 
joint displacement. The reference ZMP trajectory is usually 
constructed by interpolating the successive foot placements. 
However, as the inverted pendulum model does not fully 
capture the robot dynamics, this control scheme cannot be 
sent in open-loop to the robot. A stabilizer appears then to 
be necessary to guarantee a good tracking of the reference 
trajectory. This is precisely the problem which is addressed 
in this paper.  

According to the previous reasoning, two important 
variables are to be considered: The ZMP error ZMPe and the 
CoG error COGe , respectively defined by: 
 

 ad
ZMP ZMPZMPe −=  (3) 

 ad
COG COGCOGe −=  (4) 

 
where the superscript “ d ” and “ a ” respectively stand for 
the desired and actual positions 

The ZMP controller should implement a strategy for 
moving the actual ZMP to the desired value. An easy way to 
proceed is to control the ankle joint by considering the part 
of the robot located above this joint as a solid. However, 
though the proposed compensational mechanism allows to 
displace the actual ZMP position, it introduces new errors. 
Indeed, when the upper body is rotated with respect to the 
ankle joint, body angle errors )(tqBfΔ  and )(tqBsΔ  appear 
in the frontal and sagittal planes respectively, as shown in 
figure 1.  

 
Fig. 1: Errors compensation  

 

These errors generate tilting moment CoGM  and angle 
errors, )(tqFfΔ and )(tqFsΔ , in the sagittal and frontal 
planes respectively, during the positioning of the hanging 
foot. This effect may introduce strong instability and 
vibrations when the foot is landing, and can overturn the 
robot. The tilting moment CoGM  should be compensated by 
the Attitude control algorithm which tries to maintain the 
trunk of the robot strictly vertical in every stage of its 
motion, thus, eliminating the tilting moment and body 
inclination errors.  

The most effective way to control the body inclination is 
to maintain its backbone strictly vertical during all the 
movement. In this case, it is sufficient to control the hip 
joints in the frontal and sagittal planes (figure 1). Finally, 
note that research works in biomechanics have also pointed 
out the role of hip and ankle in balance control [14]. 

III. DOUBLE INVERTED PENDULUM  
As explained in the preceding section, the objective is to 

design a stabilizer to regulate simultaneously the ZMP and 
the attitude position by acting on the ankle and hip joints 
respectively. To this end, an interesting model is to consider 
the humanoid robot, in the sagittal and the frontal plane, as 
an inverted double pendulum, as illustrated in  figure 2. 

 

 
Fig. 2:  Humanoid robot modeling as a double inverted pendulum 

 
In each of these two vertical planes, consider a double 

bob pendulum with masses 1m  and 2m  attached by rigid 
massless links of lengths 1l  and 2l . Let us denote by 

21 mmm +=  the total mass of the robot. The posture of the 
robot is defined by the angles 1ϑ  (ankle joint) and 2ϑ  (hip 
joint) with respect to the vertical. Considering this 
representation, the potential energy of the system is given by 
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whereas its kinetic energy is : 
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By expressing the Lagrangian H=T-V from (5) and (6), 
applying the Euler Lagrange equation, and considering only 
small variations of angles 1ϑ  and 2ϑ  the system dynamics 
can be well approximated by the following linearized model, 
in which terms of second order and higher have been 
neglected: 
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Different control schemes can be used to stabilize the 
system (7), (8). The strategy considered in this paper is 
based on a decoupling property of the system, which is 
described in the next section.  

IV. DECOUPLED CONTROL  

A. Decoupling the dynamics 
Though different linear control techniques can be used to 

stabilize directly the system described by equations (7) and 
(8), in practice these approaches have some inconveniences. 
The main problem comes from the fact that this model 
considers control torques of both the hip and ankle joints as 
input, whereas most of contemporary humanoid robots are 
driven by DC motors with position control. To cope with 
this problem we propose a decoupled approach for the 
control of the ZMP and the CoG, which was suggested by 
the analysis of the closed-loop dynamics of the double 
inverted pendulum. Figure 3 shows the evolution of the joint 
angles 1ϑ  and 2ϑ for various initial conditions, that can be 
interpreted as different perturbations acting on the robot.  

 

 
Fig. 3: a) Variation of 2ϑ  on the model,  b) Influence of 2ϑ  on 1ϑ . 

 
As represented in figure 3(b), large variations of 2ϑ  have 

no significant influence on the dynamics of 1ϑ . Indeed, the 
time response of 1ϑ  remains practically identical for various 
initial values of 2ϑ . On the other hand, the variation of  1ϑ  
can be considered as a perturbation on the dynamics of 2ϑ , 
that will be compensated by the controller. In other words, 

ankle’s joint variation (ZMP control) affects more the 
attitude position than hip’s variation (Attitude control) 
affects the ZMP. Therefore, the attitude control should be 
faster in order to compensate disturbances brought by the 
ankle variation. In order to determine how much faster the 
control of the upper pendulum ( 2ϑ ) should be in order to 
compensate all possible perturbations caused by the motion 
of the bottom pendulum ( 1ϑ ), let us consider both dynamics 
in terms of their natural frequency: 
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Thus, taking for example ml 2.11 = ; ml 2.02 = , the 

control of the upper pendulum should be at least 2.45 times 
faster in order to compensate the dynamics of the bottom. 
Taking into account this consideration, the stabilizer can be 
considered as a sum of two decoupled components devoted 
to Attitude control ( 2ϑ ) and ZMP control ( 1ϑ ). 

Therefore, the second order nonlinear coupled differential 
equations (7), (8) describing the dynamics of the double 
inverted pendulum can be transformed into the following 
two decoupled dynamical equations: 
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Equations (10) and (11) express the dynamical equations 

of single inverted pendulums. 

B. ZMP control 
By replacing ( 21 mm + ) in equation (10) by the total mass  

m  located at the CoG we obtain: 
 

 111
2

11 m ϑϑτ lgml −= &&  (12) 
 

where 1τ  is the torque generated at the ankle joint, 1ϑ  its 
angular position and 1l  distance between the joint and the 
CoG. The main difficulty comes from the fact that equation 
(12) is not well appropriate for designing of a ZMP control 
scheme with the ankle joint position as input. To this end, 
the model needs to be slightly completed in order to take 
into account the existing compliance at the ankle joint. 
Thanks to this compliance, the robot exhibits the 
characteristics of a lightly damped structure [15]. The most 
suitable model in this case is a single mass inverted 
pendulum with compliant joint, as presented in figure 4, 
where u  denotes the desired ankle joint angle, ϑ1 is the 
actual pendulum angle, K  denotes the joint stiffness, and 

1τ  is the torque produced by the motor. 
 

a) b) 

2ϑ  

1ϑ  
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Fig. 4: Inverted pendulum with compliant joint in the sagittal plane 

 

Neglecting the existence of the damping in the system, the 
equation describing a spring torque has the form: 

 

 )( 11 uK −= ϑτ  (13) 
 

On the other hand, from the equation relating the moment 
produced by the ground reaction force around the y  axis 
with x  ZMP direction (the planar XZ  case of the inverted 
pendulum is considered) we get: 

 

 ZMPy mgx−=τ  (14) 
 

For the static equilibrium of the system, the moment 
generated by the motor at the ankle joint should compensate 
the moment produced by the ground reaction force. By 
identifying the expression of 1τ  in equations (12) and (13) 
we get the following relation:  
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Introducing the state variables 1

2
1
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K

ml
x −=  and 12 xx &= , 

equation (15) can be rewritten as 2nd order linear system 
with u  as control input as follows: 
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The expression of the output ZMPx  is obtained by 
equating relations (13) and (14) which, in terms of the state 
variables 1x  and 2x , writes: 
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The state space representation (16), (17) is under 
controllable canonical form. On this basis, a LQR controller 
can be easily designed to keep the actual ZMP close to its 
reference position. Finally, it should be mentioned that ZMP 
control in the frontal YZ  plane can be treated in the same 
way. The whole humanoid can be interpreted as a 
combination of two planar inverted pendulums, in frontal 
and sagittal planes, controlled by four independent ankle 
joints. 

C. Attitude control 
Recall that the aim of the attitude control is to maintain 

the trunk of the humanoid robot in vertical position. As for 

the ZMP control, the decoupling strategy allows to consider 
the model of a single inverted pendulum. In that case, there 
is no need for introducing compliance as the hip joint. As 
the supported mass is less important, the trunk can be 
considered as rigid. The dynamical model of the inverted 
pendulum is expressed by equation (11), in which 2τ  is the 
torque applied at the hip joint that allows control the upper 
body orientation 2ϑ , 2l  is the distance from the hip joint to 
the point where the mass 2m  of the upper body is 
concentrated (figure 5).  

 
Fig. 5: Simple inverted pendulum 

 

A simple proportional controller appears then sufficient to 
regulate the pendulum in vertical position ( 02 =ϑ ). The 
developed controller can be understood as an additional 
position regulator functioning over the standard hip joint 
position controller. The controller’s output is the correction 
for the actual hip joint position: 
 

 )()( teKt pH =Δϑ  (18) 
 

where pK  is a proportional gain which can be tuned 
experimentally and )(te  is the upper body orientation error 
with respect to the vertical direction provided by the inertial 
central unit. To conclude, it should be mentioned that the 
actual 3D trunk’s motion can be interpreted as a 
combination of two planar inverted pendulums in frontal and 
sagittal planes which have practically the same dynamics.  

D. General Stabilizer Architecture 
The overall control architecture including the parts 

presented in the preceding sections is described in figure 6. 
 

 
Fig. 6: Stabilizer architecture 
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The force sensor system of the robot consisting of two 
six-axis force-torque provides the controller with the real 
distribution of the forces and torques xF , yF , zF , xτ , yτ , 

zτ  at the contact between the foot and the ground. The 3-
axis Gyro and Accelerometer provide the measurements of 
the angular position mϑ  and angular velocity mϑ&  of the 
upper body (trunk) of the robot in the frontal and sagittal 
planes (Roll and Pitch). After the actual ZMP position ZMPx , 

ZMPy  is computed by the ZMP Computational module, and 
the real attitude is estimated by the Attitude Estimation 
module, the ZMP error ZMPxΔ , ZMPyΔ  and the attitude  
error ϑΔ  can be estimated [16]. These errors are the input 
data for the decoupled stabilizer which regulates the ZMP 
and attitude positions by controlling the ankle and hip joints. 
Finally, the compensational motion of the ankle AfϑΔ , 

AsϑΔ  and hip HfϑΔ , HsϑΔ  joints in the frontal and sagittal 

planes are added to the desired values of angles Afϑ , Asϑ , 

Hfϑ , Hsϑ  given by the motion pattern generator. The 
implementation of the decoupled stabilizer provides fast and 
easy control of the walking stability. All changes are applied 
to ankle and hip joints eliminating the need of inverse 
kinematics computation.  

V. SIMULATIONS AND DISCUSSION  
Several tests were done on the OpenHRP simulator which 

implements an accurate model of the dynamics of HRP2. In 
order to test the functioning of the stabilizer in static (non-
walking) position, the robot was exposed to external 
disturbances. Both parts of the stabilizer (ZMP and attitude 
controls) were tested independently. In order to test the 
attitude control, a disturbing force Fd  was applied to the 
lower part of the humanoid’s body. This force was simulated 
by a motion of the ankle (Figure 7(a)). In a similar way, to 
test the ZMP control, a disturbing force was applied to the 
upper part of the robot. This force was simulated by a hip 
movement (Figure 7(b)). In both cases, the excitation was 
realized as a sinusoidal movement of amplitude 5° for the 
attitude control, and 3° for the ZMP control. 

 

     
Fig. 7: Static test of the stabilizer in the sagittal plane a) attitude control b) 

ZMP control 
 

The results of static tests of the Attitude and ZMP 
controllers on the dynamic model of HRP2 are shown in 

figures 8 and 9 respectively.  

 
Fig. 8: Static test for Attitude control a) Hip control position and Ankle 

excitation variation b) Pitch variation 
 

It appears clearly in the figure 8 that the variation of the 
pitch angle of the trunk is minimal (less than 0.02 deg), 
showing that the upper part is maintained almost vertical.  

Under the ankle control (figure 9), the ZMP variation 
appears rather smooth. In the final phase, the ZMP is 
perturbed but rapidly stabilized. 

 
Fig. 9. Static test for ZMP control a) Ankle control position and Hip 

excitation variation b) ZMPx  variation. 
 

Figure 10 presents a sequence of snapshots during the 
simulation of a walking trajectory with the proposed 
stabilizer.  

 

 
Fig. 10: Snapshots of humanoid simulator. Walking with designed 
stabilizer. 

 

As in the previous test, the robot starts from the initial 
vertical position. First, it takes the half-sitting posture. 
Following this stage, the walk starts. The robot executes 10 
steps to cover a distance of 2 m. After the goal was reached, 
the robot gets back to the initial vertical posture. During this 
walking test the balance is perfectly maintained, showing the 

a) b) 

a) b) 

a) b) 
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efficiency of the stabilizer.  
Figure 11 shows the variation of the ZMP coordinates in 

each plane (sagittal and frontal) during the walk. The actual 
ZMP (measured by the force-torque sensors) is superposed 
to the planned one. The periodicity of ZMP curves is due to 
the cycle of steps. 

  
Fig. 11: Reference and real ZMP variation a) ZMPx  b) ZMPy  

 

Both ZMP components oscillate near the reference values, 
however some peaks (in worst cases the ZMP even leaves 
the stability zone) can be observed. Nevertheless, as shown 
by the experiments, the robot balance is maintained. This 
can be related to the fact that the OpenHRP simulator does 
not always compute the true ZMP. In the simulator, the foot 
mass exists under the ankle force sensor. When the sole 
instantaneously leaves the floor, its acceleration generates a 
pulling force that produces a wrong ZMP value, which 
escapes the stability zone. The ZMP error depends on the 
tuning of the ZMP controller. As mentioned above, a lower 
priority was given to the ZMP control to introduce minimum 
disturbance in the ankle motion. Figure 12 presents the 
attitude variation. The trunk of the humanoid robot is 
maintained vertical (zero pitch and yaw). Peaks in both 
curves are due to foot impact with the ground and never 
exceed 1°. 

 

Fig. 12. Attitude variation 

VI. CONCLUSION 
Though “dynamically stable” walking patterns can be 

deduced from 3D-LIPM and ZMP-based approaches, their 
implementation on a humanoid platform requires a closed-
loop stabilizer to cope with modelling errors and 
perturbations. To this end, we proposed a generic and 
practical stabilizer, which provides online modification of 
the motion pattern to guarantee walking stability. The ZMP 
and CoG positions were shown to be the key variables that 
need to be adjusted by the stabilizer. The most effective way 
to correct the ZMP position is to modify the trajectory of the 
supporting ankle joint, whereas the best way to control the 
position of the COG is to regulate the attitude of the upper 
body by acting on the hip joint. Introducing a double 

inverted pendulum model, we had shown that both variables 
can be simultaneously controlled, thanks to a decoupling 
approach. Using an appropriate convergence rate, we proved 
that the influence of each variable on the other becomes 
negligible. On this basis, a closed-loop compensatory 
scheme was designed to update the walking pattern in real-
time. The main advantage of the method is to allow fast 
online correction of the posture, without requiring the 
computation a new walking gait or inverse kinematics. 
Numerous tests on the OpenHRP simulator of HRP2 have 
proven the efficiency of the approach. Finally, though most 
advanced humanoid platform include stabilizers, which are 
unfortunately not open-source, we provide here a general 
and practical control scheme for joint-position controlled 
humanoid robot.  
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