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Abstract— This article compares several parameterizations
and motion models for improving the estimation of the non-
linear uncertainty distribution produced by robot motion. In
previous work, we have shown that the use of a modified
polar parameterization provides a way to represent nonlinear
measurements distributions in the Cartesian space as linear
distributions in polar space. Following the same reasoning, we
present a motion model extension that utilizes the same polar
parameterization to achieve improved modeling of mobile robot
motion in between measurements, gaining robustness with no
additional overhead. We present both simulated and experi-
mental results to validate the effectiveness of our approach.

I. INTRODUCTION

Here we focus on the problem of accurately estimating

the pose of a robot in the presence of uncertainty in motion.

Existing methods for pose estimation can be categorized

into two groups, parametric and non-parametric. Parametric

methods (eg. Gaussian filters) tend to be approximate but

fast, while non-parametric methods (eg. particle filters) tend

to be more expressive at the cost of computational complex-

ity. Since the computational expense can be prohibitive for

many applications, parametric methods are often the only

option. Typically, for approximately linear systems Gaussian

representations are sufficient. Since both state transitions and

sensor measurements (to landmarks) for mobile robots are

naturally non-linear, it behooves us to consider represen-

tations that are most faithful to the natural distributions,

especially in cases such as when a mobile robot moves for

a long period of time without measurements to landmarks.

While it is understood that linearization introduces errors,

linearization in Cartesian space is particularly problematic

due to the types of motion and measurement uncertainties we

encounter in robotics applications. Conversely, linearization

in an alternate, higher dimensional space has been shown

previously to be more representative of the true nonlinear

distributions encountered with range-only measurements [1].

In most robotics applications, it is the uncertainty in the

heading that is responsible for introducing the majority of the

error in the estimate. This is because any ambiguity in the

robot’s heading appears nonlinear in Cartesian space. In this

paper, we present an alternate polar-based parameterization

and motion model that is able to accurately represent the

nonlinear uncertainty distribution cause by robot motion.

We find that our proposed method retains the computational

efficiencies of traditional Gaussian filters while improving

the overall accuracy of the estimate. We evaluate the per-

formance of our proposed method using both simulated and
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real-world experimental data, comparing it to the nonlinear

estimates of the particle filter.

II. RELATED WORK

In the field of robotics the topic of robot motion has been

studied in depth in the past. Robot motion models play an

important role in modern robotic algorithms. The main goal

of a motion model is to capture the relationship between a

control input to the robot and a change in the robot’s pose.

Good models will capture not only systematic errors, such

as a tendency of the robot to drift left or right when directed

to move forward, but will also capture the stochastic nature

of the motion. The same control inputs will almost never

produce the same results and the effects of robot actions are,

therefore, best described as distributions [2]. Borenstein et al.

cover a variety of drive models, including differential drive,

the Ackerman drive, and synchro-drive [3].

Previous work in robot motion models have included work

in automatic acquisition of motion models for mobile robots.

Borenstein and Feng describe a method for calibrating odom-

etry to account for systematic errors [4]. Roy and Thrun pro-

pose a method which is more amenable to the problems of lo-

calization and SLAM [5]. They treat the systematic errors in

turning and movement as independent, and compute these er-

rors for each time step by comparing the odometric readings

with the pose estimate given by a localization method. Alter-

nately, instead of merely learning two simple parameters for

the motion model, Eliazat and Parr seek to use a more general

model which incorporates interdependence between motion

terms, including the influence of turns on lateral movement,

and vice-versa [6]. Martinelli et al. propose a method to

estimate both systematic and non-systematic odometry error

of a mobile robot by including the parameters characterizing

the non-systematic error with the state to be estimated [7].

While majority of prior research has focused on formu-

lating the pose estimation problem in the Cartesian space.

Aidala and Hammel, among others, have also explored

the use of modified polar coordinates to solve the relative

bearing-only tracking problem [8]. Funiak et al. propose

an over-parameterized version of the polar parameterization

for the problem of target tracking with unknown camera

locations [9]. Djugash et al. further extend this parameter-

ization to deal with range-only measurements and multi-

modal distributions [1]. In this paper, we further extend this

parameterization to improve the accuracy of estimating the

uncertainty in the motion rather than the measurement.

While the filtering technique itself is not the primary focus

of this paper, it is necessary to examine the use of different

filtering techniques with the proposed motion model. The

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 2096



extended Kalman filter (EKF), a classical and popular tool

for state estimation in robotics ([10],[1]), is well behaved

if the nonlinear functions are approximately linear at the

mean of the estimate. Conversely, instead of approximating

a nonlinear function by a Taylor series expansion (eg. EKF),

the unscented Kalman filter (UKF), proposed by Julier and

Uhlmann, deterministically extracts sigma-points from the

Gaussian and transforms them through the nonlinear function

[11], [12]. In this article, we explore the use of both the EKF

and UKF as filtering techniques to apply the proposed motion

models to update the state.

III. APPROACH AND REPRESENTATION

In this section, we will present several different motion

models and state representations that can be adopted to

achieve a more accurate estimate of the uncertainty of robot’s

pose due to motion. In particular we will examine three

different types of motion models; purely Cartesian, purely

Polar and Hybrid (over-parameterized) motion models. Each

of these motion models utilize a slightly different parame-

terization of the state.

A. Cartesian Motion Model

The Cartesian parameterization of the robot state (position

and orientation) at time k is represented by the state vector

qk = [xk, yk, φk]T . It is fairly easy and straightforward to

imagine a motion prediction step in this state parameteri-

zation. While many different formulations exist (eg. bicycle

model, Brownian motion, etc.) for modeling motion in the

Cartesian space, for the purposes of our discussion, we

will examine a simple implementation. Given control inputs

uk = [∆Dk, ∆φk]T , where ∆Dk and ∆φk are the delta

distance traveled and change in heading of a robot between

time k and k + 1. The dynamics of the wheeled robot are

best described by the following set of nonlinear equations:




xk+1

yk+1

φk+1



 =




xk + ∆Dk cos(φk + ∆φk)
yk + ∆Dk sin(φk + ∆φk)

φk + ∆φk



 + νc
k (1)

where νc
k is a noise vector. It should be noted here that the

noise is actually injected into the control inputs [∆Dk, ∆φk].
This noise is then transformed (by the input gain matrix B)

proportionally into the state variables. Thus the covariance

matrix is updated as: Σk+1 = AΣkAT + BGBT , where A
is the system matrix and G is the input noise matrix. The

input gain matrix B is computed as follows:

B =
[

∂qk+1

∂∆Dk

∂qk+1

∂∆φk

]
(2)

As can be observed, by applying the above motion model,

the effective uncertainty growth due to motion is linearized

in the Cartesian space and any parametric filter using such

a model is also limited by this parameterization. Ideally,

however, we desire a motion model (and perhaps a parame-

terization) that easily lends it self to accurately representing

the types of nonlinear distributions typically encountered

with robot motion (eg. “crescent-like” distributions).

B. Polar Motion Model

While the Cartesian parameterization and motion model-

ing have been utilized the most, it is necessary to examine

the other relatively uncommon polar parameterization to see

if it offers any useful characteristic that can help capture

the nonlinearities in motion. In a polar parameterization,

the robot state is represented by the state vector qk =
[rk, θk, φk]T . The relationship between this parameterization

and the Cartesian parameterization is straightforward (ie.

xk = rk cos(θk) and yk = rk sin(θk)). Using this relation-

ship, we can write the nonlinear robot dynamics equations

in their polar form as follows:




rk+1

θk+1

φk+1



 =





√
x̂2 + ŷ2

arctan(ŷ/x̂)
φk + ∆φk



 + νp
k

x̂ = rk cos(θk) + ∆Dk cos(φk + ∆φk)
ŷ = rk sin(θk) + ∆Dk sin(φk + ∆φk)

(3)

where νp
k is the noise vector. Once again the noise is injected

into the control inputs. However, similar to the Cartesian

motion model, the input gain matrix transforms the noise

proportionally into the state variables.

It should be noted here that by applying such a motion

model, the uncertainty growth due to motion is now linear

in the polar space. While this might lead to representing

uncertainty distributions that appear “crescent-like” (when

visualized in the Cartesian space), the inability to shift

the origin of the polar coordinates makes it difficult to

accurately represent uncertainty growth from a point other

than [x, y] = [0, 0] (the origin of the polar coordinate frame).

It is necessary to model such uncertainty growth in robotics

because it is identical to the case where a measurement from

an exteroceptive sensor drastically collapses the uncertainty

of the robot’s pose to a point other than the origin.

Therefore, we must turn to an alternate parameterization that

can accurately capture both the “crescent-like” (nonlinear)

distributions as well as accommodate uncertainty growth

from a point other than the polar coordinate origin.

C. Hybrid Motion Model

At each time step, k, the state of the robot is represented

by qk = [cx,k, cy,k, rk, θk, φk]T . Here the robot’s position

is represented using the Relative-Over Parameterization

(ROP), where (cx,k, cy,k) are the Cartesian coordinates of

the shifted origin of the polar coordinate frame and (r k, θk)
are the corresponding range and angle values. The use of

this parameterization derives motivation from the polar

coordinate system, where annuli, crescents and other ring-

like shapes can be easily modeled. It has been shown in the

past that the use of this parameterization yields improved

representation of the uncertainties in the measurement

models, which leads to a more accurate filter [1].

The relationship between this parameterization and the
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Cartesian parameterization can be expressed as follows:

xk = cx,k + rk cos(θk)
yk = cy,k + rk sin(θk)

(4)

This proposed parameterization offers the unique ability

for us to capture the nonlinear “crescent-like” uncertainty

distributions using the polar state parameters (rk, θk) while

allowing us to easily shift the origin of the polar coordinates

using the Cartesian state parameters (cx,k, cy,k). We can

now write the robot dynamics equation for the hybrid

motion model using the proposed ROP parameterization:





cx,k+1

cy,k+1

rk+1

θk+1

φk+1




=





cx,k + ∆D◦

k cos(φk + ∆φ◦

k)
cy,k + ∆D◦

k sin(φk + ∆φ◦

k)√
(x̂p)2 + (ŷp)2

arctan(ŷp/x̂p)
φk + ∆φk




+ νh

k

x̂p = rk cos(θk) + ∆D∗

k cos(φk + ∆φk)
ŷp = rk sin(θk) + ∆D∗

k sin(φk + ∆φk)
(5)

where, ∆D◦

k and ∆D∗

k correspond to the Cartesian and

polar portion of the total distance traveled respectively. Here,

νh
k is the noise vector, which represents the transformed

components of the noise injected into the control inputs.

By applying the motion in both the Cartesian and polar

parameters, we are able to model motion with both Cartesian

and polar components within the same motion model. This

improved estimate could lead toward a more reliable and

robust filter. However, looking more closely at the above

formulation, we find that determining the values of the

variables ∆D◦

k and ∆D∗

k is not easy. This is due to the

fact that there doesn’t exist a single ratio/equation that can

determine their values based on the control input ∆Dk. Their

relationship can however be written as:

∆Dk = ∆D∗

k + ∆D◦

k (6)

Given the above relationship, it is not possible to deter-

mine a single pair of values for the two variables that achieve

the best result independent of the dataset. However, further

exploration that leads to dynamically selecting their values

might provide significant gains in overall filter performance.

In our experiments, we found that using the values,

∆D◦

k = 0 and ∆D∗

k = ∆Dk, provides reasonable results.

Note that this particular choice of values, forces the motion

to lie completely in the polar parameters, nearly identical

to the polar motion model described above. However, the

presence of the additional Cartesian parameters in the state

vector enables the filter to shift origin of the polar coordinates

anytime a measurement update is performed. Thus allowing

the filter to shift its polar coordinate origin whenever the

estimate uncertainty might be reduced.

The specific choice of values used in our experiments is

suitable for most robotics applications due to the nature of

the uncertainties observed robotics applications. Typically,

the ambiguity in the robot’s heading has the largest influence

in affecting the nonlinearity of the estimate distribution.

Given that the polar-only motion model is better suited to

model highly nonlinear distributions than the Cartesian-only

motion model and that in most robotics applications the

uncertainty in heading causes the estimate distribution to

be nonlinear, it is reasonable choice to pick ∆D◦

k = 0 and

∆D∗

k = ∆Dk, forcing the motion to be mostly polar. It

should be noted here that with the above choice of ∆D ◦

k

and ∆D∗

k the input gain matrix B has the form:

B =
[

∂qk+1

∂∆Dk

∂qk+1

∂∆φk

]
=





0 0
0 0

∂rk+1

∂∆Dk

∂rk+1

∂∆φk

∂θk+1

∂∆Dk

∂θk+1

∂∆φk

∂φk+1

∂∆Dk

∂φk+1

∂∆φk




(7)

Due to the fact that we force all the motion to lie in the

polar components, the input gain matrix has zero-gains for

the Cartesian components of the state (cx,k, cy,k). It is then

easy to see that the Cartesian components will never change

nor accumulate uncertainty from the motion propagation.

However, as mentioned earlier, the Cartesian parameters are

added to allow the origin on the polar coordinate frame to

shift when necessary. Thus, we introduce additional noise

to the Cartesian components to allow them to drift when

necessary (eg. when a measurement update is performed).

The added noise is much smaller than the noise due to the

control inputs. In other words, the noise vector is broken

into two components as follows: νh
k = νi

k + νb
k. Here, νi

k

corresponds to the component of the noise from the control

inputs and νb
k corresponds to the biasing noise (to allow the

Cartesian components to change).

We can now re-write the covariance matrix update as,

Σk+1 = AΣkAT + BGBT + Q, where Q represents the

noise matrix corresponding to the biasing noise ν b
k. With

this change, the Cartesian component gains uncertainty as

the robot moves. The growing uncertainty is collapsed when

an exteroceptive sensor measurement updates the state, cor-

recting both the Cartesian and Polar components of the state.

Without the addition of the biasing noise, the Cartesian com-

ponents will become over-confident, making them more-or-

less constant. The addition of ν b
k makes the overall estimate

of the state an underestimate of true distribution. Thus, ν b
k

must be chosen such that it is relatively small 1 compared to

the noise in the control inputs.

IV. EXPERIMENTS AND RESULTS

In this section, we compare the results of using the

different motion models presented above. First we perform

some simulated experiments testing the different methods

for their ability to model nonlinear distributions from

motion alone. Next, we evaluate the methods on some

real-world experimental data, where we show results from

incorporating range-only and bearing-only measurement

data into the system in addition to the odometry data. In all

our experiments, we test four distinct methods: 1) Cartesian

motion model with an EKF, 2) Polar motion model with an

1In practice, we found that using a value 1

20
of the noise in the ∆Dk

input provides satisfactory results.
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Fig. 1. Each row shows temporal progress of the estimate, using different motion models. (Row 1) Cartesian Motion Model, (Row 2) Polar Motion
Model and (Row 3) Hybrid Motion Model with an EKF. In the figure, the green lines are the estimated path of the robot, the blue lines are the true path
of the robot, the red ellipses represent the uncertainty of the estimate and the black dots are the particles within the particle filter. Each column presents
snapshots of the filter at various times. (Col 1) shows the uncertainty ellipse of the robot’s position at times t = 150, 300, 400. (Col 2) corresponds to
times t = 600, 900, 1600. (Col 3) show the same timesteps as in (Col 2), however, the robot’s initial position was [x, y] = [0, 200]. It can be observed
that while the Cartesian model (Row 1) does a reasonable job predicting the mean of the distribution, it fails to accurately capture the nonlinearities in
the uncertainty distributions. Additionally, when the robot is initialized to the location [0, 200], the polar motion model is unable to correctly represent
the uncertainty in the motion. This limitation of the polar motion model is due to its inability to move the origin of its coordinate frame.

EKF, 3) Hybrid motion model with an EKF, and 4) Hybrid

motion model with an UKF.

A. Simulation Results

Our first examination of the motion models will evaluate

the performance of each model in the absence of any

measurement information. In other words, using only the

control inputs, we want to see how well the different motion

models capture the true uncertainty distribution of the

system. In order to evaluate the different methods, we turn

to the KL-divergence metric. Computing the KL-divergence

of an estimate requires a baseline method/result to compare

against (ie. something equivalent to a true distribution that

is expected). In our tests, we use the result of a particle

filter (with 1000 particles) as our near-groundtruth result

that can accurately model the true nonlinear distributions

that occur within the system.

Computing the KL-divergence between a particle set and

a Gaussian filter requires some additional work. Mathemati-

cally, the metric that we use in our evaluation can be written

as: KL(kde(Particles)||Gaussian). Here, kde(Particles)
stands for the kernel density estimate of the particle set.

By utilizing a density estimate of the particle set, we are

able to extrapolate the sample data to the entire state space,

allowing for a more accurate evaluation of the KL-divergence

metric [13]. It should be noted here that the KL-divergence

is a non-symmetric metric, thus the order of the operation

is important. Therefore, by computing the KL-divergence of

the particle set given the Gaussian estimate, we are able to

penalize the Gaussian estimate for not capturing the non-

Gaussian behavior of in the particle distribution.

Figure 1 presents snapshots of the filter at different

timesteps for the case where only odometry control inputs

are provided to the filter. Each row in the figure presents the

estimate uncertainty ellipse using different motion models.

(Row 1) Cartesian Motion Model, (Row 2) Polar Motion

Model and (Row 3) Hybrid Motion Model with an EKF.

Note that the ellipses shown in Row 3 are projections of the

true 4-dimensional ellipse into the 2-dimensional Cartesian

space. It is due to this projection that the ellipses appear

”filled-in”. However, as can be seen, the outer boundary of

these projected ellipses still accurately capture the particle

distributions. Each column in the figure presents temporal

snapshots of the filter. (Col 1) shows the uncertainty ellipses

of the robot’s position at times t = 150, 300, 400. (Col 2)

presents the times t = 600, 900, 1600. (Col 3) also shows

the same times as in (Col 2), however, the robot’s initial

position at time t = 0 was [x, y] = [0, 200]. Figure 2 presents
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Fig. 2. The figures show the plot of the KL divergence over time between
different parametric motion models and a particle filter representation of the
state estimate. (Top) The robot starts at position [0, 0] and as a result the
polar-only parameterization performs equally as well as the hybrid models.
(Bottom) The robot starts are position [0, 200] and thus the polar-only
parameterization fails to accurately represent the true distribution due to the
offset between the robot’s initial position and the polar coordinate’s origin.
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Fig. 3. KL-Divergence of the different methods plotted against a varying
lengths of odometry segments. As the lengths of the odometry segments
becomes longer, the hybrid motion models out perform the other motion
models. In each odometry segment the starting pose of the robot is different,
thus the need for shifting the origin of the polar coordinate causes the polar-
only motion model to inaccurately represent the true distribution.

the KL-divergence error plotted against time for the different

methods and two distinct scenarios (ie. initial robot position

at [0, 0] and [0, 200]). In Figure 2(Top) we see that the Carte-

sian motion model performs poorly when compared against

the other methods. Furthermore, as can be seen in Figure 1,

it is never able to accurately capture the nonlinearities in the

uncertainty distributions. And while the polar motion model

initially (150 ≤ t ≤ 600) has a higher KL-divergence value,

it achieves a similar divergence value as the hybrid motion

models when the uncertainty in the system grows larger.

Turning to Figure 2(Bottom) we see that there is a period

(900 ≤ t ≤ 2000) when the polar motion model performs

poorly and even worse than the Cartesian model. This is

a result of the inability of the polar-only parameterization

to shift the origin of the polar coordinates. Looking once

again at Figure 1, it is easy to identify the inaccuracy of

the estimate represented by the polar motion model. The

performance of the polar motion model when initialized at

[0, 200] is shown in (Row 2, Col 3). It can be observed here

that the polar motion model is unable to correctly represent

the uncertainty in the motion. The estimate here is grossly

inaccurate, since the crescent (ellipse) is literally turned

around (the uncertainty ellipse remains “curved” toward

[0, 0]). This limitation of the polar motion model is due to its

inability to move the origin of its coordinate frame since the

unaltered polar coordinate frame is always centered at [0, 0].
Thus it is unable to capture the crescent that is centered

around [0, 200].

B. Experimental Setup

We tested our method on data collected from a mobile

robot that traversed long paths in an outdoor field. The objec-

tive is for the robot to localize itself using only its own odom-

etry and varying amount of either range-only or bearing-

only measurements to nodes placed in the environment. The

system used to perform the experiments was an instrumented

autonomous robot with highly accurate (2cm) positioning for

ground truth using RTK GPS receivers as well as a fiber optic

gyro and wheel encoders. With this setup, we collected three

kinds of data: the groundtruth path of the robot from GPS

and inertial sensors, the path from dead reckoning, and the

range/bearing measurements to the nodes [14].

C. Results

In order to explore the true performance of the different

methods, we need examine the performance of the differ-

ent motion models with varying lengths of odometry-only

segments. In our first test, the odometry data collected from

the robot is split into segments. The length of the segment

is then varied to provide sets of segments with varying

path lengths. Each segments’ starting pose is determined by

the true groundtruth pose of the robot. Thus, the starting

pose is different for each segment in the set. We now

apply the different motion models of each of the different

segments and acquire the plots shown in Figure 3. As can

be observed in the figure, as the segment length increases,

the KL-divergence of the Cartesian and Polar motion models

increases. This is expected for the Cartesian motion model,

since with a longer odometry segment, the nonlinearity in the

distribution also increases. Failing to capture the nonlinearity

causes the KL-divergence to grow. In the case of the Polar

motion model, the non-zero starting pose in each segment

causes the model to fail since the model forces the origin to

be always at [0, 0]. Note that in the hybrid motion models,

the origin is shifted to the start of the segment before the

motion model is applied to each segment.

While it is good to observe the performance of the motion

models on purely odometry data, it is also necessary to test

the performance when measurement data is also introduced

into the system. To do this, we show some results with vary-

ing amount of input measurement data provided to the sys-

tem. This is done by randomly dropping a percentage of the

input measurements. Figure 4 and 5 show the effects of vary-

ing the input measurement frequency on the Euclidean error
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Fig. 4. Euclidean error of different methods plotted against varying amount
of range-only data frequency provided to the system. Here, the filter is re-
run with measurement data arriving at the specified frequency and ignoring
measurements that arrive faster than the data rate.
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Fig. 5. Euclidean error of different methods plotted against varying amount
of bearing-only data frequency provided to the system. Here, the filter is re-
run with measurement data arriving at the specified frequency and ignoring
measurements that arrive faster than the data rate.

of the estimate. These figures reveal that with dense mea-

surement data, both the Polar and Hybrid motion models are

sufficient to accurately estimate the robot’s path. This is be-

cause, with large amount of measurements, the true distribu-

tion rarely grows large enough for the motion model to affect

it. However, as the measurements become sparse, the perfor-

mance of the polar motion model degrades more than the hy-

brid motion models. It should also be noted here that the ori-

gin in the hybrid models, in this test, is automatically shifted

by the measurement updates in the filter. This is due to the

biasing noise added to the Cartesian parameters in the hybrid

model. Additionally, we present results of applying three dif-

ferent filters on the data (ie. EKF, UKF and IKF [15]) to show

how the different measurement update process in these filters

affect the origin shift. As can be observed, the UKF shows

improved performance with bearing-only data while with the

range-only data it performs just as well as the EKF and IKF.

V. CONCLUSIONS

We have examined the use of an alternate motion model

and parameterization to more accurately represent the non-

linear distributions in typical robot motion. The proposed

method was compared against a particle filter to test its

accuracy in representing the nonlinear distributions in the

system. In addition, we test the filter on a fairly large real-

world dataset with range-only and bearing-only measurement

data. We find that in both the simulation and experimental

results, the proposed hybrid motion model that extends the

polar motion model is best for modeling the true nonlinear

distributions. While we find that performing the motion

prediction in the polar space offers significant gains, we also

find that the ability of our hybrid model to shift the origin

of the polar coordinate is important to deal with a wider set

of situations.

One possible direction of future research is to attempt

to incorporate motion in both Cartesian and Polar states

explicitly. Currently in our hybrid model, we chose the values

for ∆D◦

k and ∆D∗

k such that the motion is purely polar. In

reality a truly flexible and robust motion model should be

able to properly accommodate motion in both Cartesian and

Polar states. This implies finding non-zero values for ∆D ◦

k

and ∆D∗

k that is specifically adapted to your system. Thus,

exploring strategies that can dynamically adjust the ∆D ◦

k and

∆D∗

k values is necessary.
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