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Abstract— This paper reports the development and experi-
mental evaluation of a novel navigation system for underwater
vehicles that employs Doppler sonar, synchronous clocks, and
acoustic modems to achieve simultaneous acoustic communi-
cation and navigation. The system reported herein, which is
employed to renavigate the vehicle in post-processing, forms the
basis for a vehicle-based real-time navigation system. Existing
high-precision absolute navigation techniques for underwater
vehicles are impractical over long length scales and lack
scalability for simultaneously navigating multiple vehicles. The
navigation method reported in this paper relies on a single
moving reference beacon, eliminating the requirement for
the underwater vehicle to remain in a bounded navigable
area. The use of underwater modems and synchronous clocks
enables range measurements based on one-way time-of-flight
information from acoustic data packet broadcasts. The acoustic
data packets are broadcast from the single, moving reference
beacon and can be received simultaneously by multiple vehicles
within acoustic range. We report experimental results from
the first deep-water evaluation of this method using data
collected from an autonomous underwater vehicle (AUV) survey
carried out in 4000 m of water on the southern Mid-Atlantic
Ridge. We report a comparative experimental evaluation of the
navigation fixes provided by the proposed synchronous acoustic
navigation system in comparison to navigation fixes obtained by
an independent conventional long baseline acoustic navigation
system.

I. INTRODUCTION

This paper reports the development and experimental

evaluation of a novel navigation system for underwater

vehicles that employs Doppler sonar, synchronous clocks,

and acoustic modems to achieve simultaneous acoustic com-

munication and navigation. Our goal is to enable high-

precision absolute navigation of underwater vehicles over

length scales of O(1-100km) without requiring fixed navi-

gation reference beacons. Available strap-down sensors such

as Doppler velocity logs (DVLs) and inertial measurement

units (IMUs) measure vehicle velocities and accelerations

in pose and attitude, which can be integrated to estimate

relative change in vehicle position. Unaided IMU and DVL

navigation methods estimate local displacement with errors

that are unbounded over time, thus they require additional

auxiliary navigation methods to provide error correction and

an absolute georeference.

Bounded-error navigation is currently achieved with the

aid of systems such as long baseline navigation (LBL) that

require external, fixed reference beacons, additional survey

time, and have a range of only 5-10 km. In addition, some

LBL systems suffer a lack of scalability because only one

vehicle can interrogate the network of acoustic beacons at

a time. This effectively decreases the rate at which a given

vehicle can receive navigation fixes to 1/N, where N is the

number of vehicles using the network.

In contrast, synchronous-clock one-way-travel-time

(OWTT) acoustic navigation is a navigation technique that

relies on ranges estimated from time-of-flight information

of acoustic data packets between a reference beacon with a

known, though not necessarily stationary, location and the

vehicle [13] [14]. This method provides both bounded-error

position estimates and, with a moving reference beacon, long

range O(100km) capabilities. OWTT navigation provides

scalability as well, allowing all vehicles within acoustic

range to simultaneously use the same acoustic data packet

broadcast independent of the number of vehicles within

acoustic range. The implementation of the method described

herein requires the use of underwater acoustic modems on

both the reference beacon (in our case the ship) and the

vehicle, as well as a precision clock to synchronize the

modems. The state estimator reported in this paper forms

the basis for a real-time, vehicle-based state estimator. The

implementation reported here is for post-processing vehicle

position; the modifications necessary for real-time navigation

are noted in the text. An alternate method of navigation

using synchronous-pingers and one-way-travel-times to

calculate range-rate is discussed in [44].

The remainder of this paper is organized as follows:

Section II describes previous work in the area of single-

beacon navigation based on range measurements. Section III

reports an overview of synchronous-clock one-way-travel-

time navigation. Section IV briefly reviews the extended

Kalman filter and reports the mathematical framework for
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the extended Kalman filter formulated for the work presented

herein. Section V reports field results from the deep-water

sea trials, and Section VI contains concluding remarks.

II. PREVIOUS WORK

The majority of prior literature in this area report pro-

posed estimation algorithms and the results of numerical

simulations of these algorithms. Only a few report exper-

imental evaluations of the proposed algorithms, and even

fewer employ independent navigation methods to evaluate

quantitatively the accuracy of the proposed methods.

The earliest formulation of vehicle navigation using ranges

from a single beacon that is known to the authors is reported

in [43]. This approach employs least-squares to solve for

the vehicle’s unknown initial position and a constant-velocity

unknown current; additionally, a linear-algebra based observ-

ability analysis is also reported.

Range-only localization methods used for estimating the

position of a target are addressed by [41] and [46]. In [41]

the authors compute the theoretical Cramér-Rao bound and

compare it to the performance of a maximum-likelihood

estimator (MLE), an extended Kalman filter(EKF), and a

regularized particle filter during field tests. In [46] the author

addresses the observability of the target-tracker problem

using the Fisher information matrix and reports simulation

results using an EKF. In related work [1] implements the

EKF from [46] and reports simulation results.

The use of EKFs for homing and single-beacon navigation,

initialized by least-squares, is reported in [3], [4], [48] for

both simulation and field trials. In [4] the authors also report

a simulated two-vehicle system using a cascaded approach

in which the second vehicle navigates relative to the first

vehicle using inter-vehicle range measurements.

The papers [32]–[34] report an error state EKF for single-

beacon navigation based on error models of the vehicle’s

inertial navigation system. The authors report results using

a combination of field and simulation data.

More recent least-squares solutions are reported in [23]

and [31], the former using ad hoc iterative techniques to

estimate course, the later reporting a method for advancing

multiple single-beacon fixes along the vehicle’s estimated

trackline to simulate a multi-beacon fix.

An extended set-valued observer is reported in [37]. The

authors show this observer to provide bounds on the esti-

mation error in the presence of non-linearities in the model

and non-Gaussian noise, guaranteeing that the true vehicle

position is contained within the estimator’s predicted error

covariance ellipsoid when linearization error and noise are

correctly characterized.

Several different methods for addressing the observability

of single-beacon range-only navigation are reported in the lit-

erature. The papers [16]–[19] report an observability analysis

employing limiting systems to assess uniform observability,

and derive sufficient conditions for the existence of an

observer with exponentially decaying estimation error for

the cases of both known and unknown ambient currents.

The authors report field results from their implementation

of an EKF. In related work [36] extends the EKF reported in

[16]–[19] to three-dimensional coordinates with simulation

results.

A concise observability analysis in continuous time using

Lie derivatives to compute conditions for which the system

has local weak observability is reported in [42]. In [25] the

authors report an algebraic analysis showing local uniform

observability based on signal estimation techniques, though

the lack of an estimation model disallows the computation

of an updated position in the absence of a new measurement.

The papers [39], [40] address range-only navigation of un-

derwater vehicles in a simultaneous localization and mapping

(SLAM) framework and report experimental results. In this

formulation multiple beacons are used but a priori beacon

location is not known. The papers [5], [6] address cooperative

localization of multiple underwater and surface vehicles in a

SLAM framework.

Multi-beacon, range-only navigation for terrestrial vehi-

cles in a SLAM framework is addressed in [11], [12], [27]–

[30] using radio-frequency beacons for range measurement,

in [38] using audible sound, in [35], [47] using wireless

sensor networks, and in [8], [9] with an unspecified range

sensor.

The work reported in this paper extends the results

reported in [13], [14], which report the theory and first

experimental results in synchronous-clock one-way-travel-

time acoustic navigation with an acoustic modem and pre-

cision timing board. These two papers employ a maximum-

likelihood estimator and report field results from shallow-

water sea trials.

III. SYNCHRONOUS-CLOCK ONE-WAY-TRAVEL-TIME

ACOUSTIC NAVIGATION

This section reports an overview of synchronous-clock

one-way-travel-time acoustic navigation followed by the de-

tails of our implementation during sea trials.

A. Methodology

Synchronous-clock one-way-travel-time acoustic naviga-

tion relies on range estimation from the time-of-flight (TOF)

of acoustic data packets propagating between a vehicle and

one or more reference beacons at known locations in order

to provide a reference to the world frame. Between range

measurements, vehicle position is estimated using velocity,

acceleration, and attitude measurements.

Figure 1 depicts a ship-based acoustic modem broadcast-

ing acoustic data packets to multiple underwater vehicles.

The acoustic data packets are transmitted from a known,

but not necessarily stationary, location. Using an underwater

acoustic modem we encode the sender’s geodetic location

and the time-of-launch (TOL) in the acoustic data packet.

The time-of-arrival (TOA) of this acoustic data packet at

the receiver, combined with the decoded TOL and position

information in the acoustic data packet, are used to estimate

range.

Because we calculate TOF from the difference between

the sender’s time and the receiver’s time, it is crucial that the

clocks on the sender and receiver be synchronized throughout
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Fig. 1. Acoustic data packet broadcast from the ship to multiple vehicles.

the dive to within an acceptable tolerance. The time keeping

problem and our solution is discussed in more detail in

Section III-B.

B. OWTT Navigation Implementation

For sea trials, a ship equipped with a global positioning

system (GPS) receiver served as a moving reference beacon.

Both the ship and the vehicle were equipped with micro-

modems designed and built at Woods Hole Oceanographic

Institution (WHOI) for sending and receiving acoustic data

packets through the water column [15]. The Micro-modem

supports 32-byte long binary data acoustic packets, into

which we encode the sender’s location and the TOL of the

acoustic data packet [15]. Using the modem’s synchronous

navigation mode, the modem is configured to transmit acous-

tic data packets beginning at the top of the second, so that

only the name of the top-of-the-second is required to know

the TOL.

Given that all acoustic messages are transmitted at the

top of the second, an additional source of range information

is also available when using the WHOI Micro-modem. The

Micro-modem can be configured so that every acoustic

message received, not just acoustic data packets with specific

OWTT navigation information, generates a TOA message.

Provided that the range from the vehicle to the ship is known

approximately (i.e. to within ∼1500 m) the expected integer

number of seconds in the TOF measurement is known. The

integer seconds can be combined with the fractional seconds

from the TOA message to provide a TOF measurement

without precise knowledge of the sender’s location.

In post-processing, the complete trajectory of the ship is

available, allowing for range measurements from the ship’s

true location as reported by the GPS. In real time, when

range measurements are calculated at the vehicle, the ship’s

position would be estimated using only the ship’s position

information that has been transmitted acoustically to the

vehicle.

For a precision timing board, the vehicle used a PPSBoard,

originally reported in [13], [14]. The PPSBoard uses a

low-power, temperature-compensated precision clock from

SeaScan Inc. to provide precise time keeping. The SeaScan

clock has a maximum drift rate of approximately 1 ms

over 14 hrs. A 1 ms timing error results in a 1.5 m error

in range, which is acceptable for most error tolerances.

Prior to each vehicle dive, the PPSBoard is synchronized to

coordinated universal time (UTC) via GPS. Further details

on the PPSBoard and precision clocks are addressed in [13],

[14].

IV. EXTENDED KALMAN FILTER

This section briefly reviews the formulation of the ex-

tended Kalman filter (EKF) employed in this paper followed

by the details of our implementation.

A. Review of EKF Formulation

The extended Kalman filter is a non-optimal filter that

applies the general approach of the Kalman filter, [26],

to nonlinear plants by linearizing the plant process and

observation models along the trajectory of the system. The

formulation reported here is for a nonlinear plant with dis-

crete observations [20]. Consider the nonlinear plant process

and observation model

ẋ(t) = f(x(t), t) + w(t) (1)

zk = hk(x(tk)) + vk, k = 1, 2, · · · (2)

where x(t) is the state, zk is the measurement at time

step tk, and w(t) ∼ N (0,Q(t)) and vk ∼ N (0,Rk) are

independent zero-mean Gaussian noise.

The EKF framework used herein employs a discrete-

time linearization of the process model, resulting in process

prediction equations

x̂k|k−1 = F kx̂k−1|k−1 + Bkuk−1 (3)

P k|k−1 = F kP k−1|k−1F
⊤
k + Qk (4)

where F k is the discrete-time linear state transition matrix,

Bk is the discrete-time linear input matrix, Qk is the

discrete-time error covariance, and uk−1 is the piecewise-

constant input at time step tk−1.

The measurement update equations for the extended

Kalman filter are

x̂k|k = x̂k|k−1 + Kk(zk − hk(x̂k|k−1)) (5)

P k|k = P k|k−1 − KkHkP k|k−1 (6)

where Hk is the Jacobian of hk at time step tk

Hk =
∂hk(x(tk))

∂x(tk)

∣
∣
∣
∣
x(tk)=x̂k|k−1

(7)

and Kk is the Kalman gain at time step tk, given by

Kk = P k|k−1H
⊤
k (HkP k|k−1H

⊤
k + Rk)

−1. (8)
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B. EKF Implementation

We employ an extended Kalman filter to fuse depth,

gyrocompass, and Doppler velocity measurements from the

vehicle, position and attitude measurements from the ship,

and range measurements between the vehicle and the ship.

The EKF described herein is designed for post-processing

of previous dive data. The current and previous states

of both the ship and the vehicle are available in post-

processing, and are processed simultaneously, which enables

range measurements from both the ship to the vehicle and

the vehicle to the ship to be used in the EKF. In a real-

time implementation, range measurements made at the ship,

i.e. range measurements resulting from acoustic messages

sent from the vehicle to the ship, would not be available

to a vehicle-based state estimator. In addition, a real-time

vehicle-based implementation would only have knowledge

of anachronistic, sub-sampled measurements from the ship

that were transmitted acoustically, resulting in an O(1-5 sec)

delay and a relative paucity of ship-based measurements

available at the vehicle.

We use a depth-weighted average sound velocity when

calculating range from time-of-flight (TOF) information. We

assume that this speed of sound is constant over the range of

depths the vehicle traverses while near the sea floor carrying

out the survey.

C. State Description

The state vector consists of the current vehicle estimate,

xv , the current ship estimate, xs, and a fixed-length queue

of delayed states, recorded at the top of the second, for the

most recent n seconds, denoted xv−i for i ∈ [1, .., n].

x = [xv,xs,xv−1,xs−1, · · · ,xv−n,xs−n]
⊤ (9)

In practice n = 6 for our implementation assuming a

maximum slant range of 6000 m between the vehicle and

the ship.

The current ship state contains xy-position, heading, and

the respective velocities.

xs = [xs, ys, θs, ẋs, ẏs, θ̇s]
⊤ (10)

The current vehicle state contains local-level pose and atti-

tude, as well as body-frame linear and angular velocities

xv = [s⊤,ϕ⊤,υ⊤,ω⊤]⊤ (11)

s =





x

y

z



ϕ =





φ

θ

ψ



υ =





u

v

w



ω =





p

q

r



 (12)

where s is the local-level vehicle pose in the local frame, ϕ

is the local-level vehicle attitude (Euler roll, pitch, heading),

υ is the body-frame linear velocity, and ω is the body-frame

angular velocity.

The delayed states contain only a subset of the elements

in the current state vector—the vehicle’s xyz-position and

ship’s-xy position and heading from a previous state.

xv−i = [x(t− i), y(t− i), z(t− i)]⊤ (13)

xs−i = [xs(t− i), ys(t− i), θs(t− i)]⊤ (14)

Delayed states are necessary for causal processing because

of the time required for an acoustic data packet to propagate

from the sender to the receiver. The TOF measured is thus

between a previous state of the sender and the current state of

the receiver. The modems are configured to initiate acoustic

data packets only at the top-of-the-second, so it is only at

the top-of-the-second that we record delayed states.

D. Process Model

We assume a constant velocity process model for both the

vehicle and the ship

ẋv =







0 0 R(ϕ) 0
0 0 0 J (ϕ)
0 0 0 0
0 0 0 0







xv

︸ ︷︷ ︸

f(xv(t))

+







0 0
0 0
I 0
0 I







︸ ︷︷ ︸

Gv

wv

(15)

ẋs =

[
0 I

0 0

]

︸ ︷︷ ︸

F s

xs +

[
0
I

]

︸ ︷︷ ︸

Gs

ws (16)

where R(ϕ) is the transformation between local-level and

body-frame linear velocities, J (ϕ) is the transformation

between body-frame angular velocities and Euler rates, and

wv ∼ N (0,Qv) and ws ∼ N (0,Qs) are independent zero-

mean Gaussian process noise in the respective acceleration

terms. R(ϕ) and J (ϕ) are found by solving

R(ϕ) = R⊤
ψR⊤

θ R⊤
φ (17)

Rψ =





cosψ sinψ 0
− sinψ cosψ 0

0 0 1





Rθ =





cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ





Rφ =





1 0 0
0 cosφ sinφ
0 − sinφ cosφ





and

ω =





φ̇

0
0



 +Rφ





0

θ̇

0



 +RφRθ





0
0

ψ̇





=





1 0 − sin θ
0 cosφ sinφ cos θ
0 − sinφ cosφ cos θ





︸ ︷︷ ︸

J
−1

ϕ̇ (18)

E. Process Prediction and Augmentation

The process model is linearized and discretized according

to standard methods [7]. The resulting discrete-time lin-

earized vehicle process model is

xvk+1
= F vk

xvk
+ Bvk

uk + wvk
(19)
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where

F vk
= eF xT (20)

Bvk
=

∫ tk+1

tk

eF x(tk+1−τ)dτ, (21)

F x is the Jacobian with respect to xv

F x =
∂f(xv(t))

∂xv(t)

∣
∣
∣
∣
xv(t)=xv(tk)

, (22)

uk is a constant resulting from the linearization that can be

treated as a piecewise-constant input

uk = f(xvk
) − F xxvk

, (23)

and T is the sampling period. The discretized vehicle process

noise, wvk
, is zero-mean Gaussian,

wvk
∼ N (0,Qvk

) (24)

Qvk
=

∫ T

0

eF x(T−τ)GQvG
⊤eF

⊤
x (T−τ)dτ (25)

The discrete-time linearized process model for the ship is

xsk+1
= F sk

xsk
+ wsk

(26)

F sk
= eFsT =

[
I IT

0 I

]

(27)

where F s is defined in (16). The discretized process noise

for the ship, wsk
, is zero-mean Gaussian,

wsk
∼ N (0,Qsk

) (28)

where the covariance matrix simplifies to

Qsk
=

[
1
3T

3 1
2T

2

1
2T

2 T

]

Qs (29)

due to the structure of F sk
.

The complete state process prediction is written in terms

of the full state vector of the system defined in (9). Com-

bining the discrete-time linearized vehicle and ship process

models (19) and (26), and substituting them into the discrete-

time linearized Kalman process prediction equation (3), the

complete state process prediction becomes

x̂k+1|k =










F vk
0 0 · · · 0

0 F sk
0 · · · 0

0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I










x̂k|k+










Bvk
uk

0
0
...

0










.

(30)

Note that the delayed states do not change during this process

update.

A modified process prediction is necessary at the top of

the second when state augmentation is done in concert with

the process prediction. During this modified prediction step,

in addition to predicting forward the current vehicle state, a

copy of the relevant elements of the current state (before the

prediction) is added to the state vector while simultaneously

marginalizing out the oldest delayed state, i.e. (xv−n,xs−n)

x̂k+1|k =













F vk
0 0 · · · 0 0 0

0 F sk
0 · · · 0 0 0

Jv 0 0 · · · 0 0 0
0 Js 0 · · · 0 0 0
0 0 I · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · I 0 0














x̂k|k+














Bvk
uk

0
0
0
0
...

0














(31)

where Jv and Js are defined such that only the relevant

elements of the current ship and vehicle states are recorded.

[
I 0 0 0

]

︸ ︷︷ ︸

Jv







(x, y, z)⊤

(φ, θ, ψ)⊤

(u, v, w)⊤

(p, q, r)⊤







︸ ︷︷ ︸

xv

=





x

y

z



 (32)

[
I 0

]

︸ ︷︷ ︸

Js

[
(xs, ys, θs)

⊤

(ẋs, ẏs, θ̇s)
⊤

]

︸ ︷︷ ︸

xs

=





xs
ys
θs



 (33)

F. Measurement Model and Update

The range measurement from the ship’s modem to the

vehicle’s modem is a nonlinear function of current vehicle

state and a delayed ship state. For simplicity of notation,

we assume here that the modems are located at the origin

of their respective local frames and that the ship’s modem

has a depth of 0. We define a combined pose vector xp that

contains xvp
, the current vehicle pose (xyz-position), and

xsp
, the delayed ship pose (xy-position, assuming a depth

of 0)

xp =

[
xvp

xsp

]

=











x

y

z

xs
ys
0











(34)

where xvp
is a subset of the current vehicle state and xsp

is a subset of the delayed ship state.

The measurement equation for the ship to vehicle range

in terms of xp is

zk =
√

(xvp
− xsp

)⊤(xvp
− xsp

) + vk (35)

where vk ∼ N (0, Rk). The measurement covariance Rk,

shown here in units of distance, represents the imprecision

in timing multiplied by the speed of sound. We can rewrite

(35) in matrix notation as

zk = (x⊤
p M⊤Mxp)

1
2 + vk (36)

where M =
[

I −I
]
.
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The Jacobian of the measurement, Hk, with respect to xp
is then

Hk =
∂z(xp)

∂xp

∣
∣
∣
∣
xp=x̂pk|k−1

= (x̂⊤
pk|k−1

M⊤Mx̂pk|k−1
)−

1
2 x̂

⊤
pk|k−1

M⊤M . (37)

Substituting the measurement Jacobian into (5) and (8), the

measurement update equation for this implementation of the

extended Kalman filter becomes

x̂pk|k
= x̂pk|k−1

+ Kk(zk − (x̂⊤
pk|k−1

M⊤Mx̂pk|k−1
)

1
2 )

(38)

Kk = P k|k−1H
⊤
k (HkP k|k−1H

⊤
k +Rk)

−1. (39)

Measurements from additional navigation sensors, e.g.

depth sensor, gyrocompass, and Doppler velocity log, are

processed asynchronously using standard observation mod-

els.

G. Initialization

Because the EKF algorithm performs linearization along

the system trajectories, an initial state estimate too far from

the actual state could cause the estimate to be unstable. In

our implementation we initialize the EKF with a maximum-

likelihood estimate (MLE) of the vehicle state and covari-

ance. For this implementation of the EKF, the maximum-

likelihood estimation is performed over the entire data set

as previously described in [14]. For implementation in real-

time, a maximum-likelihood estimate would be calculated

over the first few range measurements and used to initialize

the EKF.

V. FIELD RESULTS

Sea trials were conducted during a cruise on the R/V

Knorr to the southern Mid-Atlantic Ridge in January 2008.

The goal of the cruise was to test and evaluate engineering

methods for locating and mapping new hydrothermal vents

on the southern Mid-Atlantic Ridge (SMAR).

A. Site Description

The southern Mid-Atlantic Ridge is formed by a divergent

boundary between the South American Plate and the African

Plate that is presently spreading at about 2.5 cm per year

[21]. Our operations were conducted on a section of the

SMAR to the north of the sites where active hydrothermal

vents were first discovered by a combination of deep-tow and

deep-submergence technologies culminating in photography

by ABE [21] and subsequently sampled by the ROV Marum

Quest [22]. The survey site, shown in Figure 2, is located

near 04◦ S 12◦ W in a deep non-transform discontinuity

whose maximum depth exceeds 4000 m [21].

B. Experimental Setup

The data presented here was collected by the autonomous

underwater vehicle (AUV) Puma, developed at Woods Hole

Oceanographic Institution [45]. Puma is a 5000 m rated

AUV equipped with the following navigation sensors: a

Paroscientific pressure depth sensor, an OCTANS fiber-optic

gyrocompass for attitude and attitude rate measurements,

and a 300 kHz RDI Doppler velocity log (DVL) for ve-

locity measurements. The vehicle is also equipped with a

WHOI acoustic modem [15] and ITC-3013 transducer, which

provide low-bandwidth data communication and two-way

acoustic ranging. For these experiments the modem was

equipped with a precision clock, developed by the authors

[13], [14], which enables the micro-modem to measure one-

way travel times for all received acoustic data packets.

(a) (b)

(c)

Fig. 2. (a) R/V Knorr (b) AUV Puma (c) The survey site is shown by the
red box southeast of Ascension island on the southern Mid-Atlantic Ridge.

The R/V Knorr is a 279 ft oceanographic research vessel

operated by WHOI. The ship has two azimuthing stern

thrusters, a retractable azimuthing bow thruster and dynamic

positioning (DP) capability enabling it to hold station and

maneuver in any direction [24]. For the ship’s position

information we used the C-Nav 2000 Real-Time GIPSY

(RTG) GPS with a reported horizontal accuracy of 10 cm

[10]. An Applanix POS/MV-320 provided heading, pitch,

and roll data with a reported accuracy of 0.02◦ [2]. The

ship is also equipped with a WHOI micro-modem [15] and

an ITC-3013 transducer for sending and receiving acoustic

data packets. Figure 2 shows the R/V Knorr, the AUV Puma

and the survey area in the red box southeast of Ascension

Island.

The vehicle was programmed to conduct a survey com-

prised of 12 tracklines approximately 65 meters apart and

700 meters long while maintaining an altitude of 200 m.

While the vehicle was surveying, we repositioned the R/V

Knorr around the survey site in a diamond shaped pattern,

holding station at each apex. This was done to provide range

fixes to the vehicle from different locations for increased

observability. During these field trials the vehicle initiated

all acoustic traffic. This conservative approach ensured that

broadcasts of the vehicle’s state and health would not be
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Fig. 4. East-West and North-South components of the error between the
EKF-estimated vehicle position and the LBL vehicle position. Errors are
calculated over the entire trackline for a range of OCTANS heading offsets.

reliant on the vehicle first successfully receiving a data

request from the ship. Acoustic data packets were sent from

the vehicle to the ship and requested by the vehicle from the

ship every 30 seconds.

C. Results

The integrity of the acoustic channel varied over the course

of the dive. While the vehicle was surveying near the bottom,

on average one acoustic data packet from which we could

calculate range was successfully received every 90 seconds.

Figure 3 shows an XY plot of the vehicle trajectory as

estimated by the EKF compared with the vehicle position

fixes from LBL. LBL fixes were largely unavailable on

tracklines where the vehicle is moving to the East, most

likely due to shadowing of the transducer by the vehicle

frame at this vehicle heading.

Doppler attitude measurements were not used by the EKF,

but we used them in post-processing in comparison to the

OCTANS pitch and roll measurements to calibrate the offset

between these two sensors. The means of the differences in

pitch and roll measurements, -3.24◦ and 0.64◦ respectively,

are accounted for as mounting offsets in the OCTANS. The

OCTANS heading offset was estimated by analyzing the

mean and standard deviation of the error between the EKF-

estimated vehicle position and the LBL vehicle position over

the entire trackline for various OCTANS heading offsets,

shown in Figure 4, assuming the previously stated roll

and pitch offsets. Given these data, a 3.5◦ heading offset

in the gyrocompass was assumed, resulting in a standard

deviation of 10.2 m in both the East-West and the North-

South directions and means between -10.3 m and -13.5 m.

These errors compare favorably with LBL, which has 1-

10 m typical accuracy. However, the non-zero mean indicates

the presence of a systematic errors that are not accounted for

in the reported sensor calibrations. The authors are currently

pursuing a more rigorous evaluation of sensor calibration.

VI. CONCLUSIONS

This paper reports the first results from deep-water sea tri-

als evaluating a synchronous-clock one-way-travel-time nav-

igation method and comparing the results to an independent

navigation source. An extended Kalman filter framework is

described for combining vehicle navigation sensor data, ship

navigation sensor data, and one-travel-time data between the

vehicle and the ship for estimating the vehicle’s trajectory

in post-processing. Future research in this area will focus on

the implementation of this navigation method in real-time

and the development of a decentralized, recursive estimation

framework to support multi-vehicle navigation with inter-

vehicle ranging.
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