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Abstract— In this paper, we study the problem of door-
opening by using modular reconfigurable robot (MRR). Based
on multiple working mode control of the joint modules of
the MRR, we first propose an online mode-switch strategy
for all joint modules so that each joint module can be easily
determined when it should be switched between active working
mode and passive working mode during the door-opening
process. Based on the proposed mode-switch strategy, a hybrid
control scheme is proposed for door-opening. Simulation results
are used to demonstrate the validity and efficiency of the
proposed mode-switch strategy and the hybrid control scheme.

Index Terms - Modular reconfigurable robot, door-opening,
mode switch, hybrid control.

I. INTRODUCTION
Modular reconfigurable robots (MRRs) have been exten-

sively investigated in the robotics field [1], [2], [3]. From the
mechanism point of view, an MRR consists of a set of similar
or identical standardized modules. Through assembling these
modules in various configurations, MRRs can perform differ-
ent tasks flexibly with significant application potential [4]. As
a result, control of MRRs becomes a promising research area
in robotics. For robot practical applications, door-opening
control, as many other control tasks for robots working in
uncontrolled environments or human environments [5], is
still challenging. In the literature of door-opening control,
much research effort has been made, and most of which is
focused on mobile robot manipulators. Yuta and Nagatani
presented general approaches of the door-opening strategy
[6], [7], where they applied the concept of action primitives
to door-opening. Later, Petersson et al. proposed a high-level
control approach, which used the off-the-shelf algorithms of
force/torque control, for door-opening by mobile robots [9].
Kahtib [10] and Hanebeck et al. [11] proposed simultaneous
control of both the mobile base and the robot arm. Ulyanov
et al. [12] proposed fuzzy neural network strategy FNN
and fuzzy control approaches for an intelligent mobile robot
based on GA. For traditional serial robots, Slotine et al.
proposed a control method of following the path of least
resistance [8] to solve the problem of door-opening with
a simple control algorithm. This control method, however,
requires high resolution joint velocity measurements. Com-
pared with literatures applied to either mobile robots with a
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fixed-configurable robotic arm, only a few researchers have
studied the door-opening cases of using reconfigurable robots
[13]. MRRs are particularly suitable for mobile ground and
space applications as they can be conveniently mounted
on any mobile platform and allow on-site changes of con-
figuration, etc. The combination of mobile platforms with
MRRs will lead to enhanced adaptability, flexibility and re-
formability of the integrated mobile manipulators.

In this paper, with respect to the multi-mode feature
of MRRs’ joint modules, we first propose a mode switch
strategy. Based on this strategy, a hybrid control scheme is
subsequently proposed, in which three control approaches are
applied to joint modules working in three different modes.
Specifically, for the joint modules working in the passive
mode, a feed forward torque control approach is applied to
compensate the friction of the joints to ensure they move
freely; for the joint modules working in the defined current-
active mode, a decomposition-based control approach is
applied; and for the joint modules working in the defined
post-active mode, a feedback position control approach is
applied. With the proposed control scheme, the position
errors of each active joint and the tracking errors of the door
can be guaranteed to asymptotically converge to zero.

The rest of paper is organized as follows. Section II briefly
introduces the structure of the MRR, and its dynamic model.
Section III addresses the working-mode-switch strategy and
the hybrid control methodology. Section IV shows simulation
results, and Section V offers conclusions.

II. DYNAMIC MODEL OF THE MRR

A picture of one MRR joint module developed in our
laboratory is depicted on Fig. 1. Each joint module consists
of a brushless DC motor, an encoder, a brake, homing and
limit sensors and a harmonic drive with an integrated torque
sensor and amplifier [15]. For the door-opening control

Fig. 1. One MRR module

problem studied in this paper, we assume that the MRR’s
end-effector has already grasped the door knob. Hence, the
MRR is constrained during door-opening process. Referring
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to [14] and [17], the dynamic equation of an MRR with n-
joint modules can be derived as:

M(q)q̈+C(q, q̇)q̇+ fd(q, q̇)+Γ
−1

τs = τ + f (1)

where q = [q1,q2, ...,qn]T ∈ Rn denotes generalized coordi-
nates; qi, q̇i, q̈i represent the rotation angle, angular velocity
and angular acceleration of the ith joint, respectively; M ∈
Rn×n denotes the inertia matrix; C(q, q̇)q̇ ∈ Rn is a vector
containing Coriolis, centrifugal forces; fd(q, q̇) ∈ Rn is a
vector representing frictional force; τs , [τs1,τs2, ...,τsn]T ∈
Rn and τsi denotes the coupling torque at the ith torque sensor
location; Γ , diag{γ1,γ2, ...,γn} ∈ Rn×n and γi denotes the
reduction radio of the ith speed reducer (γi ≥ 1); τ ∈ Rn is
the actuation input; and f ∈ Rn is the vector of constraint
forces in the joint space. Here, referring to [14], fd has the
following expression,

fdi , bmiγiq̇i +( fci + fsiexp(− fτiq̇2
i ))sgn(q̇i) (2)

where Imi denotes the moment of inertia of the ith rotor
about the axis of rotation; bmi, fci, fsi , fτi denote the vicious
frictional coefficient, the Coulomb friction-related parameter,
the static friction-related parameter, a positive parameter
corresponding to the Stribeck effect, respectively. The sign
function is defined as

sgn(q̇i) =

 1 f or q̇i > 0
0 f or q̇i = 0
−1 f or q̇i < 0

(3)

Let ϕ(q) ∈ Rm represent the constraint function, which
include a set of m independent equations, we have

ϕ(q) = 0,
∂ϕ

∂q
q̇ = Jc(q)q̇ = 0 (4)

The function ϕ(q) is twice continuous differentiable [18]
with a Jacobian matrix denoted by Jc(q) ∈ Rm×n. The con-
straint force f can be expressed in terms of a generalized
multiplier λ ∈ Rm by the following equation.

f = JT
c (q)λ (5)

As a result of accumulated research efforts [20], it has been
recognized that there exists a proper partition q1 ∈ Rn−m, and
q2 ∈ Rm, such that q = [q1 q2]T . From (4),

Jc(q) =
[

Jc1(q) Jc2(q)
]
=
[

∂ϕ(q)
∂q1

∂ϕ(q)
∂q2

]
(6)

From the implicit function theorem, the constraint equation
(4) can always be expressed explicitly as in [21]

q2 = σ(q1) (7)

This enables one to write

q̇ = L(q)q̇1 (8)

L(q) =
[

In−m

−J−1
c2 (q)Jc1(q)

]
(9)

where In−m ∈ R(n−m)×(n−m) is an identity matrix. It is then
easy to derive

LT (q)JT
c (q) = 0 (10)

Substituting (5) and (8) into (1), we have

M(q)L(q)q̈1 +M(q)L̇(q)q̇1 +C(q, q̇)L(q)q̇1 + fd(q, q̇)

+Γ
−1

τs = τ + JT
c (q)λ

(11)

Left multiplying LT (q) at both sides of (11) yields

M1(q1)q̈1 +C1(q1, q̇1)q̇1 +LT (q) fd(q, q̇)+Γ
−1
1 τs

= LT (q)τ
(12)

where
M1(q1) , LT (q)M(q)L(q) (13)

C1(q1, q̇1) , LT (q)M(q)L̇(q)+LT (q)C(q, q̇)L(q) (14)

Γ
−1
1 , LT (q)Γ−1

1 (15)

III. CONTROL DESIGN

For the door-opening task performed by an MRR consist-
ing of only rotary joint modules, the mode-switch strategy
for each joint module appears significantly critical because
it determines the success and efficiency of door-opening
control to a great extent. In this section, we first address
the problem of unknown parameter estimation, which is
necessary for the subsequent mode-switch strategy. We then
propose a mode-switch strategy and the control laws used in
the proposed hybrid control scheme, and finally provide the
corresponding stability proof.

A. Unknown Parameter Estimation

In order to determine when the working mode of each joint
should be switched from passive to active or from active to
passive, a mode switch strategy is required. And we need to
estimate the door radius, r, the base position of the MRR,
(x1,y1), and the knob height with respect to the base of
the MRR, h. Fig. 2 shows the initial configuration of the
MRR, i.e., C1, where θi( j) denote the rotation angle of the
ith joint at the jth configuration. The reference frame is set
as shown in Fig. 2. The origin of the reference frame is
set as the intersection point of the hinge and the horizontal
plane that crosses the rotation axis of the first joint. Since the

Fig. 2. The initial configuration of the MRR (5-joint case)

MRR end-effector has already firmly grasped the knob. In the
estimation process, we apply a small torque only to the 2nd

joint to keep the door closed until the unknown parameters
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are estimated. At the same time, the other joints are set in
the passive working mode.

Let (x1e,y1e,z1e) denote the tip position of the end-
effector in the reference frame, li denote the length of the
ith link, qi denote the rotation angle of the ith joint. From
Fig. 2, with respect to the door radius, r, we have

xe(t)2 + ye(t)2 = r2 (16)

ze(t) = h (17)

With respect to the reference frame shown in Fig. 2 and
coordinate transfer, we derive

xe(t) = x1−

[
n−1

∑
i=2

lisin

(
i

∑
j=2

θ j(t)

)]
cosθ1(t)

−lnsin

(
n−1

∑
i=2

θi(t)

)
cos[θ1(t)+θn(t)]

(18)

ye(t) = y1− l1 +
n−1

∑
i=2

licos

(
i

∑
j=2

θ j(t)

)
(19)

ze(t) =−

[
n−1

∑
i=2

lisin

(
i

∑
j=2

θ j(t)

)]
sinθ1(t)

−lnsin

(
n−2

∑
i=2

θi(t)

)
sin[θ1(t)+θn(t)]

(20)

For simplicity, let us introduce the two function definitions
Lx(t) and Ly(t),

Lx(t) ,−

[
n−1

∑
i=2

lisin

(
i

∑
j=2

θ j(t)

)]
cosθ1(t)

−lnsin

(
n−1

∑
i=2

θi(t)

)
cos[θ1(t)+θn(t)]

Ly(t) ,−l1 +
n−1

∑
i=2

licos

(
i

∑
j=2

θ j(t)

)
Substituting Lx(t), Ly(t) into (18),(19) and the resulted
equations into (16) and rearranging each term, we have

L2
x(t)+L2

y(t) = r2− x2
1− y2

1−2x1Lx(t)−2y1Ly(t) (21)

Let us define

P =

(
1 2Lx(t) 2Ly(t)
...

...
...

)
, W =

(
L2

x(t)+L2
y(t)

...

)
,

λ =

 r2− x2
1− y2

1
−x1
−y1



Equation (21) can be re-written as

W = Pλ (22)

A straightforward least squares approximation is then per-
formed.

λ = (PT P)−1PTW (23)

where λ is used to solve for the estimated parameters r, x1,
and y1. As long as x1 and h are estimated, the desired rotation
angle of the 1st joint can be calculated as shown in Fig. 2.

θ1(c) = tan−1(
h
xe

)

At that moment, all the links of the MRR are located in the
same plane.

B. Mode-Switch Strategy

Based on the parameters estimated, we propose a mode-
switch strategy starting from the configuration at the end
of parameter estimation, with two assumptions: (i) the door-
opening direction is known (right-side open or left-side open)
and; (ii) the robot base is located within the applicable
door-opening area, which can be calculated from (18) and
(19). The mode-switch strategy of an n-joint MRR can be
described as follows: (i) activate and rotate the 1st joint while
keeping the other joints passive, until 1(c) is reached, as
shown in Fig. 2; (ii) keep the rotation angle of the 1st joint
unchanged, activate and rotate the ith joint (i starts from 2)
while keeping the jth joint (n≥ j > i) passive, until the hinge,
the end-effector and the ith joint are located in the same
straight line, as shown in Fig. 3; (iii) activate and rotate the
next joint (i+1)th, keep the rotation angle of the ith joint
unchanged while setting the following joints passive, until
the hinge, the end-effector and the (i+1)th joint are located
in the same straight line; (iv) repeat step (iii), until the door
is opened. Following this strategy, after step (i), all the joints
and links are located in the same plane and the moment of
each joint being switch from passive to active is easy to
be calculated. This is the unique advantage of the proposed
mode-switch strategy. Here we give the solution to a 5-joint
case. For the 2nd joint, when the 1st joint reaches the rotation
angle of θ1(c), it is set in the active mode. For the 3rd joint,
when the hinge, the end-effector and the 2nd joint are located
in the same straight line, i.e., C2 of Fig. 3, the 3rd joint is set
in the active mode. At that moment, from Fig. 3, we have
x2 = x1, y2 = y1− l1.

tanα1 =
x1

y1− l1
(24)
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Fig. 3. Top-view of different MRR configurations during door-opening
process (5-joint case)

θ3(a) denotes the rotation angle of the 3rd joint when it is
set in the active mode.

θ3(a) = cos−1

 (
√

x2
2 + y2

2− r/cosθ1(c))2− (l3 + l4)2− l2
2

2(l3 + l4)l2


Let θ2(c) denotes the rotation angle of the 2nd joint at the
above moment, we have

θ2(c) = π− tan−1 x2

y2
+π−β1− (π−θ3(a))

= π +θ3(a)− tan−1 x2

y2
−β1

(25)

where

β1 = cos−1

 (l3 + l4)2− l2
2 +(

√
x2

1 + y2
2− r/cosθ1(c))2

2(l3 + l4)(
√

x2
1 + y2

2− r/cosθ1(c))


Following similar procedure, we can calculate θ4(a) and θ3(c).

θ4(a) = cos−1

 l2
3 + l2

4 −
(√

x2
3 + y2

3− r/cosθ1(c)

)2

2l3l4

 (26)

θ3(c) = π− (θ4(a)−β2)− γ1 (27)

where

γ1 = cos−1

x2
3 + y2

3 + l2
2 − x2

2− y2
2

2l2
√

x2
3 + y2

3

 (28)

β2 = cos−1

 l2
4 +
(√

x2
3 + y2

3− r/cosθ1(c)

)2
− l2

3

2l4
(√

x2
3 + y2

3− r/cosθ1(c)

)2

 (29)

The basic idea of this approach is to keep as many links
as possible aligned and set the joints in the active mode
one by one in sequence so that the torque required at each
active joint is much smaller and the door opening angle,
α3, is much bigger than those achieved in [13]. In addition,
the desired trajectory of each joint is much easier to be
calculated, compared with using traditional methods to solve
high-order polynomials of robot inverse kinematics.

C. Control Design

From the proposed mode-switch strategy, we may catego-
rize the modes of MRR joints in three types: passive mode,
current-active mode and post-active mode. Here the passive
mode refers to the mode in which a joint rotates freely with
friction compensation; the current-active mode refers to the
mode, which starts from the joint being activated until the
following joint being activated; and the post-active mode
refers to the mode, in which the rotation angle of the joint
keeps unchanged. With respect to these three modes, a hybrid
control scheme is proposed. For the joints work in the passive
mode, friction must be compensated so that the output shaft
of the joints can be moved freely. Referring to [13], based
on the motion trend and the angular velocity of the passive
joints, a feedforward torque can be applied to compensate
the friction. Hence, the control law for the joints working in
the passive mode can be expressed as follows.

τi =− fmiexp(− fτiq̇i
2)sgn(q̇i)−bmiγiq̇i i = 2, ...n (30)

where fmi represents the constant part of the friction and
is less than the static friction fsi . Since the magnitude of
constant friction part often dominates the overall magnitude
of the total friction at lower speed, by applying τi expressed
in (30) can thus substantially compensate the friction. For
the joints working in the post-active mode, we employ the
technique of position control, for example, a PD feedback
control method. Define the position and velocity errors as

e = q−qd , ė = q̇− q̇d (31)

The control law is

τi = kiei + kd ėi i = 1...n (32)
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where ki and kd are constant proportional and derivative
control gains. For the joints working in the current-active
mode, the objective of the control is that given a desired joint
trajectory qd to determine a control law such that q→ qd as
t→∞. Two vectors used in the control design are defined as

u = qd−Λe (33)

r = ė+Λe (34)

where Λ ∈ Rn×n is a positive constant matrix. Let
B = diag{bmiγi}, fc = [ fc1... fcn]T , fs = [ fs1... fsn]T , fτ =
[ fτ1... fτn]T , B̂, f̂c, f̂s, f̂τ denote the nominal values of B,
fc, fs, fτ , respectively. Define

D(q̇) =
[

q̇ sgn(q̇) ρsgn(q̇) − f̂sq̇2ρsgn(q̇)
]

(35)

where ρ , exp(− f̂τ q̇2).

f̃ =
[

B̂−B f̂c− fc f̂s− fs f̂τ − fτ

]T (36)

In order to ensure the active joints follow their corresponding
desired trajectories and satisfy the constraints, the control
laws are defined as,

τ = τ0 +D(q̇)up +Γ
−1

τs− JT
c (q)λ d−Krr (37)

where λ d denotes the desired constraint force;

τ0 = M(q)u̇+C(q, q̇)u+ B̂q̇+( f̂c + f̂sρ))sgn(q̇) (38)

up =−k
∫ t

0
D(q̇)T rdτ (39)

Here up is designed to compensate for the effect of the
constant parametric uncertainty f̃ . Kr ∈ Rn×n is a constant
gain matrix.

Substitute control law (37) into (1), we have the closed-
loop equation as

M(q)ṙ +C(q, q̇)r = D(q̇)( f̃ +up)+ JT
c (q)(λ −λ

d)
−Krr

(40)

Left multiplying LT (q) on both sides of (40), from (11), we
derive the reduced equation, which is similar to (12),

M1(q1)ṙ1 +C1(q1, q̇1)r1 = LT (q)D(q̇)( f̃ +up)

−LT (q)KrL(q)r1 (41)

Theorem 1: Given the system (12), the tracking error asymp-
totically converges to zero under the control law defined by
(37∼39).
Proof : The Lyapunov function candidate is defined as

V =
1
2

r1T M1r1 +
1
2

kξ
T

ξ (42)

where
ξ =

1
k

f̃ −
∫ t

0
D(q̇)T rdτ (43)

Since k and f̃ are both constant, we have

ξ̇ =−D(q̇)T r (44)

Differentiating (42) yields,

V̇ =
1
2

r1T Ṁ1r1 + r1T M1ṙ1 + kξ
T

ξ̇ (45)

Combining (41), (43), (44), we have

V̇ =
1
2

r1T Ṁ1r1 + r1T (−C1(q1, q̇1)r1 +LT (q)D(q̇)( f̃ +up)

−LT (q)KrL(q)r1)− kξ
T D(q̇)T r

(46)

Since 1
2 Ṁ1−C1(q1, q̇1) is a skew-symmetric matrix [22] and

r = L(q)r1, we have

V̇ = r1T (LT (q)D(q̇)( f̃ +up)−LT (q)KrL(q)r1)− krT D(q̇)ξ

= r1T LT (q)D(q̇)( f̃ +up)− r1T LT (q)D(q̇)( f̃ − k
∫ t

0
D(q̇)T rdτ)

− r1T LT (q)KrL(q)r1

= r1T LT (q)D(q̇)( f̃ − k
∫ t

0
D(q̇)T rdτ)− r1T LT (q)D(q̇)( f̃

− k
∫ t

0
D(q̇)T rdτ)− r1T LT (q)KrL(q)r1

=−r1T LT (q)KrL(q)r1

(47)

Since V ≥ 0, V̇ < 0, from (42) and (47), it is evident
‖r1‖ converges exponentially to zero, i.e., e→ 0 as t → ∞.
Also, q2d = σ(q1d), which implies q2 → q2d , if q1 → q1d .
Therefore, using control law (37), (38), (39), the closed-
loop system is globally asymptotically stable in the sense
that q→ qd , as t→ ∞.

IV. SIMULATION RESULTS

In this section, we present simulation results to demon-
strate the validity and effectiveness of the proposed control
scheme. This simulation is based on the MRR with four joint
modules (the forth joint module has two degree-of-freedoms)
that are designed and assembled in the Systems and Control
Lab at Ryerson University. Fig. 4 shows the MRR joint
angles trajectories, the desired trajectories, as will as the
moments where the mode-switch happens. The MRR joints
tracking errors are shown in Fig. 5. From these results, it is
clear that the mode-switch strategy and the hybrid controller
make the MRR track the desired position trajectories and
satisfy the constraints.

958



Fig. 4. MRR joint trajectories

Fig. 5. Tracking errors

V. CONCLUSIONS

Using the modular reconfigurable robot (MRR) to open
a door is a challenging but meaningful task, because of the
flexibility and versatility of MRRs. In this paper, for door-
opening using MRRs, we propose a mode-switch strategy
and a hybrid control method with respect to the joints work-
ing in different modes. The efficiency of the proposed mode-
switch strategy and control methodology are demonstrated
through simulation results.
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