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Abstract— Among the still existing issues in bilateral tele-
operation, there is the inability by force-feedback control
schemes to guarantee delay-independent stability and achieve
both position coordination and force reflection independently of
the remote environmental dynamics. Particularly, most bilateral
control frameworks fail to address position coordination when
interacting with rigid environments. In this paper we present
a novel control strategy that aims to passively compensate for
position errors that arise during contact tasks and, in general,
achieve stability and transparency when alternating between
unobstructed (free) and obstructed (contact) environments.
The proposed control framework exploits the wave impedance
independent passivity property of the scattering transformation
to guarantee stability and transparency by gradually switching
between a low wave impedance, ideal for free motion, and a
sufficiently large impedance, suitable for contact tasks. The
validity of the control framework is verified through simulations
and experiments on a pair of nonlinear robots.

I. INTRODUCTION

In principle, a teleoperation system is a dual robotic set

that enables a human operator to manipulate, sense, and

physically interact with a distant environment. In such sys-

tem, the desired manipulation or task is performed remotely

by a slave robot which tracks the motion of a locally

human-controlled master robot. The master and slave robot

are coupled through a communication channel that, ideally,

should be transparent to the operator, meaning that he or she

should feel as if being directly active in the remote location

[1]. This is generally achieved by transmitting remote slave

information (e.g., position, velocity, and force) to the master

robot in what is called a bilateral connection. Unfortunately,

bilateral configurations can potentially yield a teleoperation

system unstable due to unreliabilities (e.g., delays [2] and

data losses [3]) experienced on the communication channel.

Stability issues induced by time delays on bilateral teleop-

erators have been studied since the mid 1960s [2]. However,

it was not until the late 1980s that passivity-based control

and scattering theory, derived from network theory, combined

to guarantee the stability of force feedback teleoperators

independently of any sized constant delay [4]. Ever since,

the scattering and passivity formulation, extended later with

the notion of wave variables [5], has arguably become one of

the fundamental control approaches for stabilizing bilateral

teleoperators (refer to [6] for a review on bilateral control

frameworks).
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Aside from stability issues, time delays are also known

to affect transparency. According to [1], transparency is

achieved when the transmitted impedance to the operator

equals the environmental impedance. An alternative interpre-

tation is given in [7], where a system is said to be transparent

if the position of the slave equals the master’s position and

the human force is equal to the net environmental force.

Based on either formulation, considerable research efforts

have been aimed to conciliate transparency-based objectives

while still enforcing time delay independent stability (see

[1], [7]–[12] for examples and further discussion).

Despite the fact that most force-feedback frameworks for

bilateral teleoperation are designed to achieve both stability

and transparency, their results generally depends on the

dynamics of the environment which more than often is un-

known or, at least, variable. Precisely, one of the still preva-

lent issues in bilateral frameworks is the failure to adjust

transparency when transitioning from an unobstructed (free

movement) to an obstructed (rigid contact) environment,

and vice versa. For instance, in wave-based approaches,

transparency highly depends on the wave impedance: a

control parameter specified by the designer [13]. For free

motion, the ideal wave impedance should be infinitesimal

such that the increase of inertia induced by the delay is

barely perceived by the operator; whereas for rigid envi-

ronments, the desired wave impedance should be infinitely

large such that a stiff environment is felt by the operator

[14]. Compromising the value of the wave impedance to best

satisfy both scenarios would lead to a system that feels rather

sluggish in free motion with substantial position errors (also

referenced as position drifts [15]) when interacting with rigid

environments. A similar behavior is also experienced when

tuning traditional proportional-derivative (PD) architectures

where, in general, control gains are limited by stability

constrains and consequently, position errors arise while in

contact motion [11], [15], [16].

Time-varying compensation of position errors during con-

tact tasks has been previously addressed in [17] via a wave-

based scheme that introduces the notion of a variable rest

length. The role of the variable rest length is to modify the

desired target position according to the position drift and

applied forces such that the error between the master and

slave position converges to zero. A similar approach based on

the variable rest length is presented in [18], where an energy

tank replaces the dissipative element in the wave scattering

transformation for impedance matching such that the energy

is stored rather than dissipated. The stored energy is then

used to adequately change the variable rest length without
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relying on the operator’s energy as in [17]. In both of the

above methods, the communication delay must be known in

order to perform the position compensation.

This paper presents now a novel control strategy for

position compensation during contact tasks where the wave

impedance independent passivity property in the scattering

transformation is exploited. The proposed control framework

builds on the wave-based approach in [19] and introduces a

time-varying wave impedance for transparency compensation

when transitioning between unobstructed and obstructed en-

vironments. An akin strategy has been previously presented

in [20], where the wave impedance alternates between two

discrete values according to the current task, given that the

mechanical and control systems dissipate enough energy to

perform the transition and preserve passivity. In contrast,

our proposed control framework gradually changes the wave

impedance, allowing for passive and smooth switches be-

tween arbitrary small impedances (suitable for free envi-

ronments) and sufficiently large impedances (ideal for rigid

contact). Simulation and experimental results in a pair of

nonlinear robots validate the proposed control and compen-

sation strategy.

II. PROBLEM FORMULATION

A. Modeling the Teleoperators

We address the task of remotely controlling an n-degree-

of-freedom (DOF) slave robot coupled bilaterally to an n-

DOF master robot through a time delayed communication

channel. The master and slave teleoperator have nonlinear

Euler-Lagrangian dynamics given by1

Mm(qm)q̈m + Cm(qm, q̇m)q̇m + gm(qm) =fm + τ̄m

Ms(qs)q̈s + Cs(qs, q̇s)q̇s + gs(qs) =fs + τ̄ s (1)

where qi = qi(t) ∈ ℜn are the generalized coordinates,

Mi(qi) ∈ ℜn×n are the positive definite inertia matrices,

Ci(qi, q̇i) ∈ ℜn×n are the centrifugal and Coriolis matrices,

gi(qi) are the gravitational forces, fi = fi(t) ∈ ℜn are the

human and environmental forces, and τ̄ i = τ̄ i(t) ∈ ℜn are

the control inputs for the master (i = m) and slave robots

(i = s). Due to its Euler-Lagrangian dynamic structure, the

jkth element of Ci(qi, q̇i) is given by

Cjk
i (qi, q̇i) =

n
∑

l=1

1

2

[

∂M jk
i

∂ql
i

+
∂M jl

i

∂qk
i

−
∂Mkl

i

∂ql
i

]

q̇l
i (2)

and therefore, (1) satisfies the well known passivity property

Ṁi(qi) = Ci(qi, q̇i) + CT
i (qi, q̇i). (3)

B. Control Objectives

Our control goal is to design the inputs τ̄ i such that

stability and transparency of the close-loop system in (1) are

achieved. Explicitly, we would like τ̄ i to enforce position

coordination for finite delays, i.e.,

qm(t) − qs(t) → 0 (4)

1In what follows, we will omit time dependence of signals when necessary
to avoid cluttering of equations.

and static force reflection, i.e.,

fm(t) → −fs(t) (5)

as q̇i → 0; independently of the structure of the remote

environment. Furthermore, we would like the operator to

perceive low and high impedances when interacting with free

and rigid environments, respectively.

C. Assumptions

In the following analysis we make the assumption that

delays on the transmission lines from master to slave, Tm,

and from slave to master, Ts, are constant but not neces-

sarily equal. Furthermore, we assume that the slave robot

is equipped with force/torque sensors2 and that it is able to

communicate contact information to the master robot.

III. CONTROL FRAMEWORK

In this section we proceed to develop the bilateral control

framework. First, we address the problem of stability through

the passivity formalism since, in general, passivity is a suf-

ficient condition for stability. Then, we proceed to guarantee

transparency-based objectives.

Definition 3.1: [21] A system with input x and output y

is said to be passive if
∫ t

0

xT ydθ ≥ −κ2 + ν2

∫ t

0

xT xdθ + ρ2

∫ t

0

yT ydθ (6)

for some κ, ν, ρ ∈ ℜ. Moreover, it is said to be lossless if

equality persists and ν = ρ = 0, input strictly passive if

ν 6= 0, and output strictly passive if ρ 6= 0.

In order to passivize and hence stabilize the teleoperators,

we propose the design of the control inputs as

τ̄ i = − Mi(qi)Λq̇i − Ci(qi, q̇i)Λqi + gi(qi) + τ i (7)

where Λ ∈ ℜn×n is, without loss of generality, a diagonal

positive definite constant matrix and τ i = τ i(t) ∈ ℜn are

the coordination control inputs to be designed. Then, the

dynamic equations of the system in (1) reduce to

Mm(qm)ṙm + Cm(qm, q̇m)rm = fm + τm

Ms(qs)ṙs + Cs(qs, q̇s)rs = fs + τ s
(8)

where

ri(t) = q̇i(t) + Λqi(t). (9)

The control law in (7) is a passivity-based control method

[22], which means that the master and slave teleoperators,

with reduced dynamics (8), are passive with respect to the

input fi + τ i and output ri. Mathematically,
∫ t

0

(fi + τ i)
T ridθ = rT

i (θ)Mi(qi(θ))ri(θ)
∣

∣

θ=t

θ=0

≥− rT
i (0)Mi(qi(0))ri(0).

Remark 3.1: Note that the control law in (7) assumes

complete knowledge of the dynamics of the master and

slave robot. In [19], [22], a passivity-based adaptive law is

2This assumption can be replaced with any other contact/proximity sensor.
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suggested for the case where the parameters are unknown.

Such approach can be easily extended to our proposed

control framework without altering the passivity and position

convergence results presented in this paper.

Now, we are left to design the control inputs τ i such

that the communication channel is passivized independently

of the delay and that position and force tracking of the

teleoperators are guaranteed. With this in mind, we propose

the use of the scattering transformation and wave variables

ui and vi [4], [5]. For the master side, the outputs of the

scattering transformation are computed as

um(t) =(2Bm(t))−
1

2 (Bm(t)rmd(t) − τm(t)) (10)

rmd(t) =(2B−1
m (t))

1

2 vm(t) − B−1
m (t)τm(t) (11)

where Bm(t) ∈ ℜn×n, the wave impedance, is a time-

varying, positive definite matrix that will be designed under

transparency concerns; and vm(t) = vs(t − Ts) is the

upcoming, delayed wave variable from the slave’s scattering

transformation. Then, the coordination control input can be

given as

τm(t) =Bm(t)(rmd(t) − rm(t)). (12)

Likewise, for the slave side, the outputs of the scattering

transformation are computed as

vs(t) =(2Bs(t))
−

1

2 (Bs(t)rsd(t) − τ s(t)) (13)

rsd(t) =(2B−1
s (t))

1

2 us(t) − B−1
s (t)τ s(t) (14)

where Bs(t) = Bm(t − Tm) and us(t) = um(t − Tm).
Similar to the master case,

τ s(t) =Bs(t)(rsd(t) − rs(t)). (15)

We now show that passivity of the communication channel

is achieved independently of delays and variance of the wave

impedance. Manipulating (10) to (14), we obtain that

τ
T
mrmd + τ

T
s rsd

= −2B−1
m Bm

um−vm

2
um+vm

2 − 2B−1
s Bs

vs−us

2
vs+us

2
= − 1

2

(

u2
m − v2

m + v2
s − u2

s

)

and integrating with respect to time,

−
∫ t

0
(τT

mrmd + τ
T
s rsd)dθ

= 1
2

∫ t

t−Tm
u2

mdθ + 1
2

∫ t

t−Ts
v2

sdθ ≥ 0
(16)

where the negative sign in front of the integral is owed to

the power inflow. The lower bound in (16) implies that the

energy is temporary stored in the transmission lines and

therefore, the communication channel is passive indepen-

dently of delays. In addition, the reader can easily verify

that using the scattering transformation and the coordination

control inputs (12) and (15), (11) and (14) reduce to

rmd(t) =
1

2
(Γ(t)rs(t − Ts) − rm(t)) (17)

rsd(t) =
1

2
(rm(t − Tm) − rs(t)) (18)

where Γ(t) = Bm(t−Tm−Ts)
1

2 Bm(t)−
1

2 . As we will show

in section IV, the above proposed control law guarantees

position convergence and force reflection of the teleoperators

in the sense of (4) and (5).

Remark 3.2: The control law in (7), (12), and (15), in

conjunction with the wave scattering formalism, resembles

the control framework proposed in [19]. The difference lies

on the use of a wave impedance that is time-varying rather

than constant. This property, as will be shown in section IV,

will avail the proposed control framework to compensate for

position errors during contact tasks.

Up to now, we have designed the control inputs τ̄ i based

on passivity and position coordination. We are yet to tune

the control law such that transparency is achieved for both

free and restricted environments. This task is left for the next

subsection.

A. Tuning the Wave Impedance

Transparency in wave-based control frameworks, as pre-

viously discussed in section I, highly depends on the wave

impedance, Bi. Ideally, we would like the wave impedance

to alternate from a small value, Bfree, when the slave is free

to move; to a large value, Bcont, as soon as the slave robot

makes contact with a rigid surface. For sake of simplicity,

we will assume that Bi(t) > 0 are diagonal matrices.

We propose the update law for the diagonal jjth entry of

the wave impedance matrix to be given as

Ḃjj
m (t) =

{

min{β
j
(t), Λ̂jjBm(t)}, if

∥

∥f j
s (t − Ts)

∥

∥ > 0

−βj(t), otherwise

Bjj
s (t) =Bjj

m (t − Tm) (19)

where f j
s is the jth component of fs, Λ̂ < Λ is a n × n

diagonal positive definite matrix with entries Λ̂jj , and β
j

and βj are nonnegative scalar functions that drive Bjj
m to

Bjj
cont and Bjj

free, respectively.

IV. STABILITY AND TRANSPARENCY ANALYSIS

As aforementioned, the two foremost goals in bilateral

teleoperation are stability and transparency. In this section we

demonstrate that the proposed control framework achieves

both objectives. We first evaluate the standard case where

the human and environment are modeled as passive systems.

Then, we prove our original claims as we relax this assump-

tion on the operator.

Theorem 4.1: Consider the teleoperation system in (1)

with control law (7), (12), and (15). Suppose that the human

and remote environment are passive with respect to (9), i.e.,

∃ κi ∈ ℜ such that

−

∫ t

0

fT
i ridθ ≥ −κ2

i , for i = {m, s}. (20)

Then, for all arbitrary initial conditions, the closed-loop

teleoperation system is stable, all signals are bounded, and

the system achieves position coordination and static force

reflection in the sense of (4) and (5)3.

3This is a modified version of Theorem 4.1 in [19]. Here we show that
fm → −fe as (q̈i, q̇i) → 0 and prove stability and position convergence
for non-constant wave impedances.
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Proof: Define the slave’s coordination error as

es(t) = qs(t) − qm(t − Tm) (21)

and consider the following Lyapunov candidate function

V =
1

2
(rT

mMmrm + rT
s Msrs) +

1

4
eT

s ΛBses + κ2
m + κ2

s

−

∫ t

0

(fT
mrm + fT

s rs)dθ −

∫ t

0

(τT
mrmd + τ

T
s rsd)dθ.

(22)

Taking the derivative of V with respect to time and applying

the skew symmetric property (3), we have

V̇ = τ
T
mrm + τ

T
s rs +

1

2
ėT

s ΛBses +
1

4
eT

s ΛḂses

− τ
T
mrmd − τ

T
s rsd

≤
1

2
ėT

s ΛBses +
1

4
eT

s ΛḂses − (rsd − rs)
T Bs(rsd − rs)

− (rmd − rm)T Bm(rmd − rm).

Now, using (18) and the fact that Ḃs(t) ≤ Λ̂Bs(t) ∀t ≥ 0
and rs(t) − rm(t − Tm) = ės + Λes we obtain

V̇ ≤− (rmd − rm)T Bm(rmd − rm)

−
1

4
ėT

s Bsės −
1

4
eT

s ΛΛ̃Bses (23)

where Λ̃ = Λ−Λ̂ > 0. Since V̇ is negative semi-definite, we

conclude that the teleoperation system is close-loop stable

in the sense of Lyapunov. Furthermore, we can also show

that (22) is bounded and so ri are also bounded. Using the

Comparison Lemma [23], we can conclude that q̇i,qi ∈ L∞,

and therefore, the coordination error qm−qs and its velocity

are also bounded. Thus we are left to prove (4) and (5).

Invoking LaSalle’s Principle [23], we have that V̇ = 0 ⇒
(ės, es) → 0. Therefore, τ s → 0 and the slave’s dynamics

reduces to Msṙs + Csrs = fs. Consider now the following

positive definite function

Vs = rT
s Msrs −

∫ t

0

fT
s rsdθ. (24)

Then, we can show by taking its time-derivative that V̇s(t) =
0. Thus, Vs(t) = Vs(0) ∀t ≥ 0 which implies that

Vs =rT
s Msrs −

∫ t

0

(ṙT
s Msrs + rT

s Csrs)dθ

=

∫ t

0

(2rT
s Csrs + ṙT

s Msrs)dθ −

∫ t

0

rT
s Csrsdθ

=

∫ t

0

fT
s rsdθ = Vs(0).

By boundedness of the inertia matrix [22], we can show

that rT
s Msrs = 2Vs(0) ⇒ (q̇s,qs) → (0, q̄s), where q̄s is

a constant vector. Then, using the fact that es → 0 we have

qs(t) − qm(t − Tm) =

qs(t − Tm) − qm(t − Tm) +
∫ t

(t−Tm)
q̇sdθ → 0

which for finite Tm, gives qs(t) − qm(t) → 0 and position

convergence is established.

Now, consider the system under steady-state conditions,

i.e., (q̈i, q̇i) = 0 and Bs = Bm. Then, (8) simplifies to

2fm = −BmΛ (qs − qm) , 2fs = −BsΛ (qm − qs)

and it is easy to see that fm(t) = −fs(t), which completes

the proof.

We just showed that, when the human and environment

are modeled as passive systems, position and force tracking

are enforced. We now relax this passivity assumption on the

human operator and suppose that the environment is output

strictly passive. This emulates the scenario in which the slave

interacts with a rigid environment. We will show that the

position error is bounded and that indeed, qm − qs → 0 as

‖Bi‖ → ∞ even for contact tasks.

Theorem 4.2: Consider the teleoperation system in (1)

with control law (7), (12), and (15). Suppose that 1) the envi-

ronment is output strictly passive, i.e., ∃ κs, ρs ∈ ℜ, ρs 6= 0
such that

−

∫ t

0

fT
s rsdθ ≥ −κ2

s + ρ2
s

∫ t

0

rT
s rsdθ (25)

and 2) the human force is bounded, i.e., ‖fm‖ < η for

some η ∈ (0,∞). Then, for all arbitrary initial conditions,

the closed-loop teleoperation system is stable, static force

reflection is achieved, and the slave’s coordination error is

uniformly ultimately bounded with ultimate bound inversely

proportional to the wave impedance.

The proof for static force reflection follows similar to

Theorem 4.1, therefore, it will be omitted. We now proceed

to demonstrate closed-loop stability and boundedness of the

coordination error.

Proof: Consider the following Lyapunov candidate

function

Ṽ =
1

2
(rT

mMmrm + rT
s Msrs) +

1

4
eT

s ΛBses −

∫ t

0

fT
s rsdθ

+ κ2
s − ρ2

s

∫ t−Ts

0

rT
s rsdθ −

∫ t

0

(τT
mrmd + τ

T
s rsd)dθ.

Taking its derivative with respect to time and using (17),

(18), and the fact that Ḃs(t) ≤ Λ̂Bs(t) ∀t ≥ 0 and rs(t) −
rm(t − Tm) = ės + Λes we obtain

˙̃V ≤ −
1

4
ėT

s Bsės −
1

4
eT

s ΛΛ̃Bs(t)es − ρ2
s ‖rs(t − Ts)‖

2

−
1

4
(rm − Γrs(t − Ts))

T Bm(rm − Γrs(t − Ts)) + fT
mrm.

Now, let us define er(t) = rm(t)−Γ(t)rs(t−Ts). Notice

that fT
mrm = fT

mer + fT
mΓrs(t − T ), where we can upper

bound fT
mΓrs(t − T ) by 1

4ρ2 ‖Γfm‖
2

+ ρ2 ‖rs(t − Ts)‖
2
.

Then,

˙̃V ≤ fT
mer −

1

4
eT

r Bmer +
1

4ρ2
‖Γfm‖

2
−

1

4
ėT

s Bsės

−
1

4
eT

s ΛΛ̃Bses.

If we now denote σ(A) as the minimum eigenvalue of

the matrix A, let ǫ ∈ (0, 1) be a constant, and recall that

‖fm‖ ≤ η, then we can show that
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˙̃V ≤ η ‖er‖ −
ǫ

4
σ(Bm) ‖er‖

2
−

1

4
(1 − ǫ)σ(Bm) ‖er‖

2

−
1

4
σ(Bs) ‖ės‖

2
−

1

4
(1 − ǫ2)σ(Bs)σ(ΛΛ̃) ‖es‖

2

−
ǫ2

4
σ(Bs)σ(ΛΛ̃) ‖es‖

2
+

η2

4ρ2
‖Γ‖

2

and consequently,

˙̃V ≤−
1

4
(1 − ǫ)σ(Bm) ‖er‖

2
−

1

4
σ(Bs) ‖ės‖

2

−
1

4
(1 − ǫ2)σ(Bs)σ(ΛΛ̃) ‖es‖

2
< 0

for ‖es‖ > η
ǫ
δ(Bm), where

δ(Bm) =

(

4

σ(Bm)2
+

‖Γ‖
2

ρ2
sσ(Bm(t − Tm))σ(ΛΛ̃)

)
1

2

.

Since
˙̃V < 0 for sufficiently large ‖es‖, we conclude that

the system is closed-loop stable and the coordination error

is uniformly ultimately bounded with ultimate bound given

by η
ǫ
δ(Bm).

In general, the above theorem states that the slave’s

coordination error converges to a ball of radius η
ǫ
δ(Bm).

Therefore, ||es|| → 0 as either σ(Bm(t)) → ∞ or η → 0.

We can even formulate a more precise bound under steady

state conditions. For instance, suppose that q̇i → 0, qi(t −
Ti) → qi(t), and Γ(t) → 1. Then, the master dynamics (8)

simplifies to 2fm = −BmΛ(qs − qm), which implies that

‖qm − qs‖ = 2
∥

∥(BmΛ)−1fm
∥

∥ ≤ 2η ‖BmΛ‖
−1

.

Thus, it is easy to note that by increasing Bm, the error

effectively goes to zero.

V. SIMULATIONS

As a mean of validation, we simulated the response of

two 1-DOF teleoperators with the proposed controller. Both

master and slave robots have identical linear dynamics with

Mi = 1[kg], Ci = 0[kg/s], and gi = 0[N ] and are coupled

through an asymmetric time-delayed communication channel

with Tm = 0.6[s] and Ts = 0.4[s]. The environment is

modeled as a stiff wall located at qs = 4[m] with a reaction

force given by

fs =

{

−10q̇s − 500(qs − 4)[N ], if qs ≥ 4[m]
0[N ], otherwise

while the human is modeled as a constant force source for

the first 30[s] and then as a PD-type controller, i.e.,

fm =

{

12[N ], if 0 ≤ t ≤ 30[s]
−20q̇m − 25qm[N ], if t > 30[s].

The control parameters and update law for the wave

impedance are Λ = 5[1/s] and

β(t) =

{

2, if Bm(t) < Bcont

0, if Bm(t) = Bcont

β(t) =

{

2
(

5 − 4
Bm(t)−Bfree

Bcont

)

, if Bm(t) > Bfree

0, if Bm(t) = Bfree
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Fig. 1. Position of master and slave robot with constant Bm(t) = Bfree.
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Fig. 2. Position of master and slave robot with time-varying Bm(t).

where Bfree = 1[Ns/m] and Bcont = 50[Ns/m].
We first simulated the system with a constant wave

impedance tuned for free motion, i.e., Bm(t) = Bfree ∀t ≥
0. The response is illustrated in Fig. 1. Notice that the

position error remains bounded and that position tracking

is achieved once the slave retrieves from the wall. However,

when the slave robot is in contact with the environment, a

constant position error (i.e., position drift) of 4.800[m] arises,

which may mislead the remote perception of the operator.

The same conditions were then simulated employing the

proposed control framework and the results are plotted in

Fig. 2. Notice that the position error during the contact task

is drastically reduced to nearly 0.33% (0.016[m]), which

represents a subtantial improvement on position tracking

from the previous case. Once the slave ceases contact with

the wall, both master and slave positions converge to zero.

Note also that the settling time is slightly larger for the

proposed controller. This is mainly caused by the transition

from Bcont to Bfree as governed by β(t). In general, faster

transitions will allow for shorter settling time as Γ(t) →
1 in a small time. However, to do so may produce higher

transient oscillations due to ephemeral large values of Γ(t)
in the control law. In practice, as it will be shown through

experiments, these transitions seem to have no drastic effect

in the coordination error or settling time when compare to

the constant wave impedance’s case.

VI. EXPERIMENTS

Besides simulations, we conducted experiments on a

pair of 2-DOF identical planar-revolute-joint robots coupled

through constant communication channels with delays Tm =
0.4[s] and Ts = 0.3[s]. Both master and slave robots

are equipped with a pair of optical encoders that measure
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link’s angular position and velocity (via digital estimation),

and a force-torque sensor, located at the end-effector, that

measures forces sensed/exerted by the operator/environment.

The nonlinear dynamics of the teleoperators (1), with the

gravitational torques neglected due to the system’s planar

configuration, is given by

Mi(qi) =

[

αi βi

βi γ

]

(26)

Ci(qi, q̇i) =

[

δiq̇
2
i δi(q̇

1
i + q̇2

i )
−δiq̇

1
i 0

]

(27)

where αi = 52.72 + 5.85 cos(q2
i ) [10−2Nm2], βi =

3.27 + 2.91 cos(q2
i ) [10−2Nm2], γ = 3.27 [10−2Nm2], and

δi = −8.16 sin(q2
i ) [10−4kgm3]. For more details on the

experimental setup, consult [24].

The desired trajectory (or task) performed by the operator

was the following: first, to displace the master teleoperator

from the initial position q0 = [0,−π]T [rad] to qc =
[−0.4π, 0]T [rad]; then, to hold the master’s position around

qc for nearly 20[s]; and finally, to return to the initial

configuration q0. At the slave’s environment, we placed an

aluminum v-shaped wall at qw = [−0.70,−1.52]T [rad] in

order to obstruct and lock the motion of the slave robot.

We first conducted the experiment with a constant wave

impedance of (B11
free, B

22
free) = (0.8, 0.6)[Nsm], tuned

for free motion. The response of the system, with control

parameters Λ11 = 10[1/s] and Λ22 = 8[1/s], is reported

in Fig. 3. Despite the fact that the position error nearly

converges to zero during free motion, a large position error

arises for both links when the slave robot is in contact with

the wall.

We then performed the same experiment for a time-varying

wave impedance with (B11
free, B

22
free) = (0.8, 0.6)[Nsm],

(B11
cont, B

22
cont) = (12, 9)[Nsm], and update law given by

β
j
(t) = ‖fe(t − Ts)‖

Bjj
cont − Bjj

m (t)

10
, Λ̂jj =

Λjj

1.01

βj(t) =1.6
(

Bjj
m (t) − Bjj

free(t)
)

where fe(t) ∈ ℜ2 is the environmental reaction force sensed

at the tip of the slave’s end-effector and is related to the fs(t)
through the Jacobian matrix Js(t) as fs(t) = JT

s (t)fe(t) [22].

The system response is shown in Fig. 4. The position error

between master and slave is considerably attenuated during

contact with the wall and approaches zero when the slave is

free to move.

Fig. 5 contrasts the L2 norm of the coordination error

(i.e., ||qm(t) − qs(t)||) for the cases of a constant and a

time-varying wave impedance. Notice that the steady-state

error during contact is decreased from 0.79[rad] to 0.12[rad]
when employing the time-varying wave impedance approach.

When the slave retrieves from the wall, the behavior becomes

similar in both cases with the position error approaching

zero. The fact that the coordination error does not converge

exactly to zero in neither case, while in free motion, can

be attributed to considerable bearing friction suffered by the

teleoperators as reported in [11], [25].
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Fig. 3. Position of master and slave robot with constant Bm(t) = Bfree.
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Fig. 4. Position of master and slave robot with time-varying Bm(t).
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Similarly, Fig. 6 compares the force applied at the master

and slave’s end-effectors, i.e., ||fh|| and ||fe||, for both

controllers. Observe that in the case of a time-varying wave

impedance, the human applied a larger effort trying to retain

the master position at qc. Despite of the operator’s larger

effort, the coordination error was substantially attenuated.

Notice also that, as the system achieves a steady-state,

||fh(t)|| approaches ||fe(t)||
4.

Finally, Fig. 6 also evidences a temporary difference on

the force reflection by the time-varying wave impedance

approach that lasted for several seconds while the slave was

in contact with the wall. This contrast between the high-

magnitude force perceived by the operator, which can also be

interpreted as an indicator of the characteristic high-valued

stiffness/impedance of the environment being remotely con-

4It should be mentioned that, in general, ||fh|| should not necessarily
converge to ||fe||, since the proposed control framework only guarantees
force reflection with respect to fm and fs, or equivalently, ||JT

mfh(t)|| →
||JT

s fe(t)||. However, due to the fact that both master and slave have
identical dynamics and that the coordination error becomes sufficiently
small, the Jacobian matrix of both robots are nearly equal, i.e., Jm ≈ Js.
Therefore, ||fh(t)|| ≈ ||fe(t)||.
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Fig. 6. Force tracking and wave impedance. To the left, the human and
environmental force are plotted for the case of a constant wave impedance.
To the right, the case of a time varying-wave impedance is illustrated.

tacted, and the moderate sensed environmental force on

the slave robot can be better explained by mathematically

examining the net forces acting on the system. First, in the

case of the slave robot, we have that its position is locked

around qw. Therefore, q̇s = 0. Using then (8), (26) and

(27), we can easily show that JT
s fe = fs = −τ s. On the

other hand, in the case of the master teleoperator, q̇m 6= 0
and consequently,

JT
mfh = fm = Mm(qm)ṙm + Ci(qm, q̇m)rm − τm. (28)

Thus, even though the wave impedance stabilizes at a con-

stant value Bcont fast enough (as reported in Fig. 6) and

the control τm ≈ τ s; the force perceived by the operator

fm is still affected by the first two terms in (28); which in

turn, exclusively depend on the velocities and accelerations

of the master teleoperator. This means that the strong forces

sensed at the operator’s site are mostly owed to the slow

attenuation of the position error. In fact, it is not until the

system achieves an equilibrium (i.e., (q̈i, q̇i) → 0) that the

first two terms in (28) vanish and force reflection (i.e., static)

is ultimately achieved.

VII. CONCLUSIONS

By exploiting the independent-passivity and dependent-

transparency properties of the wave impedance on wave-

based teleoperation, we proposed a novel control framework

that achieves stability and transparency when transitioning

between unobstructed and obstructed environments. The pro-

posed control framework builds on [19] and introduces a

time-varying wave impedance that passively changes from

an arbitrary small value, suitable for free motion, to a

sufficiently large value, ideally for stiff environments. The

control strategy is proved to achieve closed-loop stability

of the teleoperation system and to enforce smooth position

tracking and static force reflection independently of delays,

even for a non-passive human model. We finally showed

the validity of the control strategy through simulations and

experiments on a pair of nonlinear teleoperators.
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