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Abstract— Acting in everyday-life environments is still a great
challenge in service robotics. Although algorithms and solutions
already exist for many relevant subproblems, in particular
the aspect of robustness and suitability for everyday use has
been neglected so far very often. Robustness and suitability
for everyday use are features affecting not only the overall
system design but have impact on each single algorithm of
each component.

Although an overwhelming amount of work is available
to address the SLAM problem, the challenge of applying a
SLAM algorithm over the whole lifecycle of a service robot,
perhaps even in different environments, has not been brought
into focus very often. An obvious problem to be solved is the
continuously growing number of landmarks. A lifelong running
SLAM approach requires means to select landmarks such that
they best cover the working environment given bounded SLAM
resources like the maximum number of manageable landmarks.

This paper proposes a novel solution for selecting appropriate
landmarks to limit the number of landmarks. The idea is to
quantify the contribution of a landmark to the ability of the
robot to localize itself in its working environment. Thus, the core
contribution is to base the landmark selection process upon the
landmarks’ coverage of the working environment.

Real-world experiments on a P3DX-platform with a bearing-
only SLAM approach and an omnicam confirm that the
addressed question and the proposed first approach might be
another step towards the overall goal of suitability for everyday
use.

I. INTRODUCTION

Service robots are expected to fulfill tasks in different

environments out-of-the-box. Users of service robots cannot

be expected to be skilled robotics programmers. Thus, there

is a huge demand on appropriate man-machine interfaces and

on the ability of service robots to learn about relevant infor-

mation about their deployment environment by themselves.

Of course, there is a fundamental conflict between adapt-

ability and pre-given parameter spaces defining the overall

learning space on different time scales. However, various and

manifold tasks in complex and varying environments will

depend on the robot’s ability to perform adaptations and on

its ability to integrate new information about its environment.

A fundamental component in nearly every service robot is

the SLAM (simultaneous localization and mapping) mech-

anism. Very often, the SLAM approach is used to build a

map of the environment in a deployment or initialization

step. Afterwards, the SLAM mechanism often is at least

parameterized such that correction steps are still performed

for the now known landmarks and the robot pose but no

new landmarks are introduced anymore. Thus, the selected

landmarks are normally not adapted in case environmental

changes require so.

Of course, there is no fundamental reason why one should

not let the SLAM mechanism run within a certain environ-

ment over the whole lifespan of the robot. However, each

newly recognized landmark would then be added to the state

vector which results in a growth of the size of the state vector

without upper bound. In case of bounded resources, one thus

needs a mechanism to get most out of given resources. The

SLAM problem thus needs to be extended such that one

selects those landmarks that, for example, ensure a certain

localization quality within the working environment of the

service robot given the maximum number of landmarks.

In particular, the quality of a landmark position alone

is not a suitable measure to select appropriate landmarks.

Rather, we need to represent the positions from which a

landmark can be observed and used to localize a robot.

Then, we can develop an approach to select those landmarks

that provide an appropriate localization quality and whose

observation regions cover the working environment while

still not exceeding the maximum number of landmarks.

In that approach it isn’t relevant where the position of a

landmark is. We think that it is relevant from which position

it can be observed by the robot. Thus, we quantify the benefit

of a landmark in terms of observability regions and not

in terms of its pose uncertainty. The rationale behind this

approach is the observation that moving close to a landmark

position does not yet make sure that it can be reobserved.

However, if the robot moves into the region where it observed

the landmark previously, the chance of reobservation is much

higher. Thus, in case of limited resources, one should select

and keep those landmarks that support relocalization in the

whole working space and not only those landmarks that are

somehow, for example uniformly, spread over the working

space.

The general idea is summarized in figure 1. We assume

that all landmarks in a room are visible from everywhere in-

side a room. Only considering the uncertainty of a landmark

would typically remove landmarks with a high variance. In

that example, room 2 would not be covered by landmarks
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Fig. 1. Landmarks are denoted by Lx and are displayed with a covariance
ellipse for illustrating purposes.

anymore. However, one should keep landmarks such that one

obtains a certain localization quality in the overall working

environment. Thus, it is necessary to keep landmarks such

that all rooms are covered with landmarks for relocalization

to avoid regions where the robot pose uncertainty becomes

too large. Since there are landmarks with a low pose uncer-

tainty in room 1, it is desirable to foremost remove landmarks

in room 1 and to keep landmarks (even with higher pose

uncertainty) in room 2.

The focus of this paper is of high relevance towards

robust and lifelong operating service robot systems. As

soon as one allows for lifelong adaptation or learning, one

immediately has to face the problem of bounded resources.

In case of the SLAM problem that is related to the number

of landmarks representing the working environment. Thus,

one needs a mechanism to select useful landmarks out of

possible landmarks. This process can either be done as offline

optimization procedure being invoked from time to time or

as continuous selection process during the regular SLAM

operation. Of coure, the latter is much more appealing for

service robotic applications.

II. RELATED WORK

In the past, some researchers already defined a measure

for the quality of a landmark. Maksarov et al established

the Geometric feature track quality evaluation (GFTQ) [1].

It reflects the probability of the existence of a landmark.

The sum of Gaussian probability densities of a so-called

established track over the last m steps is divided by the

sum of maximum values of the probability density functions

over the same m steps. If we want to use GFTQ to quantify

the quality of landmarks, we have to store the pair of

observation position and landmark measurement for each

landmark for the last m steps. This results in tremendous

required resources. However, the suitability of the general

approach has not been further evaluated.

Another approach is described by Dissanayake in [2]. He

recommends to use those landmarks for robot localization

which provide the largest information content. The lower

the uncertainty of the landmark position estimate, the more

benefit is provided by the landmark for robot pose estimation

in case of reobservation. Therefore, he recommends to use

the sum of the reciprocals of the main diagonal elements of

the landmark’s covariance matrix. In his experiments he also

tested other information measures based on the covariance

matrix, such as the Shannon or Fisher information. But their

usage had no significant effect on the robot localization

accuracy.

In the same work, Dissanayake uses his quality measure

to compute the best landmark out of a set of landmarks.

First, all landmarks are collected whose state changes in

the current step from visible to invisible. From this set

only the highest quality landmark is kept and all others

are discarded. Thus, the selected highest quality landmark

is a single representative for the set of previously visible

landmarks. In the example in figure 1, L3 should remain

after leaving room 1 and entering the hallway due to visibility

constraints. In case of room 2, L9 should survive. However,

selection of landmark representatives is based on a local set

of landmarks and thus depends on the exploration path and

the resulting visibility sequence. There is no globally related

measure of landmark quality. Nevertheless, this is one of the

rare approaches addressing landmark deletion with respect

to a landmarks use in terms of observability.

The overall SLAM problem and the impact of the number

of landmarks on its algorithmic complexity together with

a summary on established approaches for optimized repre-

sentations or approaches to partition a SLAM problem into

separated maps and how to eventually merge them afterwards

is described in [3]. However, the aspect of a lifelong running

SLAM approach and its challenges are not brought into

focus.

III. METHOD

The position of a landmark does not itself give a hint on

its usefulness for localizing a robot. In fact, we require to

know the poses from which a landmark can be observed to

know in which parts of an environment this landmark can

be used for localization purposes. Of course, the ability to

improve the robot’s pose also depends on the variance of the

landmark pose estimate. Thus, the observation region of a

landmark together with the landmark pose uncertainty form

a good starting point for defining a measure for the benefit

of a landmark with respect to robot localization.

Thus, the challenge is to determine and to represent the

benefit of a landmark with respect to various poses in the

working environment of the robot. This requires to calculate

or to observe from which positions a certain landmark can

be used for localization. Out of a set of landmarks, one

than can select those landmarks that cover the working

environment and also ensure a certain localization quality

given the maximum number of landmarks.

The standard SLAM approach normally distinguishes an

action and a sensing step. The action step comprises the robot

motion which introduces further uncertainty into the robot

pose estimate. The sensing step either reobserves already

known landmarks and thus allows to improve the estimates

of landmarks and the robot pose or it detects a previously

383



�����������	
�	����
���	���	����	��

���������������������

�����������������	����
���	��

���������	������������

������������������������

�
�
�
�
��
�
��
��
�

�
�
��
	
�
��
��
�

��
�
�
�
�
��
��
�
��
�
�
��
�
�
��
�
��
�
��
	
�

���������	��	���	���

���
�������������������	�����������

	����
���	���	����	���	
��������������

���
�����������

�
�
	����������������


	��������������������������
�


�	��������������������������������
�
�

���	
������
�����������������	������
�

�����������	�����������
�	������	�������	������	��

����	������������	�

�	�������
����������������

Fig. 2. Extension of the standard SLAM mechanism by functions for
landmark rating and selection.

unknown but suitable landmark which can be added to the

overall state vector of the SLAM system. Thus, the size of

the state vector can grow without any upper bound. In case

of limited resources, for example a maximum number of

landmarks, a newly discovered landmark rises the question

whether one should replace a previously introduced landmark

and also which one.

Figure 2 illustrates the principal steps of a SLAM mecha-

nism. The highlighted steps denote the newly added functions

for landmark rating and selection. The sensing step keeps

track of the set of robot poses from which a landmark has

been observed so far. This provides the basis for describing

from where in the environment a certain landmark is observ-

able. This information provides the basis for evaluating the

benefit of a landmark for localization purposes.

At arbitrary points of time, one can determine the benefits

of landmarks for localization purposes. One approach would

be to determine the landmark with the lowest impact on

reducing the robot pose uncertainty while still ensuring

coverage of the working environment. This landmark might

then be removed from the SLAM representation of the

environment.

A. Simple Approach to Landmark Rating and Selection

In principle, it is possible to store for each landmark

every observation position. One approach would be to use a

grid map, for example. However, this approach would result

in far too huge computational and storage costs. Since we

nevertheless require the observability of landmarks, we have

to develop a different and much cheaper approach that avoids

a fine grained representation of observability.

Thus, we evaluated the overall idea of landmark rating and

selection to address the problem of bounded resources by

considering restricting the maximum number of landmarks.

After starting the SLAM approach, the number of landmarks

is growing until reaching the predefined supported maximum.

Even in this simple scenario, one from now on has to face

the problem of deciding which already included landmark

should be replaced by a new one.

B. Update Set of Observation Positions

The set of observation positions defines those robot poses

from which the robot actually observed the considered land-

mark. This set needs to be represented in such a way that it

can be used for landmark rating.

In case of the bearing-only SLAM approach [4], [5] used

for a first evaluation of the landmark rating and selection

process, the observability of the used image features is

strongly limited by a minimum and a maximum viewing

distance and viewing angle. Thus, the observability region

typically looks like a sector of a circular ring. Here, it makes

sense to represent the observability region of each landmark

by calculating the arithmetic mean E(X) of the observation

positions.

E(X) =
1

n

n
∑

i=1

Xi (1)

Xi are the different observation positions and n is the number

of observations. Thus, we only need to save the latest average

position E(X) and the number of observations. If the robot

later re-observes a landmark, the mean can easily be updated

by the newer observation position:

E(Xnew) =
(n − 1)E(Xold) + Xn

n
(2)

C. Clustering of Representatives of Landmark Observability

The clustering step is an intermediate step only. Its purpose

is to identify those representatives of landmark observability

that cover nearly the same observation region.

In the used bearing-only SLAM approach, we apply k-

means clustering [6], [7]. The k-means algorithm separates

the landmark representatives into n clusters. In first experi-

ments, the number of clusters is set proportional to the num-

ber of landmark representatives and is selected empirically at

the current state of evaluation. As distance measure for the

k-means clustering algorithm, the L1 distance is used which

reduces the computational load compared to a L2 distance

without a relevant effect on the clustering results. The reason

is that observation poses are aligned on a trajectory and

thus landmark representatives typically also form a chain of

observation regions. Figure 3 illustrates an example of spatial

clustering of landmark representatives.

Of course, the distance measure for spatial clustering

based on k-means does not at all take into account more

elaborate details of observability like shape or overlap of

observability regions. However, the shape and visibility has

already been ignored at the previous step when calculating

the landmark representative. The purpose of this step is

to identify landmarks that can be observed from a similar

position and thus cover the same regions of the environment
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Fig. 3. A cluster comprises several landmark representatives. All repre-
sentatives belonging to a cluster are drawn with the same color.

with respect to localization support. Therefore, one can plug-

in any more advanced approach as soon as more information

needs to be considered or exploited.

D. Calculation of Information Content of a Landmark

Landmarks with low position uncertainty provide a high

benefit for relocalization of the robot. A simple but efficient

measure for the information content of a landmark is pro-

vided by its covariance matrix. The information content can

be calculated by the sum of the reciprocals of the main

diagonal elements of the covariance matrix. It does not

consider the correlations of the feature to other features or

the vehicle. The information Content measure has also been

suggested by Dissanayake in [2].

cov(L) =

[

σ2

xx σ2

xy

σ2

yx σ2

yy

]

(3)

The information content of a certain landmark is then

given by

IL =
1

σ2
xx

+
1

σ2
yy

(4)

Figure 4 shows all estimated landmark observation posi-

tions. Furthermore, the information content of the landmark

is plotted onto the z-axis.

E. Select Landmark with Lowest Localization Benefit

A landmark with a low information content in a sparsely

known region is often more useful than a landmark with a

higher information content in a well-known region. Under

this assumption, one needs to identify the landmark with

the lowest benefit for localization purposes without ignoring

spatial coverage. Thus, we consider each cluster of land-

marks separately. Within a cluster of landmarks, one would

remove the landmark with the lowest information content to

have the smallest degradation of localization quality. The

idea for selecting the cluster for landmark removal is as

follows. The cluster with the largest difference of information
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Fig. 4. For all landmarks, the estimated observation positions are plotted
with the information content on the z-axis.

content of its landmarks is assumed to cope best with a

landmark removal. The rational behind this is the assumption

that the bigger the relative difference is the less is the loss

of localization support within that particular cluster. This

idea takes into account the landmark observability (in terms

of spatial clusters) and is fundamentally different from just

removing the landmark with the lowest information content

from the overall set of landmarks.

The difference of information content Di of the landmarks

within the cluster Ci is calculated as follows with IL the

information content of a landmark.

Di(Ci) = max(IL0...m
) − min(IL0...m

) (5)

The cluster with the maximum difference is determined by

max(Di). If now a landmark from that cluster is removed,

there still remains at least another landmark which allows for

localization within the spatial region covered by that cluster.

Figure (5) shows the clustered landmark representatives.

The landmark with the lowest benefit for localization (at

position p = [12.5, 13.0]) is marked by a red cross and is to

be removed.

In case of an EKF based SLAM, a landmark removal

is performed by simply deleting it from the state vector

and also removing the appropriate row and column of the

corresponding covariance matrix. Other SLAM approaches

also allow for removing a landmark by deletion.

IV. RESULTS

A. Experimental Setup

In this section we present the results from a real world

experiment. The localization performance is evaluated by

comparing the estimated robot positions of the SLAM ap-

proach with a maximum number of 50 landmarks with

ground truth measurements at 16 different timesteps. The

experiment has been performed in our lab, the adjacent

hallway and a neighboured room (see figure 6).

We used a Pioneer-3DX platform with a omnicam. The

omnicam is a Sony DFW-X710 camera (1024x768, 1/3 inch,
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Fig. 5. The landmark with the lowest benefit for localization is marked
by a red cross.

Fig. 6. The real world environment used in our experiments. The upper
images show the ZAFH laboratory, the lower left image the adjacent hallway
and the lower right image a neighboured room in our building (room C12).

progressive scan, firewire, YUV color, 15 images/second)

with a hyperbolic glass mirror (H3G, Neovision). And for

SLAM we use an improved version of the EKF based

Bearing-Only SLAM approach with SURF Features [8] as

landmarks, as described in [5]. We set the maximum number

of landmarks to 50.

The trajectory forms a run of approximately 115m, so we

can test whether the robot can handle the loop closing with

the reduced number of landmarks. During the experiment

three loops with a length of approximately 8m, 10m and

14m have to be closed.

The travel distance between two observation positions is

approximately 0.3m. The number of clusters is set dynami-

cally to 1/4 of the number of currently known landmarks.

Due to the lack of GPS in indoor environments it is quite

hard to get the ground truth position of the robot. We solve

the problem of determining the ground truth position by

x [m]

y
 [

m
]
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Fig. 7. The robot trajectory (blue line) in the environment. For visualisation
purpose we place a floor plan in the background. The grey objects are tables.
The yellow triangles represent the robot with the 2σ covariance ellipse (red).
For these robot poses the corresponding ground truth positions are marked
with a black cross.

measuring manually the distance from the robot to two a

priori known coordinates in the environment with a Bosch

Digital Laser Rangefinder (DLE 150). The accuracy of this

method is approximately [0.1m, 0.1m].

B. Localization Performance in case of Restricted Number

of Landmarks

We restricted the number of landmarks to 50. The robot

was teleoperated while performing SLAM. It started in the

ZAFH laboratory and closed the first loop (timestep 30-

57) in the laboratory. Afterwards the robot entered the

hallway and moved back through a second door into the

already seen ZAFH lab, where the second loop (timestep

115-149) was closed. Then the robot moves through the

hallway into room C12 and again back to the ZAFH lab. The

experiment finished after a last loop (timestep 295-342) with

a length of approximately 14m around the meeting table.

The trajectory can also be seen in figure 7. Therefore the

SLAM approach had to cope with loop closure three times

during this experiment. The progression of the robot pose

uncertainty (eigen values from the covariance matrix of the

x and the y component) is plotted in figure 8. As long as

the robot explores unknown regions, the pose uncertainty

grows. As soon as it comes back into already known regions,

the loop closure reduces the accumulated high uncertainty

values. This effect can be seen around the time steps 57, 149

and 342. The loop closure capability has not been influenced

by the restricted number of landmarks at all.

Figure 9 shows that the amount of initialized landmarks

stays constant after the given maximum number is reached

(blue line). In comparison to that the red line shows the

increase of the landmark count without restricting the number

of landmarks. The reduced set of landmarks covered the
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Fig. 9. The really used landmark count is illustrated as blue line and the
red line shows the increase of the landmark count without restricting.

explored region in an appropriate manner as can be seen

in figure 5.

Table I illustrates the euclidean distance between the

ground truth measurements and the estimated robot pose for

the specified timesteps. The standard deviation of the robot

pose is listed in the two right columns of the table. The

ground truth positions, the robot pose and the 2σ covariance

ellipse can also be seen in figure 7.

V. CONCLUSIONS AND FUTURE WORK

In this paper we introduced a novel approach for landmark

rating and selection. It allows to decide on which landmark

to remove from a set of already discovered landmarks and to

replace it by a newly detected one. This is the key towards

TABLE I

EUCLIDEAN DISTANCE BETWEEN GROUND TRUTH AND THE ESTIMATED

ROBOT POSE

timestep euclidean distance [m] σx[m] σy [m]
1 0.000 0,000 0,000
25 0.169 0,052 0,069
52 0.164 0,126 0,141
75 0.202 0,038 0,055
100 0.206 0,076 0,095
125 0.267 0,114 0,087
150 0.905 0,182 0,115
175 0.277 0,063 0,060
200 0.418 0,110 0,093
225 0.423 0,137 0,118
251 0.374 0,110 0,106
281 0.653 0,083 0,102
300 0.575 0,061 0,064
325 0.804 0,399 0,423
350 0.649 0,142 0,136
375 0.233 0,075 0,072

avoiding the otherwise ever growing number of landmarks in

case a SLAM algorithm is run over the lifetime of a service

robot, for example.

The difference compared to existing work is that we

not only select the landmark with the lowest information

content to be removed. In fact, we argue that the benefit

of a landmark for localization purposes needs to take into

account its observability regions. This allows to keep track

of which landmarks contribute to which parts of the working

environment of a service robot and to thus also keep even

landmarks with high uncertainty in such regions that would

otherwise simply provide no localization support at all.

Of course, the implemented mechanisms to verify the

relevance of the question and the overall benefit of such

an approach are very rudimentary at the moment. However,

even applying such a simple approach already resulted in

the ability to adhere to a predefined maximum number of

allowed landmarks without loss of localization quality or

coverage.

The results of these first experiments exceeded our ex-

pectations. In particular, these results were achieved in the

demanding setting of using an everyday indoor environment

and a bearing-only SLAM approach based on SURF features.

Thus, the achieved results show a promising way towards

addressing suitability of SLAM algorithms for everyday use

where the capability of lifelong adaptation within bounded

resources is mandatory.

Future work will focus evaluating further approaches for

landmark evaluations. In particular, refining the representa-

tion of the observability regions while still being able to

handle these online as part of the SLAM approach is neces-

sary. Further, it is neccessary to analyze other algorithms to

group the observation positions in a spatial manner.
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