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Abstract— For manipulating an unknown object a robot
needs a 3D model of it. Given the limited field of view of
a camera and self occlusions, a set of views is required to
build a complete 3D model, so an important problem is how
to select these views optimally according to certain criteria.
We propose a novel algorithm to select the next-best-view
(NBV) for a range camera to model 3D arbitrary objects.
We use a volumetric representation and voxel labeling. We
propose a new utility function based on factors considering
voxel, quality and navigation information. We also propose two
novel strategies to make faster the search of the NBV, one based
on a hierarchical decomposition of the search space and other
based on a multi-resolution of ray tracing. We have tested our
planner in simulation with 7 different 3D objects, showing good
results in terms of quality of the models and computation time
required, and at the same time reducing the distance that the
sensor has to travel to obtain the set of views.

I. INTRODUCTION

Autonomous 3D object reconstruction has an important
place in service robotics. It is desirable that a service robot
could interact with the objects in the environment. The robot
needs to acquire a 3D model of such objects in order to
manipulate them. Vision offers a huge amount of information
and several techniques to scan surfaces. However, due to the
limited camera’s field of view and object’s self-occlusions,
a set of scans from different view points is needed. A fast
and easy solution can be a predetermined set of view points.
However, due to the size and shape variations of the objects
this simple strategy could lead to incomplete models or
to many more views that those required. So an important
problem is how to plan these view points.

There are some criteria that must be considered in an
object reconstruction: overlap with previous scans (making
easy the information register stage) and quality scans (we
consider the best scan quality when the sensor orientation
is perpendicular to the surface). Besides, the robot must
navigate to each view point in order to capture the images,
spending time and energy. Then, a set of views that minimize
the distance traveled by the robot, that maximize the quality
of the reconstructed model and that provides overlap with
previous scans is desirable. How to obtain this set is the
problem we address in our view planning method.

A view planning algorithm for object reconstruction is
an incremental model construction method composed of a
number of observing-and-planning loops [1]. Based on a
partial model, this algorithm determines the next view that
provides an optimal amount of information, or NBV, from a
set of candidate views.

J. I. Vásquez-Gómez, E. López-Damian and L. E. Sucar are with the
Department of Computer Science, INAOE, Tonantzintla, Puebla, Mexico
{ivasquez,eldamian,esucar}@ccc.inaoep.mx

(a) Normals (b) Front view

(c) Top view (d) Left view

Fig. 1. Output model from our view planner for the bunny object. All
the subfigures show the occupied voxels. Subfigure a) also shows the voxel
normals.

In this paper we present a view planning method which can
reconstruct arbitrary 3D objects with relative few views and
an acceptable quality, it successfully reduces the distance that
the robot has to travel, saving energy. The main contributions
of our method are: (i) a novel utility function that allow us to
evaluate how good a view can be based on area percentage,
quality and navigation distance; and (ii) two search strategies
that reduce the computation time required to determine
the NBV. We have tested our method in simulation, with
promising results in terms of quality of the models and
computation time, and at the same time reducing the distance
that the sensor has to travel to scan the object surface. Fig.
1 shows the reconstruction of a bunny object by our planner.

II. RELATED WORK

Since the 80’s many view planning algorithms for object
reconstruction have been developed, in [2] there is an exten-
sive review of these works.

Many authors simplify the general problem by reducing
the search space using discrete candidate views around an
approximate sphere. This sphere is defined as a set of views
which are at a certain distance from the center of the object,
the sensor always is pointing to the center of the sphere [3],
[4].

In order to evaluate how desirable is a view, several utility
functions have been proposed. The simplest of those is to
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measure the amount of unknown information. Others, include
overlap with previous scans and quality. In [5] a function that
measure the overlap was proposed. The function was based
on the percentages of voxels that are visible from a candidate
view. In [4] a way to improve the quality of the model was
proposed, but it does not take into account the overlap. In
[6] they defined two different functions. The problem of both
functions is that they do not consider the case when there is
no voxels of some kind in the image, giving good evaluation
for the view.

So far, the work done for minimizing the traveling distance
needs to know a priori the set of views to reconstruct the
object. For instance in [7], they make, in a first stage, a
minimization of the amount of views and traveling distance.
But the method needs a previous 2D map of the objective.
Therefore, previous work do not consider all the mentioned
criteria.

III. VIEW PLANNER OVERVIEW
In this section we present a general overview of our

method. We use a voxel map to represent the scene and store
the partial model of the object at every iteration. This voxel
map is conformed by a three-dimensional matrix of labeled
voxels. Each voxel stores information about the space that it
represents by means of three attributes [5]: a label indicating
its type, a surface normal and a quality value. Each label has
a color associated with it for display purposes. The labels are
defined as follows:
• Unmarked. A voxel that has not been observed yet by

the range camera.
• Occupied. A voxel which position matches with ac-

quired points in the 3D range image.
• Empty. A voxel in a seen area but for which there are

no acquired points in this position.
• Occluded. A voxel in the sensor field of view but not

seen because it is behind of an occupied voxel.
• Occplane. An occluded voxel that is adjacent with any

of its six faces to an empty voxel.
Additionally, the normal of the surface and a quality value are
attached just to occupied voxels. The normal of the surface is
computed as the average of all others occupied voxel normals
that are preset in the image adjacent to the voxel that has
been touched by the sensor ray. The quality is determined
according to the algorithm shown in [4].

Our algorithm starts by taking a first range image of the
object from a known free-space sensor position in the voxel
map. The sensor takes a range image. The points acquired
from the range image are converted to the coordinate system
of the voxel map generating a partial model of the object by
labeling the voxels. Then, the search strategy uses the utility
function to evaluate a set of views from a view sphere around
the object. The function considers the amount of voxels in
the view, their surface normals and the distance from the
current sensor position to evaluate each view of the set. After
such evaluation the NBV is selected. The next step consists
on moving the range camera (robot) to this position and we
proceed to capture a range image to obtain a more complete

(a) Icosahedron (b) View points (c) View sphere

Fig. 2. Icosahedron tesselation and view positions

object model. The process is repeated until at least one of the
termination criteria is achieved: there are no occplane voxels
in the voxel map or the search strategy does not find a next
view (the possible views does not provide new information).
We summarize our iterative method in Algorithm 1.

Algorithm 1: View Planner Algorithm for 3D Object
Reconstruction

Data: Initial Robot Position
Result: Object model M
Im← Take range image;
Update model M with Im;
while true do

nbv ← Compute the next best view;
if nbv does not provide new information then

Return M and exit;
end
Pose robot in nbv;
Im← Take range image;
Update model M with Im;

end

The search space consists of a set of views around the
object (view sphere). The views are created by sphere tessel-
lation; using an icosahedron (20 views) as the lowest sphere
resolution (Fig. 2(a)). To increase the sphere resolution, each
face of the icosahedron is divided in four sub-faces. The
search strategy uses the centroid of each face as a candidate
view (Fig. 2(b)). Fig. 2(c) shows a sphere with a resolution
of 80 faces.

In order to evaluate a candidate view, a set of rays is traced
in the voxel map simulating a range sensor. Once the rays
have been traced the gathered information is used by the
utility function to rank the candidate view.

IV. THE UTILITY FUNCTION
The utility function quantifies the desirability of a view. A

new view must: include unseen areas, provide a percentage
of overlap with previous range images, improve voxel quality
and reduce the distance the sensor needs to travel. We
propose a set of factors that quantify each characteristic of
a desirable view, the combination of these factors form the
utility function.

A. Area Factor

The objective of the area factor is to perceive unseen
areas and to provide at the same time some overlap with
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Fig. 3. The graph shows the desired behavior for the function fi for each
type of voxel considered in the area factor.

previous scans. Therefore, this factor is based on measuring
the percentage of each voxel type that is visible from a
candidate view. Mathematically, the area factor is represented
by the sum of functions fi. Each function fi gives a value in
the range [0, 1] based on the percentage of its corresponding
voxel type. Fig. 3 shows the desirable behavior of these
functions. Each function fi reaches a maximum when the
percentage xi of voxels i is equal to an optimum percentage,
αi, specified by the user (fi = 1 when xi = αi). The function
reaches a minimum when the percentage xi is either 1 or 0,
that is to say, the sensor only perceives voxels of this type or
it does not perceive these kind of voxels at all in the image.
We can not use a Gaussian function because it is not always
symmetric, its shape depends on α.

The function f is subject to the following constraints:

f (0) = 0 f ′ (0) = 0
f (α) = 1 f ′ (α) = 0
f (1) = 0 f ′ (1) = 0

f (x) > 0 for all x ε [0, 1]

f ′(x) > 0 for all x ε [0, α]

f ′ (x) < 0 for all x ε [α, 1]

We use a general third degree polynomial as our function,
divided in two parts, otherwise the function gives negative
values:

A1x
3 +B1x

2 + C1x+D1, 0 < x ≤ α
A2x

3 +B2x
2 + C2x+D2, α < x < 1 (1)

Applying the constraints to the function and its derivative, we
solve the system of equations (1) to obtain two expressions
(3),(4) depending only on α and x:

f (x, α) =

{
f1 (x, α) , x ≤ α
f2 (x, α) , x > α

(2)

where

f1 (x, α) = − 2
α3
x3 +

3
α2
x2 (3)

and

Fig. 4. The graph shows the desired behavior for the navigation factor

f2 (x, α) = − 2
(α− 1)3

x3 +
3 (α+ 1)
(α− 1)3

x2

− 6α
(α− 1)3

x+
3α− 1

(α− 1)3
(4)

To guarantee an overlap in the next view we consider the
percentage of occupied voxels and to perceive unseen areas
we consider occplane voxels. The percentage of occplane
voxels is x and the percentage of occupied voxels y, the
optimal percentage for occplane voxels is α and the optimal
percentage for occupied voxels is β, then the area factor is:

farea = f (x, α) + f (y, β) (5)

The percentage of a voxel type is calculated as the amount
of voxels of this type divided by total number of voxels
in the ray tracing, empty voxels are not considered. In the
experiments we used α = 0.8 and β = 0.2

B. Navigation Factor

The objective of the navigation factor is to evaluate a
candidate view based on the navigation distance between
the current view point and a candidate view. To measure the
distance between view points, a metric in the configuration
space of the robot should be used. Also, the distance should
include collision avoidance. As we assume that our sensor
(robot) has no motion constraints (free-flyer), it can be
positioned at any point of the view sphere around the object.
Then, the orthodromic distance, defined as the shortest
distance between two points on a sphere, seems a reasonable
option. The minimum distance in this case is when the
camera does not move, it only changes its orientation. The
maximum distance is defined by two opposite points on the
sphere, so we can define a normalized orthodromic distance,
x. In a future work, this distance metrics could be changed
according to the robot kinematics constraints.

The navigation factor fnavigation must satisfy the next
constraints: (i) the candidate view with the shortest distance
has the maximum value; (ii) the candidate view with the
largest distance has a minimum value given by ρ; (iii) a
candidate view with larger distance than others must have

4017



smaller value; and (iv) at short distances the value of the
function decreases more slowly than at large distances. Fig.
4 shows the desired behavior for the navigation factor.
Therefore, the constraints for the function are:

f (0) = 1
f (1) = ρ, 0 ≤ ρ < 1
f ′ (x) < 0, xε [0, 1]
f ′(0) = 0

We use a second grade polynomial (6) to model the
behavior in fig. 4:

f (x) = Ax2 +Bx+ C
f ′ (x) = 2Ax+B

(6)

Similar to the area factor, we apply the constraints to
the polynomial to solve the system of equations to find the
expression of the navigation factor (7) in function of the
normalized ortodromic distance x and ρ:

fnavegation = (1− ρ)x2 + 1 (7)

C. Quality Factor

The quality of a sensed voxel is the cosine of the angle
formed between the surface normal and the sensor optical
axis. For a candidate view, this factor measures the quality
of the overlap area (occupied voxels). With the measured
quality, it makes a prediction of the quality that is going
to be taken from that candidate view. Then, the quality
factor gives preference to the views that have a better quality
prediction, in other words, it gives preference to views that
are orthogonal to the overlap area. This idea was used
previously by [6]:

fquality =
∑

i=1,n occu cos (αi)
n occu

(8)

where αi is the angle formed between the surface normal of
the occupied voxel i and the sensor optical axis, and n occu
is the amount of occupied voxels in the ray tracing.

D. Occlusion Factor

The occlusion factor aims to solve occluded areas (e.g.
object self-occlusions). This factor gives a higher value to
the views that see more occplane voxels:

focclusion =
n occlusion

pts h ∗ pts v
(9)

where n occlusion is the amount of occplane voxels, pts h
is the amount of horizontal points and pts v is the amount
of the vertical points from sensor resolution.

E. Utility Function

The utility function is a combination of the previous
factors. This combination considers as a basic factor the area
factor and the others as secondary factors (the reason is that
the main objective of the view planner is to reconstruct, as
much as possible, the object while an overlap is provided in
each view):

futility = farea ∗ (fquality + fnavigation + focclusion) (10)

V. SEARCH STRATEGY
An exhaustive search tests each candidate view with full

sensor resolution. So a densely approximated sphere and a
high resolution guarantees that a good view will be find.
However the computational cost is extremely high and these
evaluations must be done in each iteration, so a more efficient
alternative is required. We propose two strategies to find the
next best view: a recursive hierarchical strategy and a multi-
resolution strategy.

A. Recursive Hierarchical Strategy
This strategy exploits a hierarchical discretization of the

sphere and it consists of two steps. In the first step, the faces
of an icosahedron are taken as candidate views. Each view is
evaluated with full sensor resolution and ranked according
to the value of the utility function. Then, the best view is
selected. In the second step, we apply a recursive tessellation
of the face that corresponds to the selected view, giving as
a result a new set of candidate views. The new views are
tested and the best evaluated view is selected. If the final
resolution level (l) is reached the search ends, otherwise the
second step is repeated. The process is shown in algorithm
2.

Algorithm 2: Recursive Hierarchical Strategy
Data: l (final view sphere resolution level)
Result: nbv
i← 0;
V ← Icosahedron views;
Evaluate V with full sensor resolution;
v ← view with the best evaluation of V ;
while i < l do

H ← Set of tesselated views from the face v;
Evaluate H with full sensor resolution;
v ← Best evaluated view from H;
Increase n;

end
nbv = v;

B. Ideal Ray Tracing Resolution
The ideal ray tracing resolution (Rideal) is closely related

to the voxel map resolution. The traced rays should be sepa-
rated from each other by a distance equal to the dimensions
of the voxels. For a voxel map with length len and a sensor
with horizontal aperture α and vertical aperture β positioned
at a distance r from the center of the voxel map, the ideal
ray tracing resolution is computed as follows:

pts h =
α

arcsin
(

len
r

) ; pts v =
β

arcsin
(

len
r

)
Where pts h is the amount of horizontal points and pts v

is the amount of vertical points. The ideal ray tracing resolu-
tion is the lowest required for the ray tracing to distinguish
the model details from the voxel map.
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C. Multi-Resolution Strategy

The multi-resolution strategy is based on the variability of
the sensor resolution while the amount of candidate views
remains unchanged. This strategy is formed by k stages.
In each stage a set of views is evaluated with a sensor
resolution for that stage. In the first stage, all views from
view sphere (V ) are evaluated with a minimal ray tracing
resolution (Rmin) (set by the user). The best evaluated views
are selected for the next stage. In the next stage, the subset of
selected views is evaluated with a higher resolution. Again, a
subset with the best evaluated views is selected. The process
continues until the k stage is reached, where a reduced subset
of views is evaluated with the ideal ray tracing resolution.
Algorithm 3 presents this search strategy.

Algorithm 3: Multi-resolution Strategy
Data: V , k, Rmin, Rideal

Result: nbv
R1 = Rmin;
for i=1:k-1 do

Evaluate V with resolution Ri;
V ← Select the ni best evaluated views;

end
Evaluate V with resolution Rideal;
nbv ← Best evaluated view from V ;

VI. SIMULATION RESULTS

Our algorithm was tested in simulation. The range camera
was simulated and the objects were taken from virtual
models, except for the bunny and dragon objects that were
taken from the Stanford repository.

The simulated range camera returns a range image, similar
to a real range camera with 45 degrees for horizontal and
vertical apertures and a resolution of 320 x 320 points. The
system was implemented in C language. The machine used
for the tests was an AMD Turion64 with 2 GB of RAM
memory.

The objects are showed in fig. 5(a). These objects have
different shapes and present incremental difficulty for the
reconstruction process: sphere is a convex simple object; pear
and banana are nonconvex; mug, bunny and dragon are non
convex with self-occlusions; and finally sgi-logo has holes
and self-occlusions.

A. Search Strategy

In this test we evaluate each search strategy. The voxel
map dimensions for the scene were 205 x 205 x 205 (8 615
125) voxels and 55 x 55 x 55 (166 375) voxels for the object
enclosure. The voxel size was 0.02m. We used a sphere with
a radius of 2m.

The exhaustive strategy was tested with 20 and 80 views,
using a full sensor resolution of 320x320. The hierarchical
strategy started with 20 views and finished with 80 views
in the second step, each candidate view was evaluated with
full sensor resolution. The multi-resolution, was tested with:

(a) List of synthetic objects

(b) View planner outputs

Fig. 5. Reconstructed 3D objects. In the top row are the CAD object
models, at the bottom we find the reconstructed models with surface normals

k = 2, Rmin = 40x40, Rideal = 158x158, n1 = 10 and 80
candidate views.

Using the hierarchical and multi-resolution strategies we
reconstructed every object in the test set, despite the com-
plexity of their shape. Fig. 5(b) shows the reconstructed
object models.

The time required for each iteration was 25.6s for exhaus-
tive search with 20 candidate views, 135.5s for exhaustive
with 80 views, 30.5s for hierarchical strategy (80 views) and
6.2s for multi-resolution strategy (80 views). We note that
the multi-resolution strategy is the fastest. Moreover, if we
decrease the number of selected views (n1) to 5 we can get
a computation time of 4.9s, but we prefer 10 selected views
to increase the strategy efficacy. Since this time is required
for each iteration, the time saving is considerable.

Table I presents the results for the multi-resolution strat-
egy: column Views shows the number of views needed to
complete the model; Occup. shows the amount of occupied
voxels; Qual. shows the voxel map quality (quality mean
of all occupied voxels); and Dist. shows the total traveled
orthodromic distance measured in meters. For the hierar-
chical method the results are similar (omitted due to space
limitations).

TABLE I
RECONSTRUCTION DATA FROM THE MULTI-RESOLUTION STRATEGY

Object Views Occup. Qual. Dist.
Sphere 6 7200 0.757 17.70

Pear 7 4342 0.803 16.40
Banana 4 1049 0.765 7.15

Mug 8 7736 0.718 21.76
Bunny 9 5395 0.821 23.56
Dragon 9 3639 0.798 22.14

SGI-Logo 12 11900 0.832 32.53

B. Navigation Factor Behavior

With this test we show the effect of the navigation factor
in the reconstruction. We used the multi-resolution search
strategy. We run the algorithm with and without the naviga-
tion factor in the utility function. Table II shows the results.
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(a) Path with the nav. factor (b) Path without the nav. factor

Fig. 6. Views until the 3rd iteration. The paths are seen from a top view
perspective that gives the wrong impression that all the views are in a
horizontal plane. The sensor positions (views) are at different heights.

The columns w show the results with the navigation factor
and the columns wo show the results without it. There is a
significant reduction in the distance traveled by the sensor
in 5 of the 7 objects. In Fig. 6 we show an example of how
the navigation factor affects a reconstruction. In that figure
we can see that in the 3rd iteration a closer view is selected
when the navigation factor is used.

TABLE II
COMPARISON WHEN THE NAVIGATION FACTOR IS PRESENT (W) OR NOT

(WO) IN THE UTILITY FUNCTION

Object Views Qual. Dist.
w wo w wo w wo

Sphere 6 6 0.75 0.75 17.7 20.9
Pear 7 7 0.80 0.82 16.4 19.7

Banana 4 4 0.76 0.81 7.15 9.50
Mug 8 8 0.71 0.72 21.7 22.7

Bunny 9 9 0.72 0.81 23.5 23.8
Dragon 9 9 0.79 0.78 22.1 28.4
SGILog. 12 12 0.83 0.83 32.5 37.0

C. Voxel Resolution

Our system is able the operate with different scales and
voxel map resolutions. In table III and fig. 7 we show the
result from the use of different voxel sizes (voxel resolution)
in the reconstruction of the object mug. The column Time
shows the time required by iteration, in seconds; column V
shows the number of views needed to complete the model.
We can see that when the voxel size is smaller the number
of views increases, because more details and occlusion areas
have to be seen. On the other hand, the computation time
increases since the ideal ray tracing resolution used by the
strategy increases according to the voxel map dimensions.

TABLE III
RESULTS OF USING DIFFERENT VOXEL RESOLUTION.

Res. Vxls. in Map. Occup. V. Time Qual. Dist.
0.5 614, 125 1, 063 5 1.27 0.70 14.3
0.3 2, 628, 072 3, 408 7 2.81 0.72 18.8
0.2 8, 615, 125 7, 909 8 6.90 0.72 21.7
0.1 66, 430, 125 30, 374 11 44.80 0.72 27.1

(a) Res. 0.5 (b) Res. 0.3 (c) Res. 0.1

Fig. 7. Comparison between different voxel resolution models.

VII. CONCLUSIONS AND FUTURE WORKS

We have presented a view planning algorithm that de-
termines the next best view to reconstruct any arbitrary
unknown 3D object. Based on a voxel map representation
and a view sphere to position a range sensor, the algorithm
plans a series of views according to a novel utility function
and using an efficient search strategy. The planner has been
evaluated in simulation, reconstructing 7 different objects of
different complexities. The results show good quality in the
reconstructed models, with significant savings in computa-
tion time and the distance traveled. The main contributions
are: (i) a utility function that takes into account the the
navigation distance; and (ii) two novel search strategies, one
based on a hierarchical tessellation and other in a multi-
resolution ray tracing.

Given the promising results obtained in simulation, our
future work is to test it in a mobile manipulator with a stereo
vision system.
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