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Abstract— Although research on localization of sound sources
using microphone arrays has been carried out for years,
providing such capabilities on robots is rather new. Artificial
audition systems on robots currently exist, but no evaluation
of the methods used to localize sound sources has yet been
conducted. This paper presents an evaluation of various real-
time audio localization algorithms using a medium-sized micro-
phone array which is suitable for applications in robotics. The
techniques studied here are implementations and enhancements
of steered response power - phase transform beamformers,
which represent the most popular methods for time difference
of arrival audio localization. In addition, two different grid
topologies for implementing source direction search are also
compared. Results show that a direction refinement procedure
can be used to improve localization accuracy and that more
efficient and accurate direction searches can be performed
using a uniform triangular element grid rather than the typical
rectangular element grid.

Index Terms— Localization, Beamformer, Direction search,
Robot sensing systems

I. INTRODUCTION

The localization of sound sources using microphone arrays
is a well studied problem [1][2][3][4]. Some of the most
common applications of this technology include intelligent
environments and teleconferencing. Recently, microphone
arrays have also become popular within the area of robotics
where they have been employed to track users [5][6][7]
and as the basis for speech interfaces [8][9]. For example,
in [6] a microphone array is used to simultaneously track
multiple users interacting with the Sparticus robot. In [8]
the Honda Asimo robot is used as a referee for rock-
paper-scissors sound games. Auditory systems significantly
enhance the interaction between robots and humans, resulting
in much more natural and intuitive experiences for the users.
In systems with speech interfaces, the ability to localize
speakers in the environment is crucial [10]. For example, the
performance of automatic speech recognition systems can
be significantly improved when speaker position is known
[11][12].

Within the domain of artificial audition for robotics, lo-
calization must be performed with limited processing power,
thus the implementations studied are computationally effi-
cient enough to be executed in real-time on general purpose
processors. Audio localization techniques are generally based
on time delay of arrival estimation (TDOA) and delay-and-
sum beamforming (SRP, for Steered Response Power of a

beamformer). These techniques are particularly appealing
because they can be easily implemented to execute in real-
time [1][5][13][14]. However, with the existence of differ-
ent sound source localization methods and because robotic
applications have intrinsic integration issues (e.g., real-time
performance, mobile base, changing conditions) that first had
to be addressed to demonstrate feasibility, working systems
do not yet present clear demonstrations that the methods they
use are the best ones.

Therefore, this paper investigates the accuracy of different
TDOA audio localization implementations in the context
of artificial audition for robotic systems. The experiments
are performed using an array which has been used with
mobile robotic platforms [5][6][8][9][13][15] and can be
mounted on a wide range of medium to large sized robots.
Algorithms considered here include the standard SRP-PHAT
(Phase Transform) beamformer [2], enhancements developed
by Valin et al. [13][15], and a simplification of the SRP-
PHAT algorithm used in [14]. Two alternative topologies
for direction search grids are also compared. The main
contribution of this work is an empirical evaluation of these
algorithms and search grid topologies, to outline which one
works best and under which conditions to provide artificial
audition on robotic systems.

The paper is organized as follows. Section II provides
some background on TDOA estimation and sound localiza-
tion. Section III describes the experiments and implemen-
tation details. The results are presented in Section IV, and
Section V concludes the paper.

II. SOUND LOCALIZATION BACKGROUND

The localization algorithms considered here are all based
on TDOA estimation using modifications of a standard SRP-
PHAT beamformer. The main elements of these techniques
are time difference estimation and direction search. This
section presents background into these aspects of the local-
ization procedure and describes variations of the SRP-PHAT
algorithm which are studied in these experiments.

A. TDOA Estimation

Sound localization is commonly performed by TDOA
techniques. Using the observed time differences between
audio signals arriving at a pair of microphones, the position
of a speaker can be constrained to lie on a hyperboloid in
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space. A point estimate of speaker position can be computed
by solving the intersection of multiple hyperboloids from dif-
ferent microphone pairs at known positions. The generalized
cross-correlation (GCC) is one of the most popular TDOA
estimation algorithms [16]. Denoting the Fourier transform
signal received at microphone i as Xi(ω), the GCC estimate
τ̂ between microphone i and j can be computed as,

τ̂ = arg max
β

∫
ω

W (ω)Xi(ω)Xj(ω)e−jωβdω (1)

where W (ω) defines a weighting function which is com-
monly selected to be the PHAT given by

WPHAT (ω) =
1

|Xi(ω)||Xj(ω)| (2)

The PHAT is popular for sound localization due to its
robustness in noisy and reverberant environments [17].

B. Beamforming Search

In general, localization can be performed by applying
iterative re-weighted least squares to solve for the speaker
position [3]. However, noise in the TDOA estimates can
cause the system to be unstable, leading to poor solutions
[15]. The most common and successful audio localization
techniques are based on the steered response power (SRP)
or beamformer energy [4]. Using the GCC, a likelihood L
is assigned to each position x as follows,

L(x) =
∑
i<j

∫
ω

W (ω)Xi(ω)Xj(ω)e−jωτij(x)dω (3)

where the i and j index over all microphone pairs and
τij(x) denotes the TDOA between microphones i and j
corresponding to a source at position x. This function is
often referred to as the spatial likelihood function (SLF) [1].
Intuitively, if a source is located at position x̂ then each
integral term in (3) should be maximized at τij(x̂), yielding
a maximal likelihood at L(x̂). In practice, noise introduces
errors in the estimates of time delays, in which case the
beamformer in (3) is much more robust than the simple GCC
estimate in (1). Real-time position estimation can be achieved
by using discrete search-based techniques [1][13][15][18].
These algorithms can be efficiently implemented by pre-
computing the expected time delays τij(x) at a set of source
positions on a grid. The position with the largest total
beamformer energy summed across all pairs is selected as
the speakers location [5][13][18]. The above procedure is
used in conjunction with the PHAT frequency weighting
function, and is commonly referred to as the SRP-PHAT
technique. All techniques considered here will use a PHAT
weighting function, thus it will not be explicitly mentioned
when describing the algorithms.

C. Far-field Assumption

For robotic applications in unconstrained environments, a
search within a large 3D grid can become computationally
expensive. It is also difficult to accurately estimate position
when the distance to the sound source is larger than the

(a.) Triangular Mesh (b.) Rectangular Mesh

Fig. 1. Spherical Search Grids, a.) Triangular sampling from recursive
icosahedron subdivision (3 levels). b.) 20 x 20 spherical tessellation with
rectangular sampling.

microphone array dimensions. As an alternative, the far-
field approximation [15] can be used to estimate the di-
rection of the sound source. This reduces the search space
to 2-dimensions and avoids making unreliable estimates of
speaker distance. Under the assumption that the direction of
the sound source is the same for all microphones, the time
difference of arrival between each microphone pair can be
approximated by

τij =
1
c

(�pi − �pj) · �u (4)

where pi and pj are the position vectors of microphone i
and j respectively, �u is the source direction vector, and c is
the speed of sound in air. An empirical evaluation using a
rectangular microphone array found a mean approximation
error under 4 ◦ for sources at distances comparable to the
array dimensions which converge below 1 ◦ for larger dis-
tances [15]. This makes the far-field assumption particularly
appropriate for small arrays which are found on many robotic
platforms.

D. Localization Algorithms

This evaluation seeks to measure the performance differ-
ences between several variations of the SRP-PHAT algorithm
which can be used for real-time localization on a robot
platform. Four different techniques are evaluated:

1) PEAK: This method is a simplified beamformer using
only the maxima (or peak) of the GCC between
microphone pairs to compute the most likely speaker
position. This is similar to the method implemented
in [14] and is presented as a computationally simpler
alternative to the standard beamformer.

2) SRP: This method corresponds to the standard beam-
former as described above. The most likely speaker
position is selected using (3).

3) SW (Spectral Weighting): This method adaptively mod-
ifies the GCC weighting function in an attempt to
assign larger weights to frequency components which
have a higher signal-to-noise ratio [13]. The most
likely speaker position is selected using (3). However,
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additional terms are multiplied with the weighting
function W (ω).

4) DR (Direction Refinement): This method applies a
direction estimate refinement procedure after localiza-
tion in an attempt to improve accuracy [14]. This is
achieved by executing a local high-resolution search
without using the far-field assumption. A far-field
localization algorithm such as SRP or PEAK is first
executed to find an initial direction estimate. A local
search grid is then centered at the estimated direction.
Since the far-field assumption is not used, the time
delays are a function of speaker distance and the search
must be performed across both source direction and
distance. However, based on the observation that the
time delays quickly approach the far-field approxima-
tion as a function of speaker distance, only a few
nearby distances are searched. The search distances are
manually specified and fixed.

Both SW and DR are enhancements which can be used in
conjunction with other techniques (PEAK, SRP) and several
different combinations are considered in these experiments.
Two different search grid topologies are also tested, as shown
in Fig. 1:

• A spherical rectangular element grid (R) sampled in
uniform degree increments.

• A triangular element grid (T) sampled at uniform
distances along the surface of the sphere. The latter
grid is generated by performing recursive icosahedron
subdivision [13].

III. EXPERIMENTAL SETUP

A cubical 8 microphone array from [5][6][13][15] was
used for our experiments, and is shown in Fig. 2. The array
dimensions are 32 cm by 32 cm by 36 cm with a single
microphone placed at each vertex. Audio input was acquired
using a National Instruments PCI-6071E data acquisition
card which provides hardware synchronized channels to
ensure accurate TDOA estimation.

The experiments were carried out for range of different
source positions which are appropriate in the context of a

Fig. 2. The cubical microphone array used in the experiments. The array
was elevated approximately 45 cm from the ground during experiments.
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Fig. 3. A top view sketch of speaker positions used in the experiment.
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Fig. 4. Histogram of the background noise signal.

small to medium sized robot platform. The task was localiza-
tion of a single fixed source which was generated by playing
prerecorded speech sequences. The test positions were placed
at heights which were at level and above the array center to
correspond to humans interacting with a medium to large
sized robot. An overhead sketch with labeled test positions
is shown in Fig. 3. At each position, the SNR (signal-to-
noise ratio) was also varied by adjusting the volume of the
audio playback. Experiments were performed in a laboratory
setting with a reverberation time of 0.1 seconds. Two sets of
experiments were conducted:

• Experiment 1 was performed over all five positions
shown in Fig. 3 with only stationary background noise
affecting localization accuracy. A histogram of samples
from the background noise signal is shown in Fig. 4.
The noise distribution is unimodal and appears roughly
Gaussian.

• Experiment 2 was carried out by placing a noise source
at position 5 and performing localization on sources at
positions 1, 2, and 3. Complex, non-stationary noise was
generated by playing vocal and instrumental classical
music.

All the techniques were implemented in Matlab which
was used as a common platform to ensure any performance
differences were due to the algorithms and not different
implementation platforms. The test signals were sampled
at 22 kHz and localization was executed on 25 ms win-
dows with 50% overlap. To be consistent with a real-time
implementation, the time delays for each position were
pre-computed in a lookup table and rounded to units of
samples to allow efficient indexing and reduce the number
of cross-correlations computed. The rectangular grid was
tessellated at a resolution of 60x60 and the triangular grid
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was computed by recursively sub-dividing an icosahedron to
four levels. These results in direction searches over 3600
and 2562 points respectively. These particular resolutions
were selected as they can both be performed in real-time
using general-purpose processors [1][13]. Using icosahedron
subdivision, the resolution of the triangular grid can only
change by factors of four, thus the next larger grid becomes
computationally expensive to search. The spectral weighting
procedure also has many parameters related to estimating
the noise spectrum. In general, parameter values were set in
accordance with [13] and any parameters not specified there
were chosen as specified in [19]. The direction refinement
procedure is computed using a 196 element local rectangular
grid which ranges in both directions from −1.5 ◦ to 1.5 ◦ in
increments of 0.5 ◦ and is computed at distances of 0.5, 1.5,
3.0, and 5.0 m from the array center. The time differences
were quantized to units of 0.5 samples for this smaller grid.

IV. RESULTS

The results of the experiments are shown in Tables I and
II and Figures 5 and 6. The implementations using search
grids created with rectangular patches are denoted with (R)
and those with triangular patches with (T). The mean error
is computed as the angle between the ground truth and
estimated direction. To avoid large biases introduced by large
errors which occur when a segment does not contain any
samples from the speaker, segments with an error greater
than 30 ◦ are discarded from the calculation of mean error.
The percent anomalies are also computed for each technique
as the percentage of segments which had a localization error
greater than 10 ◦.

The results in Tables I and II are averaged across both
SNR and speaker position. The high percentage of anomalies
can be attributed to the small time windows used for local-
ization. This value decreases significantly as window size is
increased. In a separate analysis (not described here) which
used the data from Experiment 1, the percent anomalies
all dropped below 10% at window sizes of 100 ms, while
relative performance of each algorithm stayed the same. The
results in Fig. 5 depict mean error as a function of SNR,
where each data point is computed by averaging results
across all positions at a given SNR. In practice, the signal-
to-noise ratios are slightly different across positions and an
approximate SNR is computed by averaging the individual
SNR estimates. Similarly, Fig. 6 show the percentage anoma-
lies as a function of approximate SNR.

For Experiment 1, the simplification of using only max-
imum peaks of the GCC for localization (PEAK) performs
worse than the others in terms of mean error across all SNR
values (Fig. 5 left). This result demonstrates the benefits
of using a complete delay-and-sum beamformer (SRP), and
we observe that both under simple and complex noise
conditions the beamformer improves accuracy. The spectral
weighting (SW) procedure generally did not improve the
localization accuracy, and the SRP beamformer performed
better across all SNR values. The decrease in performance
can be attributed to difficulty estimating the noise spectrum,

where the signal spectrum is mistakenly being estimated
as noise spectrum. Also, given the wideband nature of this
noise, we do not expect a frequency re-weighting algorithm
to improve performance. The higher percent anomalies of the
SW techniques also suggest signal spectrum being mistaking
estimated as noise.

The direction refinement was applied to the both the
rectangular and triangular search grids and had a significant
effect on localization accuracy. In both cases, the mean
errors were at least as good in all experiments. Again, the
results for the DR procedure applied to the PEAK technique
are not shown here as the effect will be similar to the
SRP algorithm but with a lower accuracy. In general, the
improvement in mean error from using DR is limited by the
angular range of the local search grid, and for this reason the
DR procedure does not significantly reduce the number of
anomalies. In these experiments, differences in the percent
anomalies can be attributed to frames which have localization
errors around 10 ◦ for which the refinement is adapting the
direction estimates to be slightly inside or slightly outside the
10 ◦ threshold used to classify anomalies. Overall, the best
performer in this experiment is the SRP+DR(T) technique.

For Experiment 2, despite significantly different sources
of noise, the relative performance of the techniques was
similar to Experiment 1. However, the performance of
each individual algorithm does not always decrease with
approximate SNR in Experiment 2. This is because noise
in this experiment is highly dynamic and there is a large
variance in SNR during the audio playback. To maximize the
different types of interactions between the noise and source
signals, they were not synchronized across experiments,
but this caused the SNR at key points during playback to
vary significantly from the average SNR. Regardless of this
effect, the relative performance of each technique remained
consistent. The mean error performance of spectral weighting
(SW) improves in Experiment 2 because the noise source is
colored, however this improvement only appears at higher
SNR when the noise spectrum and signal spectrum can be
more easily distinguished. The dynamic nature of the music
makes spectrum estimation particular difficult in the lower
SNR tests. Once again, SRP+DR(T) has the best results
averaged across position and SNR (Table II) and although
it’s accuracy is slightly lower than SR+DR+SW(T) in the
higher SNR tests (Fig. 5 right), it still performs the best
overall.

It is also important to note that none of the test positions
were at the distances used in the direction refinement search,
and the results clearly show that the DR procedure improves
accuracy even in these cases.

With respect to search grid, we observe that the triangu-
lar (T) search grid outperforms it’s rectangular (R) counter-
part in both Experiments. For all the techniques (PEAK, SRP,
SRP+DR), the triangular mesh implementations perform
better in terms of mean error percent anomalies across all
SNR values and in terms of the overall averages. Although
not shown here, the triangular search grid will improve
accuracy of the PEAK procedure in a similar manner to
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TABLE I

AVERAGE RESULTS FOR EXPERIMENT 1

PEAK(R) PEAK(T) SRP(R) SRP(T) SRP+DR(R) SRP+DR(T) SRP+SW(T) SRP+SW+DR(T)
Mean Error (deg) 5.16 3.61 3.93 2.79 2.54 2.03 3.37 2.55

Percent Anomalies 31 30.5 28.1 27.1 28.1 27.2 33.4 33.4

TABLE II

AVERAGE RESULTS FOR EXPERIMENT 2

PEAK(R) PEAK(T) SRP(R) SRP(T) SRP+DR(R) SRP+DR(T) SRP+SW(T) SRP+SW+DR(T)
Mean Error (deg) 6.26 5.29 4.29 3.55 3.49 3.18 3.87 3.42

Percent Anomalies 48.5 48.4 46.7 46.4 46.7 46.4 48.5 48.5
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Fig. 5. Mean Localization Error Results averaged across all positions for Experiments 1 and 2.
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Fig. 6. Percentage Anomaly Results averaged across all positions for Experiments 1 and 2.

the other techniques. The rectangular grid, which is sampled
uniformly in angle, has a large density of points in a
very small neighborhood around the poles. This significantly
reduces sampling density across the rest of the sphere. In this

analysis, poles were located at positions which are not likely
for sources detected by a (mobile) robot (directly above and
below the array). Although the poles can be oriented in a
direction where speakers are most likely to be located, the
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dense sampling at these points requires the units of time
delays to be quantized much more finely because search
points are so close together. This would significantly increase
the computation time because the GCC must be computed
for many more time delays. It would also be inefficient to
have such a fine resolution for the more widely spaced search
points which make up most of the rectangular mesh.

V. CONCLUSION

This paper presents an evaluation of various implemen-
tations and modifications of real-time SRP-PHAT based
localization systems. Results suggest that the direction re-
finement procedure presented in [13][5] (SRP+DR) improves
localization accuracy, even when the source is not at the
radii used for the direction search. It should be noted that
this procedure requires additional computation as a second
search is performed and additional GCC sums need to be
computed, but it is still possible to reach real-time perfor-
mance as the local grids are relatively small. In addition,
the triangular-patch search topology yielded higher accu-
racy than the rectangular patch topology for all algorithms.
Uniform distances between search directions are also more
appropriate for computing quantized TDOA lookup tables
used to perform quick direction searches. For the algorithms
considered here, a standard SRP-PHAT beamformer using
the direction refinement procedure (DR) with no spectral
weighting (SW) and a (isotropic) triangular patch search grid
is the best solution for real-time audio localization.

Future research related to these experiments includes a
theoretical analysis of the effects of search grid resolution
between the triangular and rectangular tessellations. The
results obtained from the direction refinement procedure also
suggest that a coarse-to-fine search is worth investigating.
This may potentially improve both speed and accuracy of
the localization procedures. With respect to artificial audition
for robotic systems, future work includes evaluating the
robustness of localization methods in complex situations
involving simultaneous tracking of multiple users or relative
motion between the robot and sound sources.
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