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Abstract— We study the multi-robot synchronization on a
segment. The goal is for each robot to move along a subsegment
of equal length in equal time interval with potential impacts.
To achieve the synchronization, we propose a decentralized
algorithm by designing impact law, which does not depend on
the position of the robot, but on the time information. Specif-
ically, “the time interval between two consecutive impacts” is
exchanged when the robots meet. We also show how to apply
the synchronization algorithm to a planar patrolling problem.
Simulation results show the feasibility and robustness of our
algorithm.

I. INTRODUCTION

The problem of N-beads sliding freely on a curve with
collision fascinates researchers for long. Sevryuk in [1] elu-
cidates some fundamental results when the N-bead colliding
elastically on a line, and prove the total number collisions
between particles for all initial conditions is finite and upper
bounded. By contrast, on a ring, most initial conditions
lead to an infinite number of collisions, which makes the
problem of “N-beads slide freely on a ring” more interest-
ing. Numerous work studies the influence of the collision
and friction on the impact dynamics. In [2], Glashow and
Mittag observe that the problem of three beads sliding on
a frictionless ring with elastic collisions is equivalent to a
standard billiard flow, where the dynamic system is studied
that consists of three hard rods sliding along a frictionless
ring with potential elastic collisions, as well as the dynamic
system that consists of one ball moving on a frictionless
triangular table with elastic rails. Cooley and Newton in
[3] study the elastic/inelastic impact dynamics of N-beads
on a frictionless ring problem via matrix products. Each
collision sequence is taken as a billiard trajectory in a right
triangle with non-standard reflection rules, and it is proven
the existence of the periodic orbits.

Imitating the impact behavior of N-beads’ collective mo-
tion, and designing artificial impact law in robotics appli-
cations become very interesting. In [4], it is shown that
the synchronization of beads on a ring can be achieved
by modifying the impact law based on the knowledge of
discrete-time consensus algorithms, in which each bead
updates its logic state based on the distance from its current
position to the “center of dominance region”. A necessary
condition for synchronization is that the number of beads in
the collection is even, initial velocity of half beads in the
system is clockwise, and the other half is counterclockwise.
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The algorithm is proven to converge to a steady state locally.
In [5], Kingston et. al. propose a decentralized solution
to the cooperative perimeter-surveillance problem, which is
robust to the insertion/deletion of team members and the
perimeter expanding and contracting. The algorithm requires
that each agent knows the length of the perimeter, the total
number of the agents on the team, and its position in the
team. The approach converges in finite time. Both works
require only intermittent communication, which is very im-
portant in robotics patrolling and surveillance applications.
Moreover, in [6], an algorithm is proposed to the patrolling
problem by generating a circular patrol paths for a team of
mobile robots inside a designated target area to guarantee
the maximum uniform frequency. The robots are distributed
uniformly along the path, and terrain directionality and
velocity constraints are also taken into the consideration
therein. William and Burdick in [7] study the problem of
patrolling a multi-object boundary by a multi-robot system,
where the complexity of the original problem is reduced
based on a graph representation. Furthermore, a revision
algorithm is proposed therein to revise paths in cases that
the team size or the environment changes.

In this paper, we consider multi-robot system moving on a
line segment with potential impacts. We design impact laws
(i.e. control laws when robots meet each other) to achieve
motion synchronization by each robot moving along a equal-
length subsegment in equal time-span on a line segment. The
algorithm assumes simple information exchange, namely, the
time span since the last impact, and assumes no knowledge
of total number of robots, nor the total length of the line
segment be known by the robots. While similar ideas ap-
peared in [4] and [5], some distance measurement to critical
points or priori knowledge such as the perimeter length or the
total robot number is required. We relax such assumptions,
and use only the information of robot interaction time and
velocities in constructing the control laws. We also consider
the scenario when multi-robot-impact(more than two robots)
at the same point, which is ignored in previous work. Our
algorithm is decentralized, and robots only communicate to
their adjacent neighbors when they meet each other. It is
robust to robot failures, in the sense that a removal or an
addition of robots does not affect the patrolling goal and
eventually every point of the patrolling path is visited with
uniform frequency.

The rest of the paper is organized as follows. In section II,
we formulate the system model, define the synchronization
problem and desired system behavior. In section III, we
propose an algorithm by designing impact laws for different
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Fig. 1. A demonstration of a 5 robot system moving along the segment
[0,1]

impact types, and analyze the stability of this system. In
section IV, we apply the synchronization problem into a
planar patrolling problem using the Hamiltonian path. We
demonstrate the satisfactory performance using simulations
in section V. Finally, we conclude in section VI.

II. PROBLEM FORMULATION

Consider assigning an N homogeneous mobile robot sys-
tem S to move efficiently along the segment [0, 1], with
sporadic communications among robots when they meet.
A demonstration is shown as in Figure 1, where 5 robots
are moving along the segment with potential impacts (either
between robots or between the robot and the boundary).

The vehicle model we study is a first-order point-mass
model with state vector qi as

qi = [xi vi ki tki−1]T (1)

where i ∈ [1, 2, . . . N ], xi is a continuous-time state denoting
the robot’s position; vi ∈ R denotes the velocity, and ki ∈ Z
is a discrete state denoting the number of switches that the
ith robot has encountered; and tki−1 is a discrete state timer
denoting the time instant the last (ki− 1)th impact happens.

Furthermore, we assume:
1) Robot i moves on the segment [0, 1], with constant

speed vi.
2) Robots communicate only when they meet.
3) Robots change velocity instantly right at the moment

they meet.
4) Robot i is initialized with random position xinit

i ∈
[0, 1], random nonzero velocity vinit

i ∈ [−1, 1] \ 0,
kinit

i = 0, tinit
i (−1) = 0. Furthermore, robots initially

are not aligned at the same position, i.e, ∀i, j ∈
S, xinit

i 6= xinit
j .

Since the robot in the system moves with a constant speed,
the constant speed continuous dynamic can be model as

f(q) =
{

ẋi = vi

v̇i = 0 , ∀q ∈ C (2)

where C is the flow set where the constant dynamic is
possible.

However, when the impacts happen among robots, the
velocity vector jumps in response to the impact, the dynamic
system is discrete at this point, We describe such discrete
dynamic model as

g(q) =
{

x+
i = 0

v+
i = ui

, ∀q ∈ D (3)

where D is the jump set when the impact happens. Thus
this dynamic system can be written in a hybrid system form
H := (f, C, g,D).

Fig. 2. An illustration of head-head type impact between robots i and i+1

Fig. 3. An illustration of head-tail type impact between robots i and i+1

Remark 1: The assumptions imply that, robot i ∈
2 . . . N − 1 will only impact with robot i − 1 and i + 1;
robot 1 only impacts with the boundary and robot 2; robot
N only impacts with robot N − 1 and the boundary.

Remark 2: The communication topology is connected
over finite time because all the impacts happen in finite time.

We now define our control goal as achieving the synchro-
nization on a segment, which is an efficient solution to the
patrolling problem.

Definition 1: (Synchronization on a segment) Consider a
collection of robots moving along a segment, the system
reaches synchronization on a segment, if
(1) All the robots move at the same nonzero speed vss which
is pre-set among robots. That is

∀i ∈ S, |vi| = vss 6= 0 (4)

(2) For any robot i, the time span between it impacts robot
i + 1 and i− 1 is a constant tss, that is

∆ti(ki − 1, ki) = ∆ti(ki, ki + 1) = tss (5)

where

∆ti(ki − 1, ki) = tki
− tki−1

∆ti(ki, ki + 1) = tki+1 − tki

(6)
Such distribution of patrolling goal is effective because each
robot patrols equal distance in the same time span tss. So
each subarea is visited by a robot with equal frequency. The
frequency of the area being patrolled is 1/tss once the system
synchronizes on the segment.

Based on the definition of synchronization on a segment,
we define the problem under consideration.

Fig. 4. An illustration of hit-boundary type impact of robot i

Fig. 5. An illustration of multi-robot hit type impact of robot i, i+1, . . . ,
i + k
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Problem 1: Under assumptions 1 to 4, find a decentralized
control algorithm for (2) such that robots achieve synchro-
nization on the segment [0,1].

As the robots move along the segment [0, 1], there is
impact happens either between two robots, or one robot hits
the boundary. Now we define the behavior of impact in four
categories.

Definition 2: (Impact type) “Impact” happens in three
cases, which are head-head type, head-tail type, boundary-hit
type, and multi-hit type respectively.

• Head-Head Type Impact: As shown in figure 2, head-
head type happens between robots i and i + 1, when
vivi+1 < 0.

• Head-Tail Type Impact: As shown in figure 3, head-
tail type happens between robots i and i + 1, when
vivi+1 > 0, and vi(|vi| − |vi+1|) > 0.

• Hit-Boundary Type Impact: As shown in figure 4, such
impact happens either v1 < 0 or vN > 0.

• Multi-hit Type Impact: As shown in figure 5, multi-hit
type happens when the robots i, i + 1, . . . , i + k, k ≥ 2
bump into the same position. Given the velocity and
position vector p and v at time t0, under the condition{

vi > vi+1 > · · · > vi+k

pi < pi+1 < · · · < pi+k
(7)

there exists time t� > 0 that agents i, i + 1 . . . i + k
bump into each other at p�.

p� = pi + t�vi = pi+1 + t�vi+1 = · · · = pi+k + t�vi+k

III. SYNCHRONIZATION ALGORITHM

We describe our decentralized control law to achieve
synchronization in this section. The basic idea is that each
robot in the system under motion moves in a constant
velocity until impact happens (i.e., when they meet). Then,
we define different updating law when different type of
impact happens. “Constant velocity” means that the robot
moves along a straight line without any changes of the
magnitude and the direction of its velocity.

The flow chart of the algorithm is shown as in Figure 6.
We describe each block of the flow chart in the following.

A. Initialize state vector

At time t = 0, according to the assumptions defined
in Section III, for robot i ∈ S, its state vector qinit

i =
[xinit

i vinit
i kinit

i tinit
ki−1] is initialized as:

1) xinit
i ∈ [0, 1],∀j ∈ S, j 6= i⇒ xinit

i 6= xinit
j ;

2) vinit
i ∈ [−1, 1]\0;

3) kinit
i = 0;

4) tinit
ki−1 = 0.

Furthermore, kinit
z0

, tinit
kz0−1 = 0, kinit

z1
= 0, tinit

kz1−1 = 0.
Once initialized with position and velocity, robots are free

to move on the segment at the uniform velocity, until the
first impact happens. We then come up with three state-
vector updating laws in different impacting cases. Again, as
mentioned earlier, two robots communicate when impacting,
in other words, the state vectors are updated at impact time.

Fig. 6. A flowchart describes the process of synchronization algorithm

B. Motion in constant velocity

At tp, any robot i in the robot system S moves at constant
velocity. The equation of motion is modelled as:

f(q) def=
{

ẋi = vi

v̇i = 0 , q ∈ C (8)

where C = {q : xj 6= xk,∀i, j in S}.

C. Face-face type updating law

At tp, an face-face type impact happens between robot i
and i+1, (i, i+1 ∈ S). At t+p , the positions of i and i+1 are
intact; the velocity of i and i + 1 are to be reversed, and are
updated according to the difference of the time span ∆ti(ki−
1, ki) and ∆ti+1(ki+1 − 1, ki+1), which are the time spans
from t+p traced back to the last impacting instant tki−1 and
tki+1−1 for robot i and i + 1, respectively. In the following,
we denote ∆ti(ki−1, ki) and ∆ti+1(ki+1−1, ki+1) as ∆ti
and ∆ti+1. Next, the impacting time counter ki and ki+1 is
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accumulated by one, since one more impact just happened.
Finally, the recall timer tki−1 and tki+1−1 are replaced by
the newest impact moment tp. The other robot state vectors
are intact at instant tp.

The velocity updating law is originated from the idea of
feedback control. Since the algorithm is thoroughly decen-
tralized, one is only able to communicate with its neighbors.
We want the magnitude of the velocity to consensus to vss.
Thus, for agent i, when its latest impact time-span is shorter
than its neighbors, its velocity should be lowered, and vice
versa. Once the time span of two impacting robots are the
same, it should be set as our ultimate velocity vss.

The mathematical representation of such impacting law is
shown as follows. When the kth face-to-face type impact
happens between robots i and i + 1 at time instant tp, the
state update law is:

g1(q, tp)
def=


v+

i = −sgn(vi)(vss + a1(∆ti −∆ti+1)vssvi)
v+

i+1=
−sgn(vi+1)(vss + a2(∆ti+1 −∆ti)vssvi+1)

q ∈ D1

(9)
where D1 = {q : xi = xj , vivj < 0}, a1, a2 are parameters
that work as the feedback gain, |a1| < 1, |a2| < 1, and
a1 < 0, a2 > 0 if ∆ti+1 > ∆ti), vice versa. And also,
k+

i ← ki + 1, k+
i+1 ← ki+1 + 1, t+ki−1 ← tp, t+ki+1−1 ← tp.

And sgn is the sign function that extracts the sign of a real
number. So the −sgn(vi[k]) plays the role that reverse the
velocity of i after the impact at time tp.

D. Face-tail type updating law

Considering the face-tail type impact happens at tp be-
tween robot i and i + 1, (i, i + 1 ∈ S). At t+p , the positions
of i and i+1 remain the same; the velocity magnitude vi will
be swapped with vi+1, the direction of vi+1 will be reversed;
the impacting time counter ki and ki+1 is added by one, the
recall timer tki−1 and tki+1−1 are replaced by the newest
impact moment tp. The other robot state vectors are intact
at instant tp.

When the kth face-to-tail type impact happens between
robots i and i + 1 at time instant tp, the state update control
can be represented in the form:

g2(q, tp)
def=

{
v+

i = vi+1

v+
i+1 = −vi

, q ∈ D2 (10)

where D2 = {q : xi = xj , vivj > 0, vi(|vi| − |vi+1|) > 0}.
And the timer and counter update: k+

i ← ki + 1, k+
i+1 ←

ki+1 + 1, t+ki−1 ← tp, and t+ki+1−1 ← tp.

E. Hit-boundary type updating law

At tp, suppose robot i, (i ∈ S) hits boundary z0 (or z1).
Taken as a virtual static robot, the boundary has constant
zero velocity and fixed position. At t+p , The positions of i
is intact; the velocity vi will be reversed, and the magnitude
will be tuned at the ultimate velocity vss. The impacting
time counters ki and kz0 (or kz1) are added by one, the
recall timers tki−1 and tkz0−1(or tkz1−1) are replaced by the

newest impact moment tp. The other robot state vectors are
intact at instant tp.

when the kth boundary-hit type impact happens between
robots i and boundary, we set the state update law as:

g3(q, tp)
def= v+

i = −sgn(vi)vss, q ∈ D3 (11)

where D3 = {q : {x1 = 0, v1 < 0}
⋃
{xN = 1, vN > 0}}.

And timer and counter update as: k+
i ← ki +1, and t+ki−1 ←

tp.

F. Multi-hit type updating law

At tp, suppose the robots i, i+1, . . . i+k, meet with each
other at the same position. At t+p , the position vector stays
the same, the velocity of the robots i, i + 1, . . . i + k will
be reversed; time counter ki, ki+1 . . . ki+k is added by one,
and the recall timer is updated by the current time. And we
show the system model as follows.

g4(q, tp)
def=


v+

i = −vi

v+
i+1 = −vi+1

. . .
v+

i+k = −vi+k

, q ∈ D4 (12)

where D4 = {q : xi = xi+1 · · · = xi+k, vi < vi+1 · · · <
vi+k}. And again, counter and timer update:k+

i ← ki + 1,
t+ki−1 ← tp, k+

i+1 ← ki+1 + 1, t+ki+1−1 ← tp, . . . , k+
i+k ←

ki+k + 1, t+ki+k−1 ← tp.

G. Convergence analysis of the dynamic system

Next, we discuss the convergence of the velocity magni-
tude |vi| and the elapsed time ∆ti between impacts in the
hybrid dynamic system H .

We first take a look at the velocity magnitude. In the flow
set C, the continuous dynamic defined in (8) does not change
the magnitude the velocity, since the differential of velocity
v̇ is 0. On the other hand, in the jump set D, we look at
the corresponding impact case individually. Obviously, the
face-tail type and multi-hit type of impacting laws in (10)
and (12) do not change the magnitude of velocity, instead,
it reverses the direction of the velocity. In the boundary-hit
type, we can see every time it hits the boundary, its velocity
magnitude will be set to the ultimate velocity vss. Next, we
analyze the face-face type impacting law defined in (9). vss

is a common term, without loss of generality, we write v∗i , v∗j
as vi− sgn(vi)vss, vi+1− sgn(vi+1)vss respectively. where

{
v∗+

i = −sgn(v∗i )a1(∆ti −∆ti+1)vssv
∗
i

v∗+
i+1 = −sgn(v∗i+1)a2(∆ti+1 −∆ti)vssv

∗
i+1

(13)

Since we only discuss the velocity magnitude |vi|, we
ignore the sgn function, which only changes the direction.
Obviously, v∗i and v∗i+1 are decoupled, thus, we will analyze
v∗i next. Since the robot moves in a constant velocity between
the impacts on a segment with length 1, the ∆ti is upper and
lower bounded as

1
max(vi)

≤ ∆ti ≤
1

min(vi)
(14)
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which implies

0 ≤ |∆ti −∆ti−1| ≤
1

min(vi)
(15)

Since the velocity vi is upper and lower bounded, we can
write e1vss < |vi| < e2vss, where 0 < e1 < 1, e2 > 1.
Actually, by choosing proper parameter a1 and a2, vi can
be guaranteed to be bounded for any given e1 , e2. Thus
min(|vi|) = e1vss. And we consider the ratio rk = |v

∗+
i

v∗i
|

when the kth face-face type impact happens,

rk = |v
∗+
i

v∗i
| = |a1(∆ti −∆ti+1)vss| (16)

≤ |a1
vss

min(vi)
| = |a1|

e1
< 1 (17)

for any given |a1| < e1. It can be seen that the velocity
magnitude |v∗i | is upper bounded by a decaying geometric
series with the common ratio ρ, where rk < ρ < 1 for
k ∈ 1, 2 . . . ,∞. Thus, v∗i decays to zero as well. Then, the
magnitude of vi converges to vss as t → ∞. Moreover,
∆ti = ∆ti+1 for any pair, the elapsed time between impacts
for robot i and j reaches consensus. Thus, the system reaches
synchronization on the segment.

IV. AN APPLICATION OF SYNCHRONIZATION MOTION:
AREA PATROLLING

In this section, we apply the segment synchronization into
a multi-robot area patrolling problem.

Consider assigning an N homogeneous mobile robot sys-
tem S to patrol a given 2D area, which has its patrolling
interest uniformly distributed. We will first partition the
planar area into grids, and by finding a Hamiltonian path, we
can simplify the 2D patrolling problem into a 1D patrolling
case.

In the mathematical field of graph theory, Hamilton graph
is well associated with the salesman’s problem.

Definition 3: [9](Hamiltonian path) Given a directed
graph G = {V, E}, and two vertices s, t ∈ V , a Hamiltonian
path (traceable path) is a path in G from s to t that goes
through every vertex V exactly once.

Definition 4: [9](Hamiltonian cycle) A Hamiltonian cycle
(Hamiltonian circuit, vertex tour or graph cycle) is a cycle
that visits each vertex exactly once (except the vertex which
is both the start and end, and so is visited twice). A graph
that contains a Hamiltonian cycle is called a Hamiltonian
graph.

Patrolling in a 2D area can be converted to the problem
of finding a Hamiltonian path. When a robot moves along
the path, its sensor or effector covers the area eventually.
Assume the robot sensor covers a rectangular area, we can
use the regular grid-based decomposition to partition the
area. In figure 7, we show several demonstrations of the
Hamiltonian path(arrowed path) covering a partitioned area
according to grid-based-partition method(dot-dash line). Two
different Hamiltonian paths are shown in figure 1(a) and 1(b).
Another Hamiltonian path over an area with obstacles(shaded
area) is shown in figure 1(c).

Fig. 7. A series of illustrations of Hamiltonian path that covers the
whole area. a) A Hamiltonian path illustration. b) Another Hamiltonian
path illustration. c) A Hamiltonian path in the environment with obstacles.
d) An illustration of Hamiltonian cycle generated by STC method.

Also, in [10], Gabriely and Rimon introduce a Spanning
Tree Coverage (STC) method. The authors assume that a
single robot is with a sensing range of D, then partition
the area into cells that each cell has the size of 2D × 2D.
Then, by building a spanning tree according to the cell size, a
Hamiltonian cycle visits all cells of the domain by following
the tree around. An illustration of STC method is shown in
figure 7(d), in which the dotted line is the spanning tree, the
arrowed path is a Hamiltonian cycle around the spanning
tree. Note that a Hamiltonian path can be generated from
the Hamiltonian cycle by breaking the circle at any point.

Other works on “finding a minimal path that covers the
whole area” have been solved by different researchers. Other
methods on generating 1D path can be found in [6][14], for
example.

Remark 3: We have transformed the original 2D area pa-
trolling problem into a 1D motion synchronization problem
by applying the Hamiltonian path. Then, we can simply use
the synchronization algorithm in Section III to solve the
multi-robot patrolling problem in a 2D area.

V. SIMULATION RESULTS

As shown in Fig. 8, an 6-robot system reaches synchro-
nization on segment [0, 1]. At time t = 0, the position vector
and velocity vector are [ 0.0960 0.2843 0.3708 0.5275
0.5456 0.9811 ] and [ -0.8706 0.0896 0.6728 -0.7094 -0.6570
-0.8639 ] respectively. We choose the parameter in (9) as
a1 = 0.92, and a2 = −0.84. The system tends to reach
synchronization by its trajectory uniformly distributing along
the segment. Each subsegment is [0, 0.167], [0.167, 0.333],
[0.333, 0.5], [0.5, 0.667], [0.667, 0.833], [0.833, 1], each
robot moves along an equal length subsegment, back and
forth at the same speed vss = 1, which can be seen in the
figure as the slope of each single short line is all the same
at time t = 6.

In Fig. 9, we simulate the scenario that at time t =
122.7s, a robot is suddenly taken out, which is illustrated
as a vertical line from 0.5 to 0 at 122.7 sec. The other
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Fig. 8. Simulation result of 8-robot system synchronization on the segment
[0,1]

Fig. 9. The system response when a robot is taken out at time 122.7

three robots will adapt to such dynamic change and reaches a
new synchronization configuration by uniformly distributing
along the segment, and the equal length subsegments are [0,
0.333], [0.333, 0.667], [0.667, 1].

In Fig. 10, we demonstrate the case that 2 robots are added
into the system at time point 202.4s, at x1 = 0.35 and x2 =
0.6 with the velocity v1 = 0.342 and v2 = −0.874. It shows
the system reaches a new synchronization configuration in
about 15 seconds.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a solution to multi-robot syn-
chronization on a line segment with sporadic communication,
which does not require any information on the localization
of robot. Instead, the robot updates its velocity mainly based
on the time span between two consecutive impacts of robot.
We then apply the synchronization to a planar patrolling
problem, based on the notion of a Hamiltonian path. Our
solution guarantees that each point in the area is visited
with a uniform frequency. Simulation results validate our
algorithm, and show the efficiency and robustness of the
method.

Fig. 10. The system response when two other robots are added into the
system at time 202.4 sec
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