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Abstract— This paper reports the application of vision based
simultaneous localization and mapping (SLAM) to the prob-
lem of autonomous ship hull inspection by an underwater
vehicle. The goal of this work is to automatically map and
navigate the underwater surface area of a ship hull for foreign
object detection and maintenance inspection tasks. For this
purpose we employ a pose-graph SLAM algorithm using an
extended information filter for inference. For perception, we
use a calibrated monocular camera system mounted on a
tilt actuator so that the camera approximately maintains a
nadir view to the hull. A combination of SIFT and Harris
features detectors are used within a pairwise image registration
framework to provide camera-derived relative-pose constraints
(modulo scale). Because the ship hull surface can vary from
being locally planar to highly three-dimensional (e.g., screws,
rudder), we employ a geometric model selection framework to
appropriately choose either an essential matrix or homography
registration model during image registration. This allows the
image registration engine to exploit geometry information at the
early stages of estimation, which results in better navigation and
structure reconstruction via more accurate and robust camera-
constraints. Preliminary results are reported for mapping a
1,300 image data set covering a 30 m by 5 m section of
the hull of a USS aircraft carrier. The post-processed result
validates the algorithm’s potential to provide in-situ navigation
in the underwater environment for trajectory control, while
generating a texture-mapped 3D model of the ship hull as a
byproduct for inspection.

I. INTRODUCTION

Present day means for ship hull and port security inspec-
tion require either putting divers in the water or piloting a
remotely operated vehicle (ROV) over the area of interest—
both of these options are manpower intensive and generally
cannot quantitatively guarantee 100% survey coverage. There
is a growing need to automate this task to allow autonomous
robotic inspection of ships and port facilities for foreign
objects such as limpet mines or improvised explosive devices
(IEDs). Automating this task, however, is challenging. Cur-
rent tethered robotic inspection systems present issues of
snagging, maneuver degradation, and tether management,
all of which make maneuvering around the ship difficult.
Moreover, current robotic inspection methods require human
in-the-loop intervention for both sensory interpretation and
control (ROV pilot). Navigation feedback in these scenarios
is typically performed using acoustic beacon time-of-flight

ranging [1]. This requires setup and calibration of the beacon
infrastructure, and therefore vitiates our ability to rapidly and
repeatably inspect multiple underwater port structures.

In light of this, there exists a need to automate this
task through the use of untethered autonomous underwater
vehicles (AUVs). To do so requires overcoming several
present-day science and technology challenges inherent to
the inspection task. For example, areas around ships in pier
are severely confined, cluttered, and complex sensing en-
vironments (e.g., acoustically, magnetically, optically). This
necessitates the need for advanced navigation and localiza-
tion systems that can work in confined, environmentally
noisy spaces. Additionally, we would like the inspection
method to quantitatively ensure 100% survey coverage of the
hull, pier structures, and pilings for IED and foreign object
detection. The underlying algorithm should facilitate in-situ
sensor-reactive navigation while accommodating long-term
map-based learning during revisited exploration (a prereq-
uisite for hull change detection). Moreover, the increased
diversity of threat objects and associated potential for false
alarms in a cluttered environment require that fusion take
place from multiple types of sensors for robustness and
redundancy. In combination, all of these challenges and
requirements, suggest that a SLAM based approach could
hold the promise of accommodating the needs of autonomous
automated hull search and inspection by AUVs.

A. Review of Underwater Vehicle Navigation Systems

The global positioning system (GPS) [2] has revolution-
ized navigation for land-based and airborne robotic mis-
sions; however, because seawater is opaque to most forms
of electro-magnetic radiation, including GPS signals [3],
determining position underwater must rely upon other means.
A variety of operational alternatives exist to determine the
position of an underwater vehicle, but these conventional
solutions have limits.

Two broad categories of underwater navigation methods
exist for localizing vehicles and instruments: absolute po-
sitioning and relative dead reckoning. The traditional long-
baseline (LBL) method of underwater positioning estimates
absolute position by measuring time-of-flight ranges to fixed
beacons [4], [5]. The precision of this estimate is bounded,
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and the accuracy is determined by system biases. The range
of this solution is limited to a few kilometers in the best
acoustic conditions and the positioning resolution is on
the order of 1 meter. The slow update rate of LBL is
constrained by the acoustic travel times—typically updating
every few seconds. In contrast to slow, coarse, but absolute
LBL positioning, a Doppler velocity log (DVL) or inertial
navigation system (INS) instead estimates distance traveled
to infer position. Dead-reckoning is fast (∼ 10 Hz) and
delivers fine resolution (∼ 1 cm), but the precision of this
relative measurement is unbounded, growing monotonically
with time. This makes it difficult to return to a known
location or to relate measurements globally to one another.

B. Underwater SLAM

Over the past decade, a significant research effort within
the terrestrial mobile robotics community has been to de-
velop SLAM-based navigation algorithms that eliminate the
need for additional infrastructure and bound position error
growth to the size of the environment—a key prerequisite
for truly autonomous navigation. The goal of this work has
been to exploit the perceptual sensing capabilities of robots
to correct for accumulated odometric error by localizing the
robot with respect to landmarks in the environment [6], [7].

Two of the major challenges of the SLAM problem is
(i) defining fixed features from raw sensor data and (ii)
establishing measurement to feature correspondence (i.e., the
problem of data association [8]). Both of these tasks can be
nontrivial—especially in an unstructured underwater envi-
ronment. In man-made environments, typically composed of
planes, lines and corners, point features can be more easily
defined; however, complex underwater environments pose a
more challenging task for feature extraction and matching.

One SLAM methodology that has seen recent success
in the near seafloor underwater realm is to apply a pose-
graph scan-matching approach, as reported in [9]–[12].
Pose-graph SLAM approaches do not require an explicit
representation of features and instead use a data-driven
approach based upon extracting relative-pose constraints.
These techniques have seen good success when applied to
an unstructured seafloor environment. The main idea behind
this methodology is that registering overlapping perceptual
data, for example optical imagery as reported in [11] or
sonar bathymetry as reported in [12], introduces spatial
drift-free edge constraints into the pose-graph. These spatial
constraints effectively allow the robot to close the loop when
revisiting a previously visited place, thereby resetting any
accumulated dead-reckoning error.

II. VISUALLY AUGMENTED NAVIGATION

In this section we briefly review our pose-graph monoc-
ular SLAM formulation, which we call visually augmented
navigation (VAN). We refer the reader to [13] and [14] for
more details.

A. State Representation

We model the vehicle state using a 6-degree of freedom
(DOF) representation for pose (position and Euler orienta-
tion), xv = [x, y, z, φ, θ, ψ]>, where pose is defined in a
local-navigation frame with respect to the hull of the ship.
A continuous-time constant-velocity kinematic model driven
by white noise is used to approximate the time-evolution
of vehicle state. This is then linearized and discretized to
provide a linear time-varying discrete-time model of the
vehicle dynamics.

In our work, we employ a pose-graph SLAM repre-
sentation of the environment and therefore augment our
state description to include a collection of historical vehicle
poses sampled at regular spatial intervals throughout the
environment. Each of these pose samples, xvi

, corresponds
to the time instance ti of a key frame stored by our
visual perception process. Therefore, our augmented state
representation is expressed as follows for n key frames

ξ> =
[
xv1 , · · · ,xvi

, · · · ,xvn
,xv(t)

]
.

The distribution of this augmented state representation is
jointly Gaussian and parameterized in the inverse covariance
form as

η = Λµ and Λ = Σ−1

where η and Λ are the information vector and matrix,
respectively, as written in terms of the more familiar µ, Σ
mean and covariance parameterization.

B. Camera Constraints

Pairwise registration of key frames acquired by the cal-
ibrated monocular vision system results in relative-pose
constraints modulo scale between historical pose samples in
ξ. Here, the 5-DOF camera measurement zji between poses
xvi and xvj is modeled as an observation of the azimuth αji

and elevation angle βji of the baseline direction of motion,
and the relative Euler orientation φji, θji, ψji between the
two poses.

zji = hji(xvj
,xvi

) =
[
αji, βji, φji, θji, ψji

]>
The Jacobian of zji with respect to ξ is sparse

Hx =
[
0 · · · ∂hji

∂xpj
· · · 0 ∂hji

∂xpi
· · · 0

]
,

which preserves sparsity in the information matrix, Λ, during
measurement updates.

C. Extended Information Filter Inference

For the Gaussian distribution, the extended information
filter (EIF) provides efficient inference when using a pose-
graph representation due to the exact mathematical sparsity
imposed by the pose-graph state representation [16]. The
reader is referred to publications [14], [16] for details re-
garding the EIF motion prediction, measurement update, and
state augmentation equations as they pertain to EIF inference
with the information vector and matrix parameterization.

The EIF is the dual of the extended Kalman filter (EKF),
and therefore yields an equivalent result to the pose-graph
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Fig. 1. Overview of VAN’s pairwise image registration engine. Prior
knowledge of relative-pose (R, t) comes from the EIF state estimate and is
used in the two-view registration framework where applicable. For each
image, both SIFT and Harris feature detectors are used for extraction.
Putative correspondences are established based upon a pose-constrained
correspondence search [13]. Following the inlier set detection, Horn’s
algorithm [15] is used to obtain an initial estimate of relative-pose, which
is then used as an initial guess in the final two-view bundle adjustment step
to obtain the optimal 5-DOF camera constraint.

EKF; however, the EIF does not exhibit the quadratic com-
putational complexity of the EKF, allowing it to approach
near-linear inference time.

III. GEOMETRIC MODEL SELECTION

The process of motion estimation from a pair of images
in the VAN framework involves three steps: 1) detecting and
writing descriptors for features in each image; 2) establishing
inlier correspondences and fitting a geometric model using a
robust estimation framework; and 3) optimizing the camera
relative-pose constraint. In the first step, feature points are
extracted from the pair of images and encoded into descrip-
tion vectors. These are subsequently used to establish pu-
tative correspondence matches via an appearance similarity
metric. Then, in the second step, an inlier correspondence
set is determined using a robust RANSAC model fitting
framework. In this step, geometric model selection is used
to provide accurate correspodences. Finally, the third step
involves two-view bundle adjustment to find the optimal
value of the camera-derived relative-pose constraint. The
overall algorithm is depicted in Fig. 1.

A. Feature Descriptor

A combination of SIFT [17] and Harris [18] image fea-
tures are used for feature extraction. For encoding, we use
SIFT keys with 128 vector key descriptors for the SIFT
interest points, and Zernike moments [19] for a local patch

around the Harris interest points. By changing the similarity
threshold of the Zernike feature vector, we adjust the putative
correspondence ratio of SIFT and Harris points, using SIFT
as the major feature extraction algorithm assisted by Harris.

B. Model Selection

The ship hull surface can vary from being locally piece-
wise planar to highly three dimensional (e.g., rudders and
propeller). Because of this variance, we adopt a model
selection framework to appropriately choose either a homog-
raphy or essential matrix image registration model during the
pairwise registration step.

There are several reported algorithms in the literature
aimed at overcoming registration ambiguity by using a
model-selection framework to automatically determine the
appropriate image registration model during registration. In
the work of [20]–[23], several different metrics such as
Akaike Information Criterion (AIC) [20], Geometric AIC
[21], Robust AIC [22] and Geometric Information Criterion
(GIC) [23] were proposed in order to determine the geo-
metric complexity of the image scene, and were evaulated in
[24]. These metrics are used to determine the correct registra-
tion model by measuring the summation of the reprojection
error and a model complexity penalty. The algorithm choose
the model with smaller metric as the correct registration
model. In this paper, we have adopted Torr’s GIC [23],

GIC =
∑ e2i

σ2
+ λ1dN + λ2P

Here, ei is the ith correspondence pixel reprojection error, N
is the number of correspondences, d is the dimension of the
registration manifold (2 for homography and 3 for essential
matrix), P is the number of parameters of the registration
model (8 for homography and 5 for essential matrix) and
λ1 = 2 and λ2 = 4 are penalty weights as recommended in
the literature.

In two key respects, the homography model is preferable
to the essential matrix model. One key benefit of selecting
the homography model is that using it reduces the number
of variables involved and thereby simplifies the optimization
problem. Given N number of the correspondences, the total
number of the variables in the two-view bundle adjustment
is 2N + 8 for the homography model, and 3N + 5 for
the essential matrix model. A further advantage to the
homography is that, in planar structures, it provides greater
accuracy in correspondences than does the essential matrix
model. As can be seen in Fig. 2(b), the essential matrix
model, in all areas apart from the overlap region, may lead
to false correspondences because that model measures the
geometric distance of a point from the epipolar line whereas
the homography model measures the point to point geometric
error.

The homography model is, however, not feasible in
a complex structure due to the large reprojection error.
Fig. 2(a) presents the results from testing this criteria with
a synthetic data set of varying complexity. Since the GIC
for homography is smaller for the synthetic planar data,
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Fig. 2. Geometric model selection metric for a synthetic (a) and real data set(b). In the synthetically projected images in (a), the blue dots represent the
projected structure points in each image, while the red dots indicate the randomly sampled true correspondences as seen from both cameras. The synthetic
data has been generated using MATLAB peaks function by increasing the height of the peak. In the real imagery (b), the left and middle columns show
two overlapping image pairs while the right column shows the inlier correspondences. Indicated in yellow are correspondences that satisfy the epipolar
geometry constraint, and shown in red are those that are consistent with the homography constraint. The red rectangles indicate the overlap area between
the two images.

it was chosen as an appropriate model for the data. As
the structure becomes complex and non-planar, the GIC for
the homography becomes increasingly larger than that of
the essential matrix, while the reprojection error from the
essential matrix does not greatly vary commensurate with
the complexity of the structure. As shown in the graph
in Fig. 2(a), this non-varying level of error keeps the GIC
value constant despite increasing complexity, while this error
increases continuously with the homography model.

By solving this homography plane detection problem in
the VAN algorithm, this model selection framework allows
the image registration algorithm to exploit geometric in-
formation at an early stage of estimation before the two-
view optimization step. This results in better navigation
and structure reconstruction via more accurate and robust
camera-derived pose-graph constraints.

C. Two-view Bundle Adjustment

The final step of the image registration engine is to
optimally recover the relative-pose constraint derived from
the camera correspondence pairs. Here, the objective function
varies according to the model selection metric we determined
in the previous section.

1) General structure: When the model selection crite-
ria results in selecting the essential matrix epipolar ge-
ometry constraint, the optimal camera-derived relative-pose
constraint is found using a two-view bundle adjustment.
Bundle adjustment minimizes the reprojection error in both
images by optimizing camera relative-pose (i.e., R, t) and
triangulated 3D structure (i.e., Xn). The camera projective
matrices are Pi = K[I |0] and Pj = K[R | t] where the

camera internal parameters, K, are the same and known from
calibration.

The two-view bundle adjustment objective function f(.) is
the sum squared reprojection error in the two images taken
over all N common correspondences, i.e.,

min
R,t,Xn

f(R, t,Xn) =
N∑

n=1

e>n en

where
en =

[
uin
− PiXn

ujn
− PjXn

]
.

2) Planar structure: When the geometric model selection
criteria chooses the homography registration model, the ob-
jective function is chosen to minimize the sum squared repro-
jection error using a plane induced homography registration
model. The optimization is performed over the plane induced
homography parameters (R, t, n, d) and the optimal image
correspondences ûin

that satisfy the homography mapping
exactly (i.e., ûjn

= Hûin
).

The plane induced homography H is written in terms of
the world plane π = [n>, d]> and camera relative-pose R, t
as [25]

H = K(R− tn>/d)K−1.

Here, the world plane normal n and orthogonal distance d
expressed in the camera i reference frame.

Given the correspondence pairs between two images, the
optimization solves for the optimal value of homography
parameters together with the image points, i.e.,

min
R,t,n,d,ûin

f(R, t,n, d, ûin
) =

N∑
n=1

e>n en
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where

en =
[

uin
− ûin

ujn
−Hûin

]
.

IV. EXPERIMENTAL RESULTS

In May 2008, over 1,300 underwater images of the air-
craft carrier USS Saratoga (Fig. 3) were collected at AU-
VFest2008 in Newport, Rhode Island.1 The experiment was
done in collaboration with MIT and Bluefin Robotics using
their autonomous underwater hull inspection vehicle, the
HAUV (Hovering Autonomous Underwater Vehicle) [27].
The HAUV is equipped with a Teledyne 1200 kHz RDI
Explorer DVL, depth sensor, fiber-optic gyro, and Didson
sonar. For the experiment, we designed a strap on camera and
light system consisting of a Prosilica GC1380C 12-bit high
resolution monocular camera and incandescent underwater
light. The experiment consisted of seven ∼ 30 m legs of a
boustrophedon survey, each spaced 0.5 m apart in depth.
The camera and DVL were mounted on tilt actuators so
that they approximately maintained a nadir view to the hull.
The standoff position of the robot was controlled at 1.5 m
from the hull throughout the experiment with a horizontal
trajectory speed of 0.5 m/s. Six bucket shaped targets were
attached to hull to validate the ability to inspect the ship
hull and navigate around it. (These targets were not used by
the visual SLAM algorithm and were installed as acoustic
features for sonar detection.)

The final trajectory resulting from visual SLAM with
model selection is shown in Fig. 5(a). The red and green
links in the figure indicate the camera constraints in the pose-
graph; the green links indicate sequential pose-constraints
coming from the registration of temporally consecutive im-
age pairs, and the red lines indicate pose constraints derived
from non-temporally sequential image pairs. The camera
was restarted while the robot was returning to the bow in
the second leg of the trajectory. This resulted in a blank
section in the middle of the second trackline during which
the uncertainty ellipsoid inflated as the robot moved without
camera measurements over this section. However, once the
camera was restarted at the end of the second leg, the
uncertainty was reduced as the VAN algorithm re-localized
the vehicle by adding additional pose constraints to the
previous track (first leg). This increase and decrease of the
uncertainty is repeated as the robot hovers and moves from
the featureless region (toward stern right) to the feature-rich
region (toward bow left).

Fig. 4 shows the change in pose uncertainty versus the
total path length that the underwater robot traveled. The
uncertainty of the robot pose using dead-reckoned (DR)
navigation is the blue line, and shows monotonically in-
creasing uncertainty along the total path as it localizes itself
based upon DVL-based integration. As can be seen from
the red line, camera-constraints used in the VAN algorithm
significantly constrain the uncertainty, preventing it from
monotonically increasing. The sawtooth pattern in the VAN

1AUVFest is an Office of Naval Research sponsored AUV field demon-
stration event.
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HAUV-1B. (top right) USS Saratoga aircraft carrier. (bottom) Hull-relative
trajectory estimated from odometry (DVL).

uncertainty estimate is the result of navigating into the
visually featureless region near the stern, and then returning
back toward the more feature-rich bow area where image
registration was more repeatable.
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navigation (blue line) is increasing monotonically, the uncertainty of VAN
is bounded (red line).

As a byproduct of VAN trajectory estimation, the 3D
structure of the ship hull can be reconstructed using the final
trajectory estimate and the pairwise image correspondences.
Surface fitting with texture mapping was conducted to gener-
ate a 3D photomosaic (Fig. 6(b)). All the targets were found
as indicated by the six white circles, which appear in the
texture-mapped reconstruction.

A movie showing a virtual fly-through over the
3D photomosaic is available as multimedia data
saratoga 3d photomosaic.mp4.

V. CONCLUSION

This paper reported an application of visual underwater
SLAM to the task of autonomous underwater ship hull
inspection. We presented an extension to the VAN algorithm
that uses geometrical model selection providing accurate
correspondences in the image-based motion estimation. This
increases the robustness and accuracy of the camera-derived
pose constraint since a large portion of the hull is locally flat.
We presented results for mapping a 30 m by 5 m section of
the hull. While we do not have independent ground-truth to
validate our trajectory estimate, we note that the recovered
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Fig. 5. The VAN estimated trajectory and reconstructed structure with texture mapping. The camera-derived pose constraints are shown in (a) with red
and green links. Each vertex in (a) represents a node in the pose-graph enclosed by its 3σ covariance uncertainty ellipsoid. Due to the change of the visual
feature richness on the hull, the uncertainty ellipsoid inflates when the vehicle is not able to build enough pose constraints, but then deflate once VAN
creates camera constraints with previous tracklines. Three small figure insets in (a) depict the typical feature richness for different regions of the hull.
Figure (b) shows the top-down view of the vehicle trajectory along the ship hull. The upper plot in (b) shows the trajectory result without model selection,
while the lower plot shows the trajectory with model selection. Note that without model selection, the estimated trajectory is mislead with 2 meters of
offset due to the bad essential matrix correspondences making it through RANSAC.

trajectory results in a smooth surface reconstruction indicat-
ing that the recovered poses must be highly self-consistent.

Our next research focus is in the area of perception driven
control, which will couple the SLAM navigation estimate
back into the trajectory generation for an optimal mapping
policy. As shown in the current data set, large areas of the
hull survey occur in nearly feature-less regions, while other
regions exhibit a high density of features. For these scenarios,
it would be ideal to have the vehicle autonomously return to
a previously known feature rich area in an intelligent way
whenever its pose uncertainty grows too high. In this manner,
the vehicle will be able to maintain an upper bound on its
pose uncertainty at any point along the hull, and thereby
quantitatively guarantee 100% survey coverage for inspection
tasks.
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