
 

  
Abstract—The theory of nonlinear observability is an 

important tool available for the assessment of highly nonlinear 
estimation problems such as Simultaneous Localization and 
Mapping (SLAM). It is shown that all the estimated landmarks 
must be observed and at least two a priori known landmarks be 
observed for the nonlinear observability of single vehicle 
SLAM when estimating any number of unknown landmark 
locations. The relationship between the information form of 
SLAM and the nonlinear observability is established. It is 
shown that when the nonlinear observability conditions are 
satisfied the single vehicle SLAM problem can in theory be 
initialized with infinitely large initial uncertainties. Simulations 
and experiments are also provided to substantiate the 
theoretical results.  
 

Index Terms—SLAM, observability, information matrix  
 

I. INTRODUCTION 
IMULTANEOUS  localization and mapping (SLAM) 
attempts to estimate the robot pose and the map at the 
same time and is thought by many ([1] and [2]) as one of 

the most significant steps towards achieving complete 
autonomy for mobile robots. However, until recent years the 
observability, which is fundamental to the very existence of 
any estimation algorithm has received considerably little 
attention. Most of this initial work is also based on the linear 
observability theory. For the first time [3] described the 
partial observability of the one dimensional linear SLAM 
problem and attempted to extend the same theory for 
nonlinear models using linear approximations. [4] and [5] 
use piecewise constant systems theory [14] for the 
observability analysis of the SLAM problem. [4] and [5] 
assume that SLAM is piece wise constant in time segments 
and use linearized systems in piecewise constant segments to 
study the observability using the theory of the observability 
of linear systems. Nonlinear observability theory has been 
applied for the analysis of observability of SLAM in [6] and 
[7]. [6] and [7] analyze the local observability of one 
landmark SLAM problem using the nonlinear observability 
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theory. However, [6] and [7] do not generalize the theory to 
estimating any number of unknown landmarks or discuss the 
properties or applications of the nonlinear observability of 
SLAM in detail. Although the effects of inputs on linear 
systems are not taken into account in the linear observability 
analysis, they can significantly affect the behavior of 
nonlinear systems through their nonlinear models. In this 
context, nonlinear observability analysis [8] is more 
appropriate than the linear analysis in describing highly 
nonlinear and time varying systems such as SLAM. In this 
paper we present proofs for the nonlinear observability 
properties of the SLAM problem and show the relationship 
of the nonlinear observability properties to the information 
form of the SLAM problem. It has also been shown that the 
kidnapped robot problem in theory can be solved if the 
conditions required for the nonlinear observability of SLAM 
are satisfied. 
The paper is organized as follows. Section II describes the 
theory of the nonlinear observability. Section III provides 
proofs on the nonlinear observability properties of the single 
vehicle SLAM problem. Section IV details the implications 
of the nonlinear observability conditions proved in Section 
III on the information form of the SLAM problem. It is also 
shown that the above nonlinear observability properties 
affect the kidnapped robot problem. Section V provides 
simulations and experiments to substantiate the theoretical 
results established. Section VI discusses the results and 
concludes the work. 

II. NONLINEAR OBSERVABILITY OF THE SLAM PROBLEM 

A. Theory of Nonlinear Observability 
Conceptually, observability determines if there is 

adequate information in the form of measurements and 
models of the estimation problem to consistently estimate 
the state variables in finite time. In general, linear 
observability theory is applied successfully to linear time 
invariant systems. For linear time invariant systems the 
observability tests check whether initial states of the linear 
time invariant systems can be recovered from a finite 
number of observations of their outputs and the knowledge 
of their inputs. In other words the observability by definition 
is a global phenomenon. It may require a system to go 
through a long duration of time or distance to distinguish 
among points. 
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The linear observability theory has many short comings 
when applied to the nonlinear systems. It requires 
linearization of the process and measurement models even 
though these models are highly nonlinear and do not 
represent their characteristics in linearlized forms. 
Furthermore, linear observability theory does not take the 
effects of inputs on the observability into consideration. 
Since the SLAM problem is a highly nonlinear state 
estimation problem, it is more rigorous to take the nonlinear 
properties of the problem into consideration using an 
appropriate observability theory.  

In the following we review the basics of nonlinear 
observability theory which can be applicable to highly 
nonlinear problems. Let Σ  be a nonlinear state estimation 
problem defined by 

( ,  )
( )

x f x u
Σ

z h x
=Ï

Ì =Ó
                              (1) 

where x  is the state vector estimated, u  the control inputs, 
z  the measurement vector and (.)f  and (.)h  nonlinear 
functions designating the process model and the 
measurement model respectively. The theory of nonlinear 
observability is based on the following definitions. 
Definition 1: The two states 1x , 2x  ∈ x   are said to be 
distinguishable iif for any two points 1{ , }tx  and 2{ , }tx  that 
satisfy ( ,  )=x f x u  with time [0, ]t T∈  and the initial 
conditions 1x  and 2 ,x  there exists at least one value of t  
such that 1 2( ) ( ).≠h x h x  
Definition 2: The system  Σ  is weakly observable at 0x  if 
there exists a neighborhood of 0x  such that every x  in that 
neighborhood other than 0x  is distinguishable from 0.x  
Definition 3: The system  Σ is locally observable at 0x  if 
for every open neighborhood Ν  of 0 ,x 0x  is distinguishable 
from any other point in .Ν  
Thus, the nonlinear observability according to [8] is a local 
phenomenon. For a special class of nonlinear problems [13] 
has shown the following result (Theorem 1).  

Theorem 1: If  Σ  is in control affine form 
0( ,  )= ( ) ( )i

iu+ ∑f x u g x g x  where x  is a vector of n state 

variables occupying an open subset Ξ  of ,n  0 (.)g ,...., 

(.)ig  are n dimensional vector analytic functions in Ξ , the 

measurement function (.)h  is an analytic function of  m  in 
Ξ  and u  is an analytic function of time comprising distinct 
scalar controls iu , then  Σ is locally weakly observable if  
the matrix ΣO  (hereinafter we refer to as the nonlinear 
observability matrix) given below has rank n.  

0 1 1( , , , ) ( ) ( ) ... ( )
TT T n Tn L L L −

Σ ⎡ ⎤= ⎣ ⎦f f fO d f h d h d h d h    (2) 

Conversely for systems that are control affine, considering 
from zero up to n-1th order Lie derivatives is adequate to 

determine the nonlinear observability 

A. Nonlinear observability of the SLAM problem 
The single vehicle SLAM problem [1] and [2] is a highly 

nonlinear state estimation problem. Let there be a vehicle 
moving on a 2D flat surface and estimating its pose ( )v tX  
and a map ( )tm  with the location states of n landmarks. The 
estimated states are  

[ ]( ) ( ) ( ) ( ) T
v v v vt x t y t θ tX =                        (3) 

[ ]1 1( ) ( ) ( ) ... ( ) ( ) T
n nt x t y t x t y tm =            (4) 

( ) ( ) ( )
TT T

n vt t tX X mÈ ˘= Î ˚                         (5) 

where ( )vx t  is the vehicle’s longitudinal coordinate ( )vy t  is 
the vehicle’s lateral coordinate, ( )vθ t  is the vehicle heading 
and ( )ix t  and ( )iy t i"  are the longitudinal and lateral 
coordinates of the ith estimated landmark. The process model 
assuming a car-like vehicle model and the measurement 
model assuming a range, bearing sensor are; 

1( ) ( ( ),  ) ( )n nt t t= +X f X u η                     (6) 

2( ( )) ( )n t t= +Z h X η                          (7) 

[ ]( ) cos( ( )) sin( ( )) 0 ... 0 Tn u t u tθ θ ω=f     (8) 

1 2( ) [( ) ( ) ... ( ) ]TT T T
nn =h h h h                (9) 

2 2

1

( ( ) ( )) ( ( ) ( ))
tan {( ( ) ( )) ( ( ) ( ))} ( )

i v i v
i

i v i vv

x t x t y t y t
y t y t x t x t tθ−

⎡ ⎤− + −= ⎢ ⎥
− − −⎢ ⎥⎣ ⎦

h  (10) 

tan bu Wω γ=                           (11) 

where 1( )tη  and 2 ( )tη  are zero mean noise terms 
representing the process noise with the covariance matrix 

( ),tQ  and measurement noise with the covariance matrix 
( ),tR  u  is the speed input, γ  is the steering angle input and 

bW  is the vehicle wheel base. ( ( ))n th X  is denoted by ( )nh  
for notational simplicity. Here we choose a new time scale 
ρ  so that ρ  is the distance along the vehicle path. Thus, 

d dtρ  is the vehicle speed. Hence multiplying (6) by 1u−  
we obtain the n landmark SLAM problem in control affine 
form ([6]).  

III. ANALYSIS OF THE NONLINEAR OBSERVABILITY MATRIX 
Since, the single vehicle SLAM problem is in control 

affine form we apply the result of Theorem 1 for the 
observability analysis of the SLAM problem resulting in the 
following nonlinear observability matrix ( nO ). 

0
( )

1
( )

3 2 1
( )

( )
( )

...........................
( )

n n

n n
n

n
n n

L n
L n

L n+ −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

f

f

f

d h
d h

O

d h

                        (12) 
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where nd  is the gradient operator with respect to ( )n tX  and 

( )
i

nLf  is the Lie derivative of order i with respect to ( ).nf  

A. Nonlinear Observability Matrix Properties 
We now investigate the properties of the nonlinear 

observability matrix of SLAM to gain a deeper insight. 
Hereinafter we omit the symbol t indicating the time varying 
properties from the equations for clarity. By definition; 

,1,00
( )

,2,0

(( ), ( ))
(( ), ( ), )

j j v j v
n j j

j j v j v v

h x x y y
L

h x x y y θ
− −⎡ ⎤

= = ⎢ ⎥− −⎣ ⎦
f h h       (13) 

where ,1,j ih  and ,2,j ih denote the ith order Lie derivative of 
the range measurement and the bearing measurement in 
functional form of the jth landmark respectively. It is 
interesting to note that both ,1,0jh  and ,2,0jh  can be 

represented as functions of ( )j vx x−  and ( ).j vy y−  Also 

note that ,1,0jh  and ,2,0jh  are not functions of any other 
landmark states. Now let 

1,0 2,0 3,0 4,0 5,0
1 20

( ) 6,0 7,0 8,0 9,0 10,0
3 4

j j j j j
n n j

j j j j j

h h h h h
L

h h h h h
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

f

0 0
d h

0 0
(14) 

where 1 3 1 2( 1)  for  1j j× −= = ∀ >0 0 0  and  1 3 and 0 0  do not 

exist for  1.j =  2 4 1 2( )  for  nn j j× −= = ∀ >0 0 0  and 20  and  

40  do not exist for .j n=  Thus, when q is a positive integer, 

by recursion we can show that ( )
q

n n jLfd h  takes the form 
similar to (14).  

1, 2, 3, 4, 5,
1 2

( ) 6, 7, 8, 9, 10,
3 4

q q q q q
j j j j jq

n n j q q q q q
j j j j j

h h h h h
L

h h h h h
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

f

0 0
d h

0 0
(15) 

Let the columns of nO  be denoted by ( )i nC  where i 
denotes the ith column of nO  and ( )i

j nC  denotes the parts of 
the ith column of nO  corresponding to the jth landmark. Here 
( )n  in ( )i

j nC  is used to denote 3 2 1n+ −  Lie derivatives of 
the observations corresponding to the jth landmark.  
 
Result 1: The nonlinear observability matrix of the SLAM 
problem estimating n unknown landmarks is rank 
deficient by 3 when all the estimated landmarks are 
observed. 
Proof: The nonlinear observability matrix for SLAM 
estimating 1 landmark is; 

0
1 (1)

1
1 (1)

1

4
1 (1)

(1)
(1)

...........................
(1)

L
L

L

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

f

f

f

d h
d h

O

d h

                        (16) 

By row reduction and simplification of (16) and from (13) it 

follows that the rank of 1O  is 2. It is therefore rank deficient 
by 3. Hence Result 1 is true for n=1. Assume now that 
Result 1 is true for n=p where p is a positive integer. 

0
( )

1
( )

3 2 1
( )

( )
( )

...........................
( )

p p

p p
p

p
p p

L p
L p

L p+ −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

f

f

f

d h
d h

O

d h

                      (17) 

Using the vector properties of ( )
q

n n jLfd h  for any positive 
integer q, n and j to reorder the rows of ,pO  we can also 
express (17) as follows. 

1 1

2 2

( ) ( ) ....
( ) ( ) ....

.... .... .... .... ....
( ) .... ( )

v m

v m

p

v m
p p

p p
p p

p p

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

C C 0 0
C 0 C 0

O

C 0 0 C

      (18) 

where ( )v
j pC  denotes the parts of the first three columns of 

pO  associated with the vehicle state and the jth landmark 

and ( )m
j pC  denotes the parts of the two columns of 

pO associated with the jth landmark state comprising all the 
Lie derivatives from order 0 to 2 2 .p+  We now consider the 
nonlinear observability matrix when one landmark state is 
added to the state vector; 

0
1 ( 1)

1
1 ( 1)

1

4 2
1 ( 1)

( 1)
( 1)

...........................
( 1)

p p

p p
p

p
p p

L p
L p

L p

+ +

+ +
+

+
+ +

⎡ ⎤+
⎢ ⎥+⎢ ⎥= ⎢ ⎥
⎢ ⎥

+⎢ ⎥⎣ ⎦

f

f

f

d h
d h

O

d h

                  (19) 

By definition 

0
( 1)

1

( )
( 1)p

p

p
L p+

+

⎡ ⎤
+ = ⎢ ⎥

⎣ ⎦
f

h
h

h
                (20) 

( )0 0
1 ( 1) 1 ( 1)

0
( )

0
1 ( 1) 1

( 1) ( 1)

( )
                           =

p p p p

p p

p p p

L p L p

L p
L

+ + + +

+ + +

+ = ∂ ∂ +

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

f f

f

f

d h X h

d h 0 0
d h

       (21) 

1
( )1

1 ( 1) 1
1 ( 1) 1

(1, )
( 1)= p p

p p
p p p

L p
L p

L+ +
+ + +

⎡ ⎤
+ ⎢ ⎥

⎢ ⎥⎣ ⎦

f
f

f

d h 0 0
d h

d h
          (22) 

Therefore, by recursion it can be shown that; 

( )
1 ( 1)

1 ( 1) 1

( )
( 1)

r
p pr

p p r
p p p

L p
L p

L+ +
+ + +

⎡ ⎤
+ = ⎢ ⎥

⎢ ⎥⎣ ⎦

f
f

f

d h 0 0
d h

d h
           (23) 

for any positive integer r. Thus, we can rewrite 1p+O  as 
follows. 
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3 2
( )

3 2 1
( )
01

1 ( 1) 1

4 2
1 ( 1) 1

                
( )   

( )

...........................

p
p

p p
p

p p
p

p p p

p
p p p

L p
L p

L

L

+

+ +

+
+ + +

+
+ + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

f

f

f

f

O 0 0
d h 0 0
d h 0 0

O
d h

d h

                (24) 

From (18) we can write 1p+O  as follows. 

1 1

1

1 1

( 1) ( 1) ..
.. .. .. .. ..

( 1) .. ( 1)
( 1) .. ( 1)

v m

p v m
p p

v m
p p

p p

p p
p p

+

+ +

⎡ ⎤+ +
⎢ ⎥
⎢ ⎥= ⎢ ⎥+ +
⎢ ⎥

+ +⎢ ⎥⎣ ⎦

C C 0 0

O
C 0 C 0

C 0 0 C

(25) 

Now consider pO , 3 2
( ) ( )p

p pL p+
fd h , and 3 2 1

( ) ( )p
p pL p+ +

fd h  terms 
from (24). From the converse of Theorem 1 and the 
assumption of the rank condition of pO  it can be concluded 
that when considered together as rows of a matrix these 
terms have 3 null columns.  
According to the assumption on rank of ,pO  it has three 
null column vectors. Consider one such null column in pO  

meaning we can find transformations ( v
iT  for 1i = , 2 and 3 

and 3
m

jT +  for 1,2,..., 2j p= ) on the columns of pO  (from 
(18)) such that the following expression is true. 

{ }

1 2 3
1 2 3

3 2 1 3 2
3 2 1 3 2

1

( ) ( ) ( )

  ( ) ( )

v v v

p
m j m j

j j
j

T p T p T p

T p T p+ − +
+ − +

=

+ +

+ + =∑

C C C

C C 0
      (26) 

By expanding (26) we have the following expression for all 
1, 2,3,...,j p=   

1 2 3
1 2 3

3 2 1 3 2
3 2 1 3 2

( ) ( ) ( )

        ( ) ( )

v v v
j j j

m j m j
j j j j

T p T p T p

T p T p+ − +
+ − +

+ + +

+ =

C C C

C C 0
           (27) 

Now consider 1p+O  shown in (24). Since it was shown that 

the terms pO , 3 2
( ) ( )p

p pL p+
fd h , and 4 2

( ) ( )p
p pL p+

fd h  have three 
null columns we can rewrite (27) including Lie derivatives 
of order 3 2 p+  and 4 2 p+ as follows. 
For 1, 2,3,...,j p= ;  

1 2 3
1 2 3

3 2 1 3 2
3 2 1 3 2

( 1) ( 1) ( 1)

        ( 1) ( 1)

v v v
j j j

m j m j
j j j j

T p T p T p

T p T p+ − +
+ − +

+ + + + + +

+ + + =

C C C

C C 0
     (28) 

Here, (28) covers all the rows from 1 to that corresponding 
to ( 1)v

p p +C  of (25). Let 

1 2 3
1 1 2 1 3 1

4 2 5 2
4 2 1 5 2 1 1

( 1) ( 1) ( 1)

         ( 1) ( 1)

v v v
p p p

m p m p
p p p p

T p T p T p

T p T p
+ + +

+ +
+ + + +

+ + + + +

+ + + + =

C C C

C C n
      (29) 

where 1n  is a column vector to be determined. 

It follows from (25) that the structure of  1p+O  is such that 
the rows corresponding to the landmark 1p +  can be 
interchanged with the rows corresponding to any other 
landmark 1,2,3,..., .j p=  Thus, from (28) and (29) it can be 
concluded that 1 =n 0  when 1.j p= +   Hence by 
combining (28) and (29); 

{ }

1 2 3
1 2 3

1
3 2 1 3 2

3 2 1 3 2
1

( 1) ( 1) ( 1)

  ( 1) ( 1)

v v v

p
m j m j

j j
j

T p T p T p

T p T p
+

+ − +
+ − +

=

+ + + + +

+ + + + =∑

C C C

C C 0
 (30) 

Hence (30) results in a null column for 1.p+O  Therefore, all 
3 null columns in pO  also result in null columns in 1.p+O  
However, pO  has a maximum of three null columns 
according to the assumption made on its rank. From (25), if 
you do any column operations on columns 1 to 5 2 p+  using 
all the columns of 1,p+O  you cannot have more than 3 null 
columns because it contradicts with (28)-(30) on the rank of 
the .pO  Therefore, if there are any more than 3 null 
columns in (24) they must be obtained only from column 
operations on columns 4 2 p+  and 5 2 ,p+  which are the 
last two columns of 1p+O .  
The zero order Lie derivatives corresponding to the vehicle 
observing the landmark 1p +  can be written as. 

4,0 4,0
1 1

1 9,0 10,0
1 1

p pm
p

p p

h h
h h

+ +
+

+ +

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
M                              (31) 

By simplification we can show that rank of 1
m
p+M  is 2. Thus, 

columns 4 2 p+  and 5 2 p+  are independent. Hence the 
maximum number of null columns in 1p+O  is 3. Therefore, 
Result 1 is true for 1.n p= +  Since Result 1 is true for 

1n =  and given it is true for n p=  and for  1,n p= +  by 
the principle of mathematical induction it is true for any 
positive integer n. 
 
Result 2: The SLAM problem becomes locally weakly 
observable when (1) Observing two known landmarks or 
when (2) Observing vehicle’s longitudinal and lateral 
coordinates provided the vehicle observes all the estimated 
landmarks. 
Proof: Let * *

1 1,  x y  *
2x  and *

2y  be the longitudinal and lateral 

coordinates of the two known landmarks and ( )i nC  be the 
ith column of the nonlinear observability matrix. Consider 
the situation of observing two known landmarks first. Let  

* * *
,1,0*

* * *
,2,0

(( ), ( ))
(( ), ( ), )

j j v j v
j

j j v j v v

h x x y y
h x x y y θ

⎡ ⎤− −
= ⎢ ⎥− −⎢ ⎥⎣ ⎦

h                (32) 

where *
jh  is the measurement model when the range bearing 

of the known landmark j is observed and *
,1,j ih  and *

,2,j ih are 
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the ith order Lie derivative of the measurement models when 
observing range and bearing to the jth known landmark. By 
simplification, the nonlinear observability matrix pO  for 
estimating p number of landmarks now is;  

1

2

( )
( )

p
v

p
v

p
p

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

O
O C 0

C 0
                             (33) 

where ( )v
j pC  is a three column sub matrix denoting the Lie 

derivatives of order 0 to 2 2 p+ of *
jh  with respect to ( ).pf  

If we let n=1, it can be shown from (33) that the rank of 1O  
is equal to five (full rank) when observing two known 
landmarks. Assume that when j p=  the nonlinear 

observability matrix is full rank. That is, the rank of pO  is 
2 3.p +  Now consider 1j p= +  which corresponds to the 
addition of one landmark state into the state vector. 

1

1 1

2

( 1)
( 1)

p
v

p
v

p
p

+

+

⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥+⎣ ⎦

O
O C 0

C 0
                          (34) 

From (24) the nonlinear observability matrix 1p+O takes the 
following form; 

3 2
( )

4 2
( )1
0

1 ( 1) 1

4 2
1 ( 1) 1

              

( )

( )

...........................

p

p
p p

p
p pp

p p p

p
p p p

L p

L p
L

L

+

+

+

+ + +

+
+ + +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

f

f

f

f

O 0 0

d h 0 0

d h 0 0O
d h

d h

                      (35) 

where 

* *
1 2 1 2( ) ( ) ( ) .. ( ) ( ) ( )

TT T T T T
pp ⎡ ⎤= ⎣ ⎦h h h h h h  (36) 

We now consider the terms pO , 3 2
( ) ( ),p

p pL p+
fd h  and 

4 2
( ) ( )p

p pL p+
fd h  from (35). From Theorem 1, since only zero to 

2 2 p+  order Lie derivatives of ( )ph  are required to 

determine the rank of pO  it can be concluded that these 
terms have the same dimensionality when considered 
together as the rows of a matrix. From (34) and (35) and 
using Theorem 1, it can be observed that since pO  is full 
rank, any more null columns in (35) can only be obtained 
from the column operations on columns 4 2 p+  and 5 2 .p+  

These are the last two columns of 1p+O  corresponding to the 
addition of the landmark 1.p +   
Hence from (31) and using the same logic used in proving 

Result 1, it can be shown that columns 4 2 p+  and 5 2 p+  

of 1p+O  are independent and hence cannot be made null. 

Therefore, 1p+O  is full rank. Thus, the SLAM problem 
becomes locally weakly observable when observing two 
known landmarks and all the estimated landmarks. 
Consider now the situation of observing the vehicle’s 
longitudinal and lateral coordinates. When n=1, it can be 
shown from (33) that 1O  is full rank. Here it is assumed that 

1 ( )v pC  and 2 ( )v pC  corresponds to observing the vehicle’s 

longitudinal and lateral coordinates. Now, assuming pO  is 
full rank and using the equations (34)-(36) it follows that 

1p+O  is also full rank from the same logic that has been used 

in proving the full rank property of 1p+O  when observing 
two known landmarks. This follows from the fact that once 

pO  is full rank 1p+O becomes full rank irrespective of the 

structure of the ( ).ph  

Hence 1p+O  is full rank. Thus, from the principle of 
mathematical induction the SLAM problem becomes locally 
weakly observable if the vehicle’s longitudinal and lateral 
coordinates and all the estimated landmarks are observed. 

IV. SLAM PROBLEM IN INFORMATION FORM 

A. Information Filter for State Estimation 
If it is assumed that both the process and observation noises 
of the SLAM problem are Gaussian, the inverse of the state 
error covariance matrix is the Fisher information matrix. 
According to [9] the state update equation of the 
Information form can be expressed as follows. 

1 1( | ) ( | ) ( )t t t t t− − −= +P P I                   (37) 
1( ) ( ) ( ) ( )Tt t t t−=I H R H                     (38) 

where ( | )t tP  is the updated error covariance matrix of 
( ),n tX  ( | )t t−P  is the predicted error covariance matrix of 
( ),n tX -  ( )tH  is the Jacobian of the measurement model 

and ( )tR  is the measurement noise covariance matrix. ( )tI  
in (38) is known as the Information Matrix Associated with 
Observations (IMAO). 1( | )t t− −P  can be obtained from the 
following equation of the Kalman filter prediction. 

( | ) ( ) ( | ) ( ) ( )Tt t t t t t t− − −= +P F P F Q            (39) 

where ( | )t t− −P  is the error covariance matrix of ( ),n tX -  
( )tF  is the Jacobian of the process model and ( )tQ  is the 

process noise covariance matrix. The information state 
vector is denoted by 1( | ) ( | ) ( | )nt t t t t t−=y P X  and 1( | )t t−P  
is the information matrix of the state vector ( | ).n t tX  A 
complete derivation of the information form of the Kalman 
filter can be found in [9]. 

2065



 

B. Properties of the Information Matrix Associated with 
Observations 

The prediction (37) of the covariance matrix increases 
uncertainty. If we start to estimate from an infinitely 
uncertain system ( | )t t−P  will also be infinite. Thus, in (37) 

1( | )t t− −P  should be zero. Therefore, in order to have a 
finite covariance 1( | )t t−P  from the measurement updating 
we should be able to invert the ( ).tI  This suggests that when 

( )tI  is singular it cannot give any information about at least 
some of the SLAM states.  
Consider the proofs of Results 1-2. These 2 results are about 
the column space of the nonlinear observability matrix given 
by nO  and .nO  The column spaces of nO  and nO  
comprise the Jacobians of the rows from zero to appropriate 
order of Lie derivatives of ( )nh  and ( )nh  respectively. 
Since the Jacobians of zero order Lie derivatives are a 
subspace of the column space of nO  and nO  it follows that 
Results 1 and 2 are true for the Jacobians of the Lie 
derivatives of order zero of ( )nh  and ( )nh  respectively. 
Since ( )tR  is a positive definite matrix 1( )t−R  is also a 
positive definite matrix by Property 1 of the Appendix. 
Also since 1( ) ( ) ( )T t t t−H R H  is Hermitian, rank and null 
space of 1( ) ( ) ( )T t t t−H R H  is similar to the rank and the null 
space of ( )tH  from Property 2 of the Appendix. However, 
by the definition of the nonlinear observability matrix and 
the Lie derivatives ( )tH  is identical to the Jacobians of the 
Lie derivatives of order zero of the corresponding 
measurement models. Hence the Results 1 and 2 proved in 
Section III are true for ( )tH  and therefore for 

1( ) ( ) ( ).T t t t−H R H  Hence using Results 1 and 2 and the 
structure of 1( ) ( ) ( ) ( )Tt t t t−=I H R H  it follows that the 
following properties are true for the Information Matrix 
Associated with Observations. 
 
Property 1: IMAO of the SLAM problem estimating n 
unknown landmarks when only observing all the estimated 
landmarks is rank deficient by 3. 
 
Property 2: IMAO of the SLAM problem is full rank when 
(1) Observing two known landmarks or when (2) Observing 
vehicle’s longitudinal and lateral coordinates provided it 
observes all the estimated landmarks. 
 
From these 2 properties of the IMAO we can predict the 
behavior of the SLAM problem when it is initialized with 
infinite uncertainty. It follows that the SLAM problem 
initialized with infinite uncertainty (a form of the kidnapped 
robot problem) can reduce the state uncertainty and 
consistently estimate the SLAM state vector and its 
uncertainty using the Information filter if the vehicle 
observes all the estimated landmarks and at least two a priori 

known landmarks. 

V. SIMULATIONS AND EXPERIMENTS 

A. Simulation Setup 
This section presents results of simulations to evaluate the 
advantages and disadvantages of ensuring nonlinear 
observability of the SLAM problem. A 2D simulation 
environment of 100m square is shown in Fig. 1. Within this 
environment a car like mobile robot followed a specified 
trajectory while observing point landmarks in the 
environment using a range and bearing sensor. An extended 
Kalman filter based approach to SLAM [11] was used to 
compare the performance of SLAM in the context of Results 
1 and 2 and the properties of the IMAO proved above. A 
nearest neighbor data association method [2] and a map 
management method [11] were also used in the simulation 
of SLAM. In the simulations, the robot observed all the 
estimated landmarks and two a priori known landmarks. 
The estimated vehicle path and the map are consistent when 
the nonlinear observability conditions stipulated in Results 1 
and 2 are satisfied (Fig. 1).  

 
Fig. 1 SLAM simulation with nonlinear observability. 

B. Correlations and observability based map management 
It has been observed in the simulations that the covariance 
and the information matrices of the SLAM problem have the 
structure given by Fig. 2 when the vehicle observes only the 
estimated landmarks. Here dark colors represent higher 
values both in covariance and information. The structure of 
the covariance matrix and the information matrix is given by 
Fig. 3 when the nonlinear observability is ensured. These 
figures show that when only the estimated landmarks are 
observed the covariance matrix is highly dense and 
information matrix is sparse. It is interesting to note that 
when SLAM is locally weakly observable, the covariance 
matrix is lightest in color. That means the correlations 
among landmarks and the vehicle are at their smallest values 
when the SLAM problem is locally weakly observable.  
This suggests that when the SLAM is locally weakly 
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observable we can use simplified data association schemes 
such as nearest neighbor data association and also reduce the 
number of map states significantly from the estimation as 
long as the full observability properties of SLAM are 
maintained. As a consequence, it is possible to implement a 
map management strategy which takes care of the 
observability of the SLAM problem. This is because the 
vehicle and map states of the locally weakly observable 
SLAM are not highly correlated as in the standard SLAM 
which only observes estimated landmarks. When any 
estimated landmark is not observed it can be removed from 
the state vector and can be stored for future use. In this way 
it is also possible to keep the size of the map constant or 
below a certain limit determined by the available computing 
resources. The key concept is that as long as we maintain the 
local weak observability property of the SLAM state, we can 
remove or add any landmark states to the SLAM state 
vector. Therefore, such a map management strategy together 
with simple data association methods will be a great benefit 
for computationally feasible SLAM implementations. 
Fig. 4 shows results of a SLAM algorithm initialized with 
very large errors in longitudinal and lateral coordinates in 
the same simulation environment. This algorithm 
consistently estimates the localization information when the 
SLAM is locally weakly observable, as was shown in 
Section IV. Initialization with errors of this magnitude is 
simply not possible in standard unobservable SLAM. 

 
(a) 

 
(b) 

Fig. 2  Covariance matrix (a) and Information matrix (b) when SLAM is 
observing estimated landmarks only. 
 

 
(a) 

 
(b) 

Fig. 3  Covariance matrix (a) and Information matrix (b) when SLAM is 
done observing estimated landmarks and two known landmarks. 
 

C. Experiments 
Experiments are performed with the car park dataset of the 
University of Sydney. The car park dataset was obtained by 
driving a utility vehicle [12] equipped with GPS, wheel and 
steering encoders and a laser range finder. It was used to 
check the consistency of the localization error estimates 

when SLAM is made locally weakly observable by 
observing at least 2 known landmarks and performing map 
management according to observability as detailed in 
Section V. Fig. 5 shows the estimated vehicle trajectory 
obtained and the map of estimated landmarks. It can be 
observed that the estimated vehicle path and the landmarks 
are consistent with the true vehicle path and the landmark 
locations. 
 

 
Fig. 4 SLAM initialization with large errors. 
 

 
Fig. 5 SLAM results from the car park data set. 
 

VI. CONCLUSIONS 
The work described in the paper gives a useful insight 

into the nonlinear properties of the SLAM problem both 
rigorously and intuitively. It is shown that for the local weak 
observability of the SLAM problem estimating any number 
of landmarks, the vehicle must observe all estimated 
landmarks and at least two known landmarks or the 
vehicle’s longitudinal and lateral coordinates. The properties 
of the nonlinear observability matrix are vital in 
understanding the nonlinear observability of SLAM in 
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greater detail. They also indicate future directions of 
research for designing efficient nonlinear observers for 
SLAM, localization and mapping. 

To the best of our knowledge we have demonstrated the 
relationship between the nonlinear observability of the 
SLAM and the kidnapped robot problem for the first time. It 
is shown here with the aid of the information form of the 
SLAM formulation that the IMAO has many properties of 
the nonlinear observability matrix. It has been shown that if 
the conditions for the nonlinear observability of SLAM are 
satisfied you can initialize SLAM even with very large 
uncertainties. 

It has also been shown using simulations that the 
correlations in the SLAM state vector are at a minimum 
when the nonlinear observability conditions are fully 
satisfied. Another notable proposal which has been verified 
both using simulations and experiments is the observability 
based map management strategy. It has been argued that 
once the observability of the SLAM state is ensured there is 
no requirement to maintain a large map state vector and map 
vehicle correlations in a huge matrix in the state estimation. 
Therefore, it is interesting to note that if you maintain the 
full nonlinear observability of the SLAM, the prediction and 
update of SLAM can be done in almost constant time 
complexity by utilizing an observability based map 
management strategy. Such a strategy enables the addition 
or removal of map states based on the observability of the 
SLAM state vector. 

Finally it is hoped that the nonlinear observability, its 
relationships with the information form of the SLAM 
problem and apparent decorrelation of map vehicle states 
will provide new directions for efficient and improved 
deployment of SLAM algorithms in several domains. 

APPENDIX 
Properties of positive definite matrices (from [10]). 

1. Every positive definite matrix is invertible and its 
inverse is also positive definite. 

2. Let ()n n×=A  be positive definite. If () ,n m×=C  then 
*C AC  is positive semi-definite. Furthermore, 

 *( ) ( )rank rank=C AC C                        (40) 

and 
*( ) ( )null null=C AC C                           (41) 

where *C  is the conjugate transpose of the matrix .C  
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