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Abstract— In previous work, the authors have been develop-
ing a stochastic model based approach for on-line segmentation
of whole body human motion patterns during human motion
observation and learning, using a simplified kinematic model
of the human body. In this paper, we extend the proposed
approach to larger, more realistic kinematic models, which
can better represent a larger variety of human motions. These
larger models may include spherical in addition to revolute
joints. We examine the effects on segmentation performance due
to motion representation choice, and compare the segmentation
efficacy when Cartesian or joint angle data is used. The

approach is tested on whole body human motion data modeled
with a 42DoF kinematic model. The results indicate that
Cartesian data seems to correspond most closely to the human
evaluation of segment points. The experiments also demonstrate
the efficacy of the segmentation approach for large kinematic
models and a variety of human motions.

I. INTRODUCTION

As robots enter the human environment, they will need

to be able to recognize human actions during continuous

on-line observation of human motion. For humanoid robots,

recognizing and modeling human motion primitives can also

be used for imitation learning [1], [2], [3]. In addition to

applications to humanoid robots, the ability to recognize

human actions during on-line observation can be useful in

a wide variety of applications, including activity recogni-

tion for interaction, activity recognition for surveillance and

security, as well as motion modeling for sports training,

rehabilitation and health monitoring.

A key requirement of on-line recognition of motion

primitives is automated motion segmentation, i.e., the au-

tomatic determination of the start and end points of motion

primitives. In previous work [4] we have been developing

an approach for autonomous segmentation of the observed

continuous data stream into whole body motion primitives,

based on a stochastic segmentation algorithm [5]. In the

proposed approach, a hidden Markov model is used to rep-

resent the incoming data sequence, where each model state

represents the probability density estimate over a window

of the data. Based on the assumption that data belonging to

the same motion primitive will have the same underlying

distribution, the segmentation is implemented by finding

the optimum state sequence over the developed model. In
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previous work, a simplified 20DoF model of the human body,

consisting of only revolute joint angles, was used to perform

the segmentation. This simplified model was based on a

specific robot kinematic model, simplifying the process of

re-targeting the motion on a humanoid robot. However, when

modeling human motion, especially in applications such as

rehabilitation or activity recognition, such a simplified model

may not be adequate to capture the important properties of

human motion. Research focused on human motion anima-

tion, analysis and activity recognition typically uses more

realistic models, with a higher number of degrees of freedom

and including spherical joints. The larger kinematic model

can better represent human motion, including motions such

as torso and arm twisting motions. In this paper, we extend

our previous method to handle larger kinematic models, and

investigate how the choice of kinematic representation can

affect segmentation accuracy for human motion data.

A. Related Work

Segmentation of continuous human motion data has re-

ceived significant attention in the robotics literature [6], [7],

[8], [7], [8], where attention has focused on extracting motion

segments for learning from imitation. There has also been

extensive research in the graphics community [9], [10], [11],

[12], [13], where research has focused on motion synthesis

from motion capture data for animation characters. Existing

data segmentation algorithms can be classified based on

whether previous knowledge of the motion primitives to be

segmented is required.

The first category of algorithms consider segmentation

without prior information about the motion primitives, i.e.,

unsupervised segmentation. In these algorithms, some as-

sumption must be made about the underlying structure of

the data at a segmentation point. Earlier approaches proposed

segmenting based on the velocity properties of the joint angle

vector [6], [7], [8]. In Pomplun and Matarić [6], a segment

is recognized when the root mean square (RMS) value of the

joint velocities falls below a certain threshold, i.e., assuming

that there will be a pause in the motion between motion

primitives. In Fod et al. [7], it is assumed that there is a

change in the direction of movement accompanying a change

between motion primitives. Therefore, a segmentation point

is recognized when a Zero Velocity Crossing (ZVC) is

detected in the joint angle data, in a sufficient number of

dimensions. However, with all the velocity based approaches,

typically only a subset of the human body is considered, such

as one arm [6], [7], or an arm and torso [8] as it becomes

more difficult to tune the algorithm as the number of joints
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increases.

Kulić et al. [14] propose an approach to using velocity

information for segmentation without considering individual

degrees of freedom. In the proposed approach, segmentation

is based on visual information from a monocular camera

only, without considering joint angle data or the kinematic

model. In this approach, changes in direction of optical flow

are used to indicate segment points.

Koenig and Matarić [15] develop a segmentation algorithm

based on the variance of the feature data. The algorithm

searches for a set of segment points which minimize a

cost function of the data variance. In a related approach,

Kohlmorgen and Lemm [5] describe a system for automatic

on-line segmentation of time series data, based on the

assumption that data from the same motion primitive will

belong to the same underlying distribution. The incoming

data is described as a series of probability density functions,

which are formulated as the states of a Hidden Markov

Model (HMM), and a minimum cost path is found among the

states using an accelerated version of the Viterbi algorithm.

Nakamura and colleagues [16], [17], [4] apply this approach

to human motion capture data. However, in this case, a

simplified 20DoF model of the human body, consisting only

of single DoF revolute joints is used.

The second class of segmentation algorithms frames the

problem as a supervised segmentation, where motion primi-

tives are specified by the designer a-priori, and segmentation

is based on the comparison between the known motions and

the incoming data. Ilg et al. [18] use dynamic programming

to find the best match between prototypical motion primitives

and an observed sequence based on key features consist-

ing of zero velocity points in key dimensions. In Takano

and Nakamura [19], [20] the known motion primitives are

encoded via short HMMs. Segmentation points are then

decided based on the error between the motion data predicted

by the HMM and the actual observed motion data. If the

error increases above a certain threshold, a segment point

is declared. Pardowitz et al. [21] propose a neural net

based algorithm for motion segmentation. In the proposed

approach, a Competitive Layer Model (CLM) type network

is used to perform the segmentation, and the network is then

trained on labeled data to find the optimum weight values of

the network. The proposed approach is tested on a data set

consisting of arm reaching movements.

B. Proposed Approach

In previous research [4], [3], we have been developing

algorithms for on-line segmenting and clustering of motion

primitives, based on a simplified kinematic model of the

human body, which can easily be re-targeted for imitating

human movements with a humanoid robot. However, the

simplified kinematic model may not be adequate for cap-

turing the full range of human motions, and therefore may

not be useful for segmentation where movements which are

not captured by the model are performed. In this paper, we

extend the previously developed approach to larger kinematic

models, and analyze the performance on a variety of human

motions. We also consider the effect of representation choice

on segmentation performance for larger kinematic models.

Section II provides a brief review of the basic segmentation

approach developed in our previous work [4], [3], Section

III discusses the additional considerations and algorithm

modifications required for extending the approach to larger

kinematic models, Section IV provides the experimental val-

idation of the proposed approach, while Section V concludes

the paper and provides directions for future work.

II. UNSUPERVISED PROBABILISTIC SEGMENTATION

This section provides an overview of our previously de-

veloped probabilistic segmentation algorithm [4], [3]. We

briefly introduce the approach here to provide sufficient

understanding for the novel components of the algorithm

developed in Section III; for a detailed analysis of the

previously developed algorithm performance, the reader is

referred to [4], [3]. In the original approach, a modified ver-

sion of the Kohlmorgen and Lemm segmentation algorithm

[5] is applied to segment the continuous time series data

into motion primitive segments [4]. After embedding the

incoming data stream into a higher-dimensional space, the

density distribution of the incoming embedded data is esti-

mated over a sliding window of length W , via multivariate

Gaussian kernels, centered on the data points in the window

{~xt−w}W−1

w=0
.

pt(x) =
1

W

W−1
∑

w=0

1

(2πσ2)n/2
exp(−‖x− ~xt−w‖2

2σ2
), (1)

where σ is a smoothing parameter calculated proportional

to the mean distance between each ~xt and its n nearest

neighbors.

As more data are observed, the distance between succes-

sive data windows can be calculated based on the integrated

square error between the two datasets as represented by the

probability density functions. This distance can be calculated

analytically in the case of mixtures of Gaussian density

functions. Here, we use the heuristic integrated square

error distance, as suggested by Kohlmorgen and Lemm

[5], alternately, the Kullback-Leibler distance between the

distributions could also be used. The segmentation analysis

is carried out by defining a Hidden Markov Model over a

set S of sliding windows. Each window corresponds to a

state of the HMM. For each state, the observation probability

distribution is defined as:

p(pt(x)|s) =
1√
2πς

exp(−d(ps(x), pt(x))

2ς2
), (2)

where p(pt(x)|s) is the probability of observing the window

represented by pt(x) in state s, and d is the distance

function based on the integrated square error. The initial state

distribution is given by the uniform distribution, and the state

transition matrix is designed such that transitions to the same

state are k times more likely than transitions to any of the

other states.
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aij =

{

k
k + N − 1

if i = j;

1
k + N − 1

if i 6= j
(3)

where N is the number of states of the HMM. The Viterbi

algorithm [22] can then be used to find the optimum state

sequence given the current set of observations. The resulting

state sequence directly leads to the segmentation result. Time

windows which are classified to be in the same state are

considered to belong to the same segment. Therefore each

state change is considered a segmentation point. An on-line

variant of the Viterbi algorithm is also developed [5], which

incrementally builds the state path table as each new state

is observed, by re-using the estimate of the likelihood and

optimal state sequence from the previous time step. Note

that this algorithm models the entire segment as a single

state (single probability distribution), and is therefore not a

generative model that can be used to generate simulations of

the derived segments. Once motion segments are extracted,

they can be incrementally clustered and modeled with more

detailed stochastic models to produce generative models for

use during motion synthesis [23].

To prevent the state list from growing to infinity as the

number of observed data points increases, Kohlmorgen and

Lemm [5] propose removing states following a segment away

from that state. However, Janus [17] has found that this

approach leads to over-segmenting, as the considered data

range becomes too small (on the order of 5W ) and therefore

the algorithm becomes more prone to local minima. Instead,

Janus propose that the algorithm runs in batch-mode over

a larger, fixed number of windows, and that windows be

discarded in a FIFO manner. The Janus approach is adopted

herein.

III. EXTENDING TO LARGE DOF KINEMATIC MODELS

The algorithm described in Section II has been applied

to continuous human motion data, where the segmented

data consisted of joint angle data obtained by a simplified

20DoF kinematic model [16], [4]. The segmentation points

produced by the automated algorithm give a fairly good

match to the segmentation points indicated by a human

observer, achieving approximately 80% recognition accuracy.

The 20DoF kinematic model is based on a humanoid robot

model, and is used to facilitate re-targeting of the motions

to a humanoid robot with the same kinematic structure and

number of DoFs. However, for applications focusing on

human motion analysis, typically a higher number of DoFs

is required to adequately capture the human motion. In this

case, typically a 34DoF to 50DoF model would be applied,

to capture human-like movements such as twisting at the

torso and twists in the arms and wrists. Such larger models

introduce many additional elements in the observation vector,

potentially affecting segmentation performance. On the other

hand, a better kinematic model is better able to capture the

characteristics of the human motion, and therefore using a

better model could improve the segmentation performance,

if the higher order model can capture motion which is not

visible with the reduced model.

In addition to the issue of dimensionality, large kinematic

models typically do not use simple revolute joints to model

the DoFs; instead, spherical joints are used. The use of

spherical joints introduces a choice of representation of the

orientation, which could affect segmentation performance.

The orientation of a spherical joint can be represented

using the quaternion representation (also known as Euler

parameters), Euler angles, or the angle axis representation

[24]. The angle axis representation represents the orientation

of a spherical joint as a 3D unit vector ~r and an angle θ

expressing the rotation about that vector. A quaternion re-

formulates the angle axis representation to eliminate the non-

uniqueness of the angle axis representation.

η = cos(
θ

2
) (4)

~ǫ = sin(
θ

2
)~r (5)

Euler angles represent the spherical joint orientation as a

sequence of 3 elementary (1DoF) rotations. Euler angles are

a minimal representation (the 3DoFs in a spherical joint are

represented by 3 linearly independent parameters), while the

angle axis and quaternion representations are non minimal,

representing the 3DoFs with 4 parameters (a scalar and a

vector), which are related by a constraint equation. For the

case of the quaternion, the constraint equation is given by:

η2 + ǫ2x + ǫ2y + ǫ2z = 1. (6)

The quaternion representation is typically favored in hu-

man motion animation applications, as it allows for smooth

interpolation between poses without any representational

singularities. However, due to the non-linear transformation

between the joint angles and the quaternion representation,

there is no guarantee that segment points in the quaternion

representation will still correspond to segment points as ob-

served by the human observer. In addition, the 4 quaternion

values are linearly dependent, since they are related to each

other through the constraint relationship, thus invalidating

the HMM assumption that the elements in the observation

vector be linearly independent. Since the quaternion is also

a non-minimal representation, using quaternions to represent

many joints in the kinematic model will introduce additional

elements into the observation vector, thus increasing the size

of the segmentation HMM and slowing computation.

The Euler angles have the advantage of minimal repre-

sentation, and thus linear independence among the values.

However, Euler angles suffer from the problem of represen-

tational singularities (at those values of the angles where the

axes become parallel and thus no longer independent). Due

to the large range of human motion, it is difficult to select a

Euler angle representation which can ensure that a singular

configuration is not encountered during arbitrary motion. A

second, numerical issue with Euler angles is the angular

representation, where a rotation of 0 degrees (or 0 radians)
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is equivalent to 360 degrees (or 2π radians) physically, but

not numerically. Inverse kinematics solvers which impose a

limit on the angle range can introduce a large step change

in the joint angle data (for example from 361 degrees to 1

degrees), which represents a smooth motion during playback

but appears as a large change in joint angles numerically, and

affects the segmentation performance. On the other hand, not

imposing a limit on the angle range may result in the drift

of the angle values over time, which will reduce the effect

on segmentation performance, but would negatively affect

subsequent automatic motion recognition or clustering.

A final option for segmentation data input is to use

Cartesian position data. If marker-based motion capture is

being used, one alternative is to use the marker data directly

as the input data, thus avoiding the need to compute inverse

kinematics all together. However, this approach is problem-

atic for on-line processing, as markers may not always be

visible, so portions of the input vector may be missing or

extremely noisy. There may also be many more markers than

degrees of freedom, thus significantly increasing the size of

the input vector and slowing down computation. A second

approach is to use the inverse kinematics solver to compute

the positions of the origin of each link frame, and use the

link frame origin positions as the segmentation data input.

IV. EXPERIMENTS

To examine the effect of a larger kinematic model and

the choice of orientational representation, the different rep-

resentation approaches were tested and compared using a

human motion capture data set. The data set was collected

in a marker-based motion capture studio, using a set of 34

markers. The marker locations tracked are shown in Figure

1. The subject performed a variety of exercise motions, such

as arm raises, squats and bends, for a sequence duration of

approximately 3 minutes. The motions were performed in

random order. Extracted frames from a portion of the data

sequence are shown in Figure 2. The marker data was then

converted to joint angle data using on-line inverse kinematics

[25] based on a 43DoF model of the human body. The

kinematic model is shown in Figure 3, and includes the

6 DoF base body joint, 7 DoFs for each arm and leg, 2

spherical joints representing the torso and a spherical joint

representing the neck. For each arm, the shoulder and wrist

are modeled as spherical joints, while the elbow joint is a

single DoF revolute joint. For each leg, the hip and ankle

joints are modeled as spherical joints, while the knee joint

is a single DoF revolute joint. Degrees of freedom in the

hands are not modeled. This model was selected because it

has been found to provide a good tradeoff between model

complexity and the ability to adequately represent most daily

activities [26].

The inverse kinematics routine [25] outputs spherical angle

data in terms of the quaternion representation. The data

sequence was then also converted to Euler angle representa-

tion and relative Cartesian representation. For the quaternion

representation, the quaternion data was verified to eliminate

”flips” in representation which can occur due to the fact

Fig. 1. Marker Setup used for the motion capture experiments

Fig. 2. Video frames taken during the motion capture experiment showing
sample motions from the data set. Note that motion capture cameras are
not visible from this viewpoint, as the video camera is zoomed in to the
demonstrator.

that (θ, ~r) and (−θ,−~r) represents the same rotation. The

resulting data consisted of an observation vector with 51

elements. For the Euler angles, the quaternion values were

converted to ZYZ Euler angles, where the initial solution

was selected such that the sequence did not include any

singularities. The Euler angle observation vector consisted

of 41 elements. For the Cartesian representation, the base

joint together with the relative [x,y,z] locations origins of

the shoulder, elbow, wrist, hip, knee and ankle joint frames

were used, forming an observation vector of 39 elements.

It is important to note that, other than the base joint, all

the Cartesian data are relative (to the parent frame of each

joint), such that the data will remain invariant in the presence

of locomotion and translation in the workspace. Each data

sequence was processed with the segmentation algorithm as

described in Section II, using the same parameter settings as

in [4], detailed in Table I.

TABLE I

ALGORITHM PARAMETERS

Parameter Value

k 1.18

ς 0.7

m 5

L 5

T 20
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Fig. 3. Kinematic Model used to convert marker positions to joint angle
data. Each joint origin frame is indicated by the blue/red/green frame
indicator. The elbow and knee joints are single DoF revolute joints. All
other joints are spherical.

TABLE II

COMPARISON OF SEGMENTATION PERFORMANCE

Algorithm Correct False Pos False Neg

Quaternion 74 42 17

Euler Angles 76 34 15

Cartesian 83 17 8

The data was also segmented manually by a human

observer, who labeled the start, end and name of each motion

performed in the sequence. The automatically segmented

data was then compared to the manual labeling. A segment

point was considered correct if it occurred within 4 windows

of the manually obtained results. A segment point was

counted as a false positive, if it occurred in a section where

no manual segment point was specified within 4 windows of

the given segment point. A false negative was counted if no

segmentation point was specified within a 4 window frame

of a manually found segmentation point. Table II shows the

segmentation results for each representation type.

As can be seen from Table II, using a quaternion repre-

sentation results in segmentation accuracy of approximately

81%, while the Euler angle representation achieves an accu-

racy of 83%. The Euler angle result is comparable to the 79%

result achieved when using a revolute joint only model [4],

which validates the consistency of the approach as the Euler

angle representation is equivalent to a sequence of revolute

joints. However the best results are achieved when Cartesian

representation is used, which achieve a 91% segmentation

accuracy while also reducing the number of false positives.

It is important to note that the segmentation accuracy here

is being judged against the ”ground truth” of human labeled

data. Therefore, it appears that Cartesian representation most

closely corresponds to the human notion of motion prim-

itives. This correlates with findings in neuroscience which

indicate that human motions, and particularly arm motions,

are planned and formulated in extrinsic-kinematic space [27].

Figure 4 shows an excerpt from the time series of the

segmentation results, and Figure 5 shows a comparison of

the segmentation outputs for each representation type. As can

be seen from these figures, the quaternion segmentation per-

forms well when there is a change between the types of mo-

tion, for example the change from a squat motion to an arm

motion in Figure 4, but performs poorly for distinguishing a

change in the direction of motion, for example, the segment

between an arm raise and an arm lower. This can also be seen

in Figure 5, where the quaternion segmentation produces

much lower accuracy segmentation results for motions which

are a change of direction only, such as the ”Right/Left/Both

Arm Lower Start”, which always follows the associated

arm raise motion in the dataset, or the ”Bend/Squat Raise

Start”, which always follows ”Bend/Squat Lower”. For these

types of motions, the quaternion segmentation produces

significantly more errors compared to the Cartesian result.

The Quaternion segmentation also generates additional false

positives, compared to the Cartesian segmentation results. A

similar result is observed for the Euler angles. On the other

hand, the Cartesian segmentation performs equally well at

both inner and outer segment points.
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A second key finding from these experimental results is

that the segmentation performance does not decrease when

the number of degrees of freedom is increased from 20

DoF to 40 DoF to model the human motion, as comparable

results were achieved for similar motion data modeled with

a simplified model [4] and with a higher order model. This

indicates that the proposed segmentation algorithm is suitable

for higher order models. Unlike many previous approaches,

which focus on off-line analysis or analysis of only parts

of the body or only specific motions such as walking, the

proposed method can perform on-line segmentation of full

body motion, using a detailed kinematic model, and with no

a-priori knowledge of the type of motion to be performed.

V. CONCLUSIONS AND FUTURE WORK

This paper investigated the use of automated stochastic

segmentation for full body human motion modeled by high

DoF kinematic models. The choice of representation for

spherical joints in the kinematic model was also considered.

Experimental results on a human motion database confirm

the feasibility of the automated segmentation approach for

larger kinematic models, by showing that similar or im-

proved segmentation performance can be achieved when

more realistic models are used. The experiments also indicate

that Cartesian representation corresponds most closely to the

human observer generated segmentation.

In future work we plan to consider the issue of hierarchical

segmentation, to handle those motions where multiple motion

primitives are blended or overlaid, for example stepping

while reaching. We are also investigating the use of stochastic

segmentation for task based motions, where a combination

of kinematic and environmental data is used to perform the

automated segmentation.
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