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Abstract— Prediction is a very important element of human
intelligence and plays a major role in human behavior, per-
ception, and learning. This paper presents the development
of a mathematical model of the prediction mechanism in the
context of a Bayes filter, which is the predominant schema used
for integrating temporal data in the field of robot mapping and
localization problems. We propose a generalized anticipatory
Bayes filter that uses revised sensor values obtained from the
prediction process at the measurement-update step to enhance
the performance of the sensor model. The development of a
generalized anticipatory Bayes filter is not only an extension
of the original Bayes filter, but also a mathematical model of
the human prediction mechanism of sensory processing. This
work was verified by experiments using observed data.

I. INTRODUCTION

Prediction is a very important element of human intelli-

gence, with major roles in human behavior, perception, and

learning. Here, Prediction is defined as a process based on

past experience, which takes the present situation as input

to estimate future consequences. In addition to the various

benefits of prediction, this paper will concentrate on the

benefits of prediction for perception.

In human perception, the results of the prediction of future

consequences serve as reference signals that can be used

in perceptual processing to avoid system instabilities due

to delayed or missing sensory feedback [1]. As future

information can be predicted and thus be made available

before actual sensory information arrives, system control

and stability can be optimized by incorporating predicted

feedback information.

In the field of robot mapping and localization problems,

Bayes filters are single dominating schemas for integrating

temporal data. Bayes filters are closely related to Kalman

filters, hidden Markov models, dynamic Bayes networks, and

partially observable Markov decision processes [2]. Bayes

filters extend Bayes’ rule to temporal estimation problems

and use a recursive estimator to compute a sequence of

posterior probability distributions over quantities that cannot

be observed directly.

A Bayes filter algorithm usually has two essential steps:

a prediction step and a measurement-update step [3]. The

prediction step calculates the belief regarding the newly
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predicted state based on the prior belief for the state at

a previous time point and the control information. In the

measurement-update step, the Bayes filter multiplies the

belief for the predicted state by the probability that the

new measurement may have been observed. In this step,

the probability provided by robotic measurement is called a

sensor model.

The sensor model in the Bayes filter provides a suitable

starting point for integrating a prediction mechanism with

the Bayes filter. After calculation of the belief regarding the

predicted state from the prediction step, we can predict the

sensory inputs of a mobile robot based on this newly obtained

information. The predicted sensor value is then compared

with the actual measured sensor value; if a mismatch is

observed between these two sensor values, the actual sensor

value will be mapped to a revised sensor value that represents

internal acceptance of the mobile robot over the actually

measured value. In the measurement-update step, we should

consider both the actual sensor value and the revised sensor

value concurrently.

Integration of a prediction mechanism resulted in a new

version of the Bayes filter, which we call a generalized

anticipatory Bayes filter. The development of a generalized

anticipatory Bayes filter is not only an extension of the orig-

inal Bayes filter, but also represents mathematical modeling

of the human prediction mechanism of sensory processing;

this is the main contribution of our research.

This paper is structured as follows. Section II presents a

brief discussion of related work. In Section III, we discuss

the development of a generalized anticipatory Bayes filter

incorporating a prediction mechanism of sensory processing.

Experiments using an actual robot platform and conclusions

are presented in Sections IV and V, respectively.

II. RELATED WORK

The topic of prediction has been studied by a number

of researchers in different disciplines ranging from biology,

psychology, and physiology, to engineering and artificial

intelligence. In research on mobile robotics, several methods

have been suggested for utilizing the prediction mechanism

in a variety of cognitive and behavioral systems.

Rosen reported that the functionality of an anticipatory

system: (a) does nothing if the model predicts that the

target system is likely to stay in a “desirable” course, or (b)

activates the effector to correct the “trajectory” of the target

system if the model warns that an undesirable outcome is

imminent [4].
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Mind RACES [5] was a three-year EC-funded project

that focused mainly on the concept of anticipatory systems

related to the behavior, perception, learning, and emotion of

intelligent agents. This outstanding and systematic research

regarding the specialized topic of anticipation produced many

important publications.

Hoffmann proposed a conceptual framework for anticipa-

tory behavioral control (ABC), which assumes that behav-

ioral competence emerges through the acquisition of action-

effect rather than stimulus-response associations [6]. That

is, body movements become determined by anticipations of

their own sensory consequences.

Butz et al. discussed how anticipatory mechanisms may

be beneficial for the process of sensory processing [7].

The prediction of future states, and thus the prediction of

future stimuli, influences stimulus processing. To be able

to make predictions, the agent must use a predictive model

of its environment. That is, sensory anticipation is strongly

related to preparatory attention in psychology, in which top-

down processes such as task-related expectations influence

sensory processing. Sensory anticipatory behavior results in

a predisposition for processing sensory input. For example,

the agent may become more susceptible to specific sensory

input while ignoring other sensory input.

Few studies have been dedicated to the application of

prediction in robot mapping and localization. In one exper-

imental study two robots had the goal of exchanging places

while navigating through an area with or without obstacles

[8]. In another study, an episodic memory-based approach

was proposed for computing anticipatory robot behavior in a

partially observable environment, and the results of a robot

navigation experiment were presented [9].

Zhang and Suh proposed an anticipatory Bayes filter that

integrates a prediction mechanism with a sensor model [10].

In their study the sensor model was conditioned on both the

predicted state and the experience of the robots, and modeled

the latter term as an inhibition weight for computational

convenience. The authors dealt with the inhibition weight

as a static value obtained from the offline learning process.

III. GENERALIZED ANTICIPATORY BAYES FILTER

As noted above, a Bayes filter includes prediction and

measurement-update steps as presented in equations (1) and

(2), respectively. Compared to our proposed Bayes filter,

we call this the original Bayes filter. Before developing

a generalized anticipatory Bayes filter, it is necessary to

introduce the concept of sensory transformation.

The robot must simultaneously process multi-dimensional

feature data according to the various sensor data obtained

from different types of apparatus, and a variety of methods

are available to process these raw data. To apply a revision

procedure to actual sensor values, it is necessary to transform

these multi-dimensional data to an abstract data type that

shares the same value range. We take the form f → z

to denote the proposed transformation. Here, f is the

measured sensor value and z is the transformed value for

f , where z ∈ [0, 1]. The details of the transformation

tu
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Fig. 1. Structure of the generalized anticipatory Bayes filter.

methods are dependent on the data type that belongs to

a different dimension, and the properties of that data type

and the magnitude of the transformed value will follow the

importance of the data type and the actual measured value.

We attach the subscript t for zt to reflect that the sensor

values are measured at consecutive time points.

A. Original Bayes Filter

In the Bayes filter equation, we follow the common

notation using X,u, and z to refer to state, control, and

measurement, respectively, and can therefore present the

Bayes filter as:

bel(Xt) =
∑

Xt−1

P (Xt|ut,Xt−1)bel(Xt−1) (1)

bel(Xt) = ηP (zt|Xt)bel(Xt) (2)

where bel(Xt) is the belief that the robot assigns to state

Xt after the prediction step, the probability P (Xt|ut,Xt−1)
is used to model the motion of robots and is called the

motion model, the probability P (zt|Xt) is used to model the

measurement of the robots and is called the sensor model,

and η is a normalizing constant. As output, the Bayes filter

gives the belief bel(Xt) at state Xt based on the control and

measurement of the robot. To allow a distinction between

this and the new sensor model described later, the probability

P (zt|Xt) is hereafter called the original sensor model. In

this paper, we adopt the notation using upper and lower

case letters to represent random variables and known values,

respectively. Given two steps of Bayes filter equations,

our objective is to extend the original sensor model, so a

prediction mechanism should be included in this model.

B. Prediction and Revision of Sensor Value

As mentioned briefly in the Introduction, we introduce

two new types of sensor value, predicted sensor values and

revised sensor values, which play key roles in our generalized

anticipatory Bayes filter.

Figure 1 shows the overall structure of the generalized

anticipatory Bayes filter. The variables Xt−1 and Xt in the

shaded boxes represent the states of the robot at times t− 1
and t, respectively. The shaded circles show the control value

ut and the actually measured sensor value zt. Following
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Fig. 2. Mapping function.

the prediction step in the Bayes filter, we can calculate the

belief regarding the predicted state Xt from Xt−1 and ut by

equation (1). Based on this state value Xt, we can predict

the sensor value z̃t using the knowledge of the environment

in which the robot resides. In the Bayesian approach, the

sensory knowledge of the environment is abstracted in the

form of a probabilistic model, P (Zt|Xt). Affected by the

predicted sensor value z̃t, the measured sensor value zt is

revised to a new value ot that represents internal acceptance

of the mobile robot against the actually measured sensor

value zt. In our generalized anticipatory Bayes filter, the

actual sensor value zt and the revised sensor value ot are

both considered in the sensor model.

The dotted arrow to the right side of z̃t in Fig. 1 indicates

that the predicted sensor value is used as a reference signal

to affect the revision process for actual sensor value. The

arrow pointing from Xt to Xt−1 in Fig. 1 represents the

recursive process of the Bayes filter, implying that the state

value Xt will be used as Xt−1 in the next computation cycle.

C. Stochastic Revision Process

The revision of the actual sensor value zt to the revised

sensor value ot follows a stochastic revision process. At

the beginning of this section, we introduced a method to

transform variant dimensional sensor data to an abstract data

type that shares the same value range. Such a transformation

on real sensor value greatly facilitates the revision process for

the abstracted sensor value. We define a mapping function:

Ot = czΦt

t (3)

where Ot is the revised sensor variable, Φt is the revision

variable, and c is a constant used to control the magnitude

of revision. Here, we only consider the case where c = 1.
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Fig. 3. Illustration of the stochastic revision process.

The revision variable Φt takes a non-negative real number

as a value. As shown in Fig. 2(a), an actually measured

sensor value zt can be mapped to different revised sensor

values ot according to different values of Φt from 0 to +∞.

When revision variable Φt = 1, the actual sensor value is

not revised; if Φt takes a value less than 1, then ot is larger

than zt, and we say that zt is boosted; in contrast, if Φt is

larger than 1, then we say zt is suppressed.

Selection of the revision value ϕi is governed by a revision

selection model P (Φt|zt,Xt), as shown in Fig. 2 (b). The

shape of the revision selection model is mainly controlled

by the predicted sensor value z̃t and the degree of mismatch
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between zt and z̃t because the robot expects to observe the

predicted sensor value z̃t whenever it is resident in a familiar

environment.

The stochastic revision process is conducted as shown in

Fig. 3(a). First, select a revision variable ϕi according to the

revision selection model P (Φt|zt,Xt). After a fixed revision

value ϕi is chosen, the actual sensor value zt is then mapped

to the revised sensor variable Ot. Here, the revised sensor

variable is no longer a fixed value but an unknown variable

that forms a probabilistic distribution P (Oi
t|ϕ

i, zt), we call

it the revision transition model. The superscript i above Oi
t

indicates that this probabilistic distribution is formed through

a transition path caused by revision value ϕi.

As the choice of ϕi is governed by the revision selection

model P (Φt|zt,Xt), the probability value of P (ϕi|zt,Xt)
functions as a bandwidth on the revision transition path.

By taking the mixture of each revision transition model

P (Oi
t|ϕ

i, zt) with the value of P (ϕi|zt,Xt), some of the

distributions are emphasized and the rest are weakened

according to the value of P (ϕi|zt, Xt). These effects are

shown in Fig. 3 (b).

When the revision transition model P (Oi
t|ϕ

i, zt) is

weighted by the probability value P (ϕi|zt,Xt), it is no

longer strictly a probability distribution. Therefore, we

should sum all these revision value-dependent distributions

P (Oi
t|ϕ

i, zt) along the coordinate of Ot to reconstruct a

new form of probabilistic distribution, which we call the

sensor revision model. This process is shown in Fig. 3

(c). In the revision process from Xt, zt to Ot the revision

selection variable Φt functions as an intermediate variable

and is collapsed at the final summation operation. There-

fore, the sensor revision model can be expressed in the

form P (Ot|zt,Xt); this will be clarified in the following

subsection through mathematical derivation.

In summary, the whole stochastic revision process de-

scribed above involves marginalization of the revision value

ϕi to finally obtain a probabilistic distribution over the

revised sensor variable Ot. Once we have obtained a

probabilistic model over the revised sensor variable Ot, then

we can determine a specific value ot from the sampling

process.

D. Generalized Anticipatory Bayes Filter

To mathematically integrate the original Bayes filter with

the prediction mechanism as described in section III (B)

and (C), it is necessary to include not only the actually

measured sensor value zt, but also the revised sensor value

ot in the sensor model. When the revised sensor value is

included in the sensor model that becomes a new type of

sensor model, this is named the predictive sensor model and

is represented as P (Ot, zt|Xt). The predictive sensor model

can be expressed as a product of the sensor revision model

and the original sensor model:

P (Ot, zt|Xt) = P (Ot|zt, Xt)P (zt|Xt) (4)

tX1tX −

tU

tZtO

tΦ

t
X1tX −

t
U

tZ

( )A ( )B

Fig. 4. Dynamic Bayesian networks for two different Bayes filters. (A)
Original Bayes filter. (B) Generalized anticipatory Bayes filter.

The sensor revision model is generated by marginalization

of the revised sensor variable Φt, which can be derived as

follows:

P (Ot|zt,Xt) =
∑

ϕi

P (Ot, ϕ
i|zt,Xt)

=
∑

ϕi

P (Ot, |ϕ
i, zt,Xt)P (ϕi|zt, Xt)

=
∑

ϕi

P (Ot, |ϕ
i, zt)P (ϕi|zt,Xt)

=
∑

ϕi

P (Oi
t, |ϕ

i, zt)P (ϕi|zt, Xt) (5)

The first line involves marginalization of the revision

variable Φt; in the second line, we have applied the product

rule and divided it into two terms, with the right term

being the revision selection model; on the third line, Xt is

eliminated, because when the actual sensor value zt and the

revision value ϕi are given, then the revised sensor variable

Ot is independent of the state variable Xt; the change in

the fourth line relative to the third line is that there is a

superscript i on the variable Oi
t, because the revision variable

ϕi does not contribute directly to the distribution of Ot but

does so indirectly through Oi
t.

We derived the predictive sensor model through equations

(4) and (5), but it cannot be directly used in the measurement-

update step because P (Ot, zt|Xt) is a probabilistic distribu-

tion and not a value. Therefore one more step is needed

to extract a fixed probability value, P (ot, zt|Xt). This was

done by sampling a certain value ot from the predictive

sensor model P (Ot, zt|Xt), obtainig the probability value

at that point, and finally substituting this sampled value

P (ot, zt|Xt) into the measurement-update equation.

Therefore, we completed the process of developing a

generalized anticipatory Bayes filter, reorganized as follows:

bel(Xt) =
∑

Xt−1

P (Xt|ut,Xt−1)bel(Xt−1) (6)

P (Ot, zt|Xt) = P (Ot|zt,Xt)P (zt|Xt) (7)

ot ∼ P (Ot, zt|Xt) (8)

bel(Xt) = ηP (ot, zt|Xt)bel(Xt) (9)

Equation (6) and (7) are equal to equations (1) and (4),
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Applying The Predictive Sensor Model
1. Calculate bel(Xt) for each predicted state

2. Calculate the winner state bXt

3. If bel( bXt) < θ then apply P (zt| bXt) and return to 1

4. Apply P (ot, zt| bXt) according to the result of Draw(bel( bXt))
5. Continue loop 1 through 4.

Fig. 5. Algorithm for applying the Predictive Sensor Model

respectively, but the marginalization process on ϕi was hid-

den for concise representation. In equation (8), the symbol

“∼” indicates the operation from which a certain value of

ot was sampled. In equation (9), the value P (ot, zt|Xt)
was taken from the predictive sensor model P (Ot, zt|Xt) at

point ot and used to weight the belief regarding predicted

state Xt to complete the measurement-update step. The

dynamic Bayesian networks for the original Bayes filter and

the generalized anticipatory Bayes filter are shown in Fig. 4

for comparison.

Application of the predictive sensor model in the general-

ized anticipatory Bayes filter should be performed carefully.

If the predicted state is proven to be correct, then the

predictive sensor model can improve the performance of

the measurement-update step as intended. However, if the

predicted state is shown to be incorrect, this can cause an

even worse result. We propose the stochastic algorithm

shown in Fig. 5 to avoid this problem. In this algorithm,

the winner state is defined as follows:

X̂t = argmax
Xt∈X

∑

Xt−1

P (Xt|ut,Xt−1)bel(Xt−1) (10)

It is reasonable to apply the predictive sensor model for the

winner state X̂t which has the maximum belief at time t. The

function Draw(bel(X̂t)) determines whether P (ot, zt|X̂t)
is performed, according to the results of sampling over

probability bel(X̂t).

IV. EXPERIMENTS

In this paper, we have proposed a generalized anticipatory

Bayes filter that includes a revised sensor value in the

measurement-update step to improve the performance of the

Bayes filter.

A. Experimental Environment

We evaluated our approaches through actual robot experi-

ments in an indoor environment, as shown in Fig. 6. Pioneer

3-AT was used as the real robot platform in the experiments,

with three Web cameras mounted on top of the robot (Fig. 7).

These cameras were placed on the same plane and at a height

of 100cm from the floor; one faced leftward, one forward,

and one rightward. Images were collected at a resolution of

320×240 pixels from the three cameras in turn at a frame

rate of 10 fps. However, we used only the images from the

leftward- and rightward-facing cameras in the experiments.

The experimental environment was represented as a topo-

logical map, and the performance of the generalized an-

ticipatory Bayes filter was evaluated in the context of a

Fig. 6. Experimental environment. The start and finish points are indicated
with the robot and flag icons respectively.

localization problem. Topological maps are graph-like spa-

tial representations in which nodes represent states in the

agent’s configuration space and edges represent the system

trajectories that take the agent from one state to another.

The meanings of nodes and edges in a topological map vary

according to the application as well as the algorithms used to

build them [11]. We represented the nodes of a topological

map as distinct places and edges as transitions made by a

robot as it moved from one place to another. When the robot

navigates a path, positions that share similar sensory features

are grouped together. Our experimental environment was

divided into 13 distinct places using the method described

previously [10].

B. Visual Data Encoding

A number of methods are available for encoding vision

data, and the choice of method depends mainly on the

intended application. In corridor-like environments, few

visual features can be uniquely identified. However, interior

moldings, doors, and vanishing lines in the environment form

a number of straight lines; therefore, in processing vision

data in our experiments, we decided to adopt only linear

features.

First, all line segments in an image were extracted into one

of four groups according to the angle formed between the

line and the horizontal plane. The four groups were divided

according to the quantized angles of 0o, 45o, 90o and 135o.

After allocating a line to a group, all line lengths in the

same group were added to yield a four-element histogram.

As we used images taken from the left and right cameras,

we had eight values at the end of each image acquisition

step. These data were put into one vector and divided by

the length of that vector, which yielded a normalized vector

of length 1. By inspecting this vector value, we obtained

an understanding of the presentation of line components and

their quantitative tendencies in the measurement data.

C. Implementation of The Generalized Anticipatory Bayes

Filter

In Fig. 1 the symbol z̃t indicates the predicted sensor

value. The problem of how to predict a sensor value when

the related state is given can be solved by two approaches:

sampling from the sensor model P (zt|Xt), or using the
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expected sensor value obtained from the sensor model. In

this experiment, we simply adopted the latter approach.

The revision selection model P (Φt|zt,Xt) is the most im-

portant element in the generalized anticipatory Bayes filter,

and so this model should be chosen carefully. Controlling

the shape of the sensor revision model P (Ot|zt,Xt) directly

affects the performance of the generalized anticipatory Bayes

filter. In general, when the revision sensor model is evenly

distributed, the revision ability is weakened. In contrast,

when it is concentrated on a given area, the revision ability

is strengthened.

Figure 3(b) shows an example of revision transition model

P (Oi
t|zt, ϕ

i). When the values for zt and ϕi are given, the

mean of this model should be located around a certain point:

oi
t = (zt)

ϕi

(11)

and the variances are the same for all different ϕi. Keeping

the same shape for all revision transition models can have

benefits with regard to canceling these terms from computa-

tions.

The third step in Fig. 5 introduces the parameter θ to

determine whether to apply the predictive sensor model in

the measurement-update step. This value controls the degree

of belief that the robot has for the present state; a high value

of θ indicates that a higher degree of belief is necessary for

application of the predictive sensor model.

D. Experimental Results

The purpose of this experiment was to assess the total

enhancement attributable to the predictive sensor model. We

compared the performance of the original Bayes filter and the

generalized anticipatory Bayes filter based on the resulting

belief score. The main difference between the original sensor

model and the predictive sensor model is that the latter

utilizes the information of the predicted state, to filter out

the ambiguity caused by outlier sensor data.

Our experiment demonstrated an improvement in perfor-

mance using the generalized anticipatory Bayes filter. The

scores using the original Bayes filter and the Anticipatory

Bayes filter were 52.34% and 73.36%, respectively, indicat-

ing a performance improvement of 28.65%. This enhance-

ment of the Bayes filter was mainly due to integration of

the prediction mechanism with the sensor model, allowing

the outlier sensor data to be effectively filtered out by our

proposed predictive sensor model. In pattern recognition,

outlier data represent small numbers of samples that may be

clustered as members of a certain group but that contradict

the main property of that group, and so tend to lead to

incorrect conclusions. The resulted scores were relatively

low, because in the localization process the odometer data

were not taken into account. We focused on the improvement

of localization performance of the Anticipatory Bayes filter

against the original Bayes filter, when all parameters and

the experimental conditions were the same. A related

demonstration video is available [12].

Fig. 7. Real robot platform. A Pioneer 3-AT mounted with three web
cameras for image gathering.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a predictive sensor model to

improve the efficiency of the measurement-update step in

the Bayes filter. We proposed a method that includes the

revised sensor value in the ordinary sensor model. Thus, we

developed a generalized anticipatory Bayes filter to mimic

the human prediction mechanism. Our experimental results

showed that applying the prediction mechanism to the Bayes

filter affects the perceptual process of sensory input and

provides a higher degree of accuracy than the original sensor

model.

In future work, we will evaluate our method applied to

large-scale problems, and problems other than robot local-

ization. Further studies are also required for modeling the

human prediction mechanism in behavior control systems.
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