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Abstract— Man-made real-world environments are domi-
nated by planar surfaces many of which constitute behavior-
relevant entities. Thus, the ability to perceive planar surfaces is
vital for any embodied system operating in such environments,
be it human or robotic. In this paper, we present an architecture
for detection and estimation of planar surfaces in the scene
from calibrated stereo images. They are represented in a
behavior-oriented way, focusing on geometrical properties that
are relevant for enabling basic interaction between a robot and
the planar surfaces it perceives. Ego-motion of the robot is
compensated for by transforming the representations into a
global coordinate system using the kinematics of the robot.
Our architecture is able to detect and estimate arbitrary
planar surfaces, regardless of their visual appearance, their
geometrical properties other than planarity and their being
static or arbitrarily moving. The latter is achieved by processing
each frame independently of the others. Stable representations
are obtained by establishing spatio-temporal coherence between
the single-frame representations of subsequent frames. Based
on a RANSAC approach to plane fitting, our method is robust to
unreliable 3D data such as obtained by local stereo correlation,
for example. In our experiments using the Honda humanoid
robot ASIMO, we show that our method is able to provide a
robot in real-time with representations of planar surfaces in its
environment that are sufficiently accurate for basic interaction.

I. INTRODUCTION

Man-made environments are dominated by planar sur-
faces. Many of these constitute behavior-relevant entities in
the sense that they afford certain actions [1]. For example, the
seat base of a chair affords sitting. Humanoid robots operate
in the same man-made environments as human beings do.
Therefore, they are confronted with planar surfaces to the
same extent. Due to the similar embodiment humanoid robots
share with human beings, planar surfaces afford similar
actions to them. Thus, the ability to perceive planar surfaces
in the environment is as vital for humanoid robots as it is
for human beings.

Planar surfaces in man-made environments vary greatly
in terms of their visual appearance, including their color,
their texture or lack thereof. They also have very different
geometrical properties, for example in terms of their orienta-
tion, their shape and size. And even if most planar surfaces
in man-made environments are typically static, there are
behavior-relevant planar surfaces that can be moved freely —
imagine a person holding a tray, for example. Thus, a generic
perception mechanism for planar surfaces is required, i.e. the
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system should be able to perceive all planar surfaces in its
environment.

In our understanding, perception serves to enable an
embodied system such as a robot to interact with its en-
vironment. From this, two implications arise. First, a rea-
sonable degree of accuracy has to be achieved regarding the
internal representations of the planar surfaces perceived by
the system: If, on the one hand, the representations are too
coarse, the system will not be able to interact with them
in a meaningful way and even runs the risk of damaging
itself by collision. On the other hand, if the accuracy of
the representations is higher than what is necessary for safe
interaction, computational resources are wasted.

This leads to the second implication: The entire system
has to perform in real-time, otherwise it will be unable to
properly interact with its environment as well, no matter how
accurate its internal representations may be. This imposes
limitations on the choice of algorithms that can be used
as part of the system. For example, due to the similar
embodiment humanoid robots share with human beings they
typically infer 3D information about the scene by stereo
vision, which is also used by human beings [2]. Although
there are well-known algorithms for stereo correlation that
achieve highly accurate 3D data [3], humanoid robots often
use local correlation methods because of their comparably
low computational cost, even if the resulting 3D information
is by far more inaccurate and unreliable.

In humanoid robotics, the range of applicable methods is
often constrained further by the philosophy to go without
non-biological methods such as laser scanners, for example.
Real-world environments often involve additional challenges,
ranging from inhomogeneous lighting conditions to occlu-
sions. For example, a table top may be partially occluded by
objects on the table. Thus, any perception mechanism of an
embodied system operating in real-world environments needs
to be sufficiently robust to these influences. In particular, the
internal representations it provides to the system must be
sufficiently accurate and stable for interaction despite the
inaccurate and unreliable 3D information from which they
are computed.

This paper is organized as follows: In Sec. II, we provide
a brief overview of existing approaches to planar surface
detection and estimation of the corresponding plane param-
eters. After that, we formally describe and explain our own
approach in Sec. III. In Sec. IV, we evaluate our method
in a real-world experiment using the Honda humanoid robot
ASIMO and discuss the results. Finally, we summarize our
main results and contributions in Sec. V.
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II. RELATED WORK

The problem of planar surface detection and estimation of
the corresponding plane parameters has been studied both
in computer vision and robotics. Most of the approaches
can be classified as iterative methods, voting-based methods
or methods employing a growing procedure. They can be
further distinguished by whether they operate on dense or
sparse 3D features.

If the detection task is simplified, e.g. by manual selection,
the parameters of multiple planes can be estimated by
iterative plane fitting [4] or by iteratively refining initial
estimates [5]. For the detection and estimation of certain
behavior-relevant planar surfaces such as the ground plane,
for example, methods using V-disparity [6] or a model of
the ground plane disparity [7] have been proposed. If good
initial estimates are available, the ground plane can also be
estimated by iteratively adapting the underlying homography
like in [8] and [9]. Other methods are able to detect and
estimate the dominant plane in the scene based on a growing
procedure on coplanar sets of sparse 3D points [10] [11].
Textured planar surfaces can be detected and estimated by
performing a voting procedure on plane orientations obtained
from pairs of spectral peaks [12] or on dense local normals
[13] [14]. Finally, methods that circumvent the need for
texture by operating on sparse 3D data have been proposed,
including a voting procedure on plane candidates defined by
point and line features [15] or by triplets of points [16],
as well as a growing procedure on the normals of triangles
obtained by triangularization of the 3D points [17].

III. METHODS

A. General Considerations

The characteristic property of a planar surface is copla-
narity of the 3D points corresponding to its projection in the
image plane. Since this property goes beyond the 2D image
itself, any system aiming at the detection of planar surfaces
and the estimation of their parameters has to take into
account 3D information about the scene. This 3D information
can be obtained by various means, e.g. by stereo vision, but
also by a laser scanner or a combination of several sources
in order to increase accuracy and reliability. We suppose the
resulting 3D information is organized as 3D map

i3D : W ×H → R3

mapping from image pixels (u, v) ∈ W ×H to 3D points

i3D(u, v) = (x, y, z) ∈ R3

in camera coordinates.
For the reasons given in Sec. I, in our case i3D is obtained

by local stereo correlation [18]. As a consequence, reliable
3D information is dense within sufficiently textured image
regions while homogeneous regions lack reliable 3D infor-
mation. This is characteristic for any local correlation-based
approach to 3D reconstruction: Correlation is ambiguous
within homogeneous regions since the pixels considered by
the local approach all have similar values. Nevertheless,

correlation is not ambiguous along the contours of homo-
geneous regions (except for horizontal parts thereof, in the
case of stereo vision). Therefore, we detect and estimate
textured planar surfaces directly from i3D and textureless
planar surfaces based on the 3D data corresponding to their
contours. Consequently, our system operates on i3D and the
corresponding camera image

iRGB : W ×H → {0, . . . , 255}3

mapping from image pixels (u, v) ∈ W ×H to colors

iRGB(u, v) = (r, g, b) ∈ {0, . . . , 255}3

in RGB color space. Note that our method does not require
iRGB to be a color image, since it considers similarity of
pixels rather than their actual values (see Sec. III-B).

Given i3D and iRGB , our system detects and estimates
both textured and textureless planar surfaces in the scene.
They are represented in a behavior-oriented way: In order
to enable a robot to perform basic interaction with the
planar surfaces it perceives while at the same time reduce
computational effort, only relevant geometrical properties
such as their position, size and orientation in 3D space are
represented. Thus, our system computes as output a set

P = {p1, . . . , pn}

of representations

pi = (ci, ni, si)

Each pi represents a planar surface in the scene, where

ci = (cx, cy, cz) ∈ R3

is a 3D point representing its position,

ni = (nx, ny, nz) ∈ {n ∈ [−1, 1]3 | ‖n‖ = 1}

is a 3D normal representing its orientation, and

si = (sx, sy, 0) ∈ R3
+

represents its size with respect to its principal axes.
This kind of representation is consistent with neurobi-

ological findings: In the brain, cortical areas related to
behavior and motor control are closely linked with the dorsal
pathway. As opposed to the ventral pathway, which primar-
ily processes detailed object-specific information leading to
conscious percepts, the dorsal pathway focuses on behavior-
relevant geometrical properties in order to guide behavior
[2]. Experimental evidence suggests that this also applies to
planar surfaces: For example, the 3D orientation of planar
surfaces is represented in the caudal part of the lateral bank
of the intraparietal sulcus (area CIP) [19].

B. System Architecture

As a consequence of the above considerations, our system
consists of two parallel but converging sub-systems: one is
dedicated to textured planar surfaces and operates directly on
i3D, the other is dedicated to textureless planar surfaces and
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Fig. 1. Basic system architecture. See Sec. III-B for a detailed explanation.

operates on iRGB and i3D. The basic architecture is depicted
in Fig. 1 and will be explained below.

The sub-system for textured planar surfaces consists of the
following processing steps. First, Gauss filtering is performed
on i3D, resulting in the smooth 3D map

ĩ3D : W ×H → R3

In our case, actually the disparity map idisp underlying i3D

is Gauss filtered, which is faster because idisp only maps to a
one-dimensional space. The Gauss filtering serves to prepare
the next processing step in two respects: First, it reduces the
overall noise level in i3D. Second, it recovers smooth depth
gradients. Local correlation like [18] tends to discretize depth
gradients in i3D. The Gauss filter is optimal for eliminating
the resulting small step-like artifacts due to its ability to filter
higher frequencies without affecting lower frequencies.

Based on ĩ3D, a local normal map

i~n : W ×H → {n ∈ [−1, 1]3 | ‖n‖ = 1}

is then computed, mapping from image pixels (u, v) ∈ W ×
H to local surface normals

i~n(u, v) = (nx, ny, nz) ∈ {n ∈ [−1, 1]3 | ‖n‖ = 1}

at the corresponding 3D points ĩ3D(u, v). Each i~n(u, v)
is obtained by performing a principal component analysis
(PCA) on the set{

ĩ3D(u′, v′) | (u′, v′) ∈ {(u, v)} ∪Neigh8(u, v)
}

of 3D points, where Neigh8(u, v) denotes the 8-
neighborhood of (u, v). Note the importance of the an-
tecedent Gauss filtering: Since the i~n(u, v) are computed
locally, they are sensitive to noise and the aforementioned
artifacts, thus they would be unreliable if computed from
i3D instead of ĩ3D.

Once i~n has been obtained, contiguous regions character-
ized by similar local normals are identified by performing a
region growing segmentation on i~n. The resulting segmenta-
tion

i•~n : W ×H → N

assigns a region label l ∈ N to each image pixel (u, v) ∈
W ×H . Pixels that are assigned the same region label form

a region, i.e. the region Ri•
~n
(l) corresponding to region label

l ∈ N is defined as

Ri•
~n
(l) = {(u, v) ∈ W ×H | i•~n(u, v) = l}

By construction, the Ri•
~n
(l) are contiguous.

The sub-system for textureless planar surfaces exploits
that their lack of texture implies smooth transitions or even
homogeneity with respect to color. Thus, it identifies contigu-
ous regions characterized by similar color by performing a
region growing segmentation on iRGB . Effects of over- and
undersegmentation are dealt with at subsequent processing
steps. Analogous to i•~n, the resulting segmentation

i•RGB : W ×H → N

assigns a region label l ∈ N to each image pixel (u, v) ∈
W ×H . The region Ri•RGB

(l) corresponding to region label
l ∈ N is defined as

Ri•RGB
(l) = {(u, v) ∈ W ×H | i•RGB(u, v) = l}

Like the Ri•
~n
(l), the Ri•RGB

(l) are also contiguous by
construction.

The region growing approach used to obtain i•RGB and
i•~n is basically the same: The Ri•RGB

(l) are characterized
by similarity with respect to color while the Ri•

~n
(l) are

characterized by similarity with respect to the local normals.
The only difference is that for the Ri•RGB

(l) local similarity
of neighboring pixels is considered while for the Ri•

~n
(l)

global similarity with respect to the average normal of a
growing region is considered. Thereby, the region growing
is able to follow color gradients in iRGB , which is desirable
because they are often artifacts caused by inhomogeneous
lighting conditions, while it does not follow gradients with
respect to the local normals. This is desirable as well, since
the latter do not correspond to planar but curved surfaces.
In addition, since region growing evaluates similarity, not
absolute values, nothing has to be known about the actual
color or the actual orientation of a planar surface.

According to the considerations in Sec. III-A, for the
Ri•RGB

(l) reliable 3D information is only available along
their contours. Therefore, the next step consists in identifying
the region contours of the Ri•RGB

(l), which is straightforward
given i•RGB : A pixel (u, v) ∈ W ×H is a contour pixel iff
it has a neighbor pixel (u′, v′) ∈ W ×H that has a different
region label, i.e. iff

∃(u′, v′) ∈ Neigh4(u, v) : i•RGB(u′, v′) 6= i•RGB(u, v)

where Neigh4(u, v) denotes the 4-neighborhood of (u, v).
Note that the 4-neighborhood is sufficient here, while the 8-
neighborhood is used for the computation of i~n because the
local normals thus estimated are more reliable. The resulting
contour image

i◦RGB : W ×H → N

is a subset of i•RGB in the following sense: The region
contour Ri◦RGB

(l) corresponding to region label l ∈ N is
given by

Ri◦RGB
(l) = {(u, v) ∈ W×H| i◦RGB(u, v) = l} ⊆ Ri•RGB

(l)
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Thus, we end up with a set

R = {Ri•
~n
(l) | l ∈ N} ∪ {Ri◦RGB

(l) | l ∈ N}

of candidate regions that are likely to correspond to textured
and textureless planar surfaces in the scene, respectively. For
each R ∈ R, a RANSAC approach to plane fitting [20]
verifies whether the set

i3D(R) = {i3D(u, v) | (u, v) ∈ R}

of 3D points corresponding to R is indeed coplanar, disre-
garding outliers. If successful, a plane is fitted to the coplanar
subset of i3D(R). This is achieved as follows: First, m ∈ N
plane hypotheses

p
(1)
R , . . . , p

(m)
R

are generated for R, where each

p
(j)
R = (q(j)

R , ~n
(j)
R )

is defined by a point q
(j)
R ∈ R3 and a normal ~n

(j)
R ∈ {n ∈

[−1, 1]3 | ‖n‖ = 1} in 3D space. Each hypothesis p
(j)
R is

computed from three 3D points that are randomly chosen
according to a uniform distribution over i3D(R).

After that, the support set

i3D(R)
(j)

= {q ∈ i3D(R) | dist(p(j)
R , q) ≤ ε}

is determined for each p
(j)
R , consisting of all 3D points q ∈

i3D(R) that are sufficiently close to p
(j)
R , where ε ∈ R+ and

dist(p(j)
R , q) ∈ R+ denotes the orthogonal distance between

q and p
(j)
R .

Provided that a given p
(j)
R has sufficient support, i.e. that∣∣∣i3D(R)

(j)
∣∣∣

|i3D(R)|
≥ τ

where τ ∈ [0, 1], its cost

c(p(j)
R ) =

1∣∣∣i3D(R)
(j)

∣∣∣
∑

q∈i3D(R)
(j)

dist(p(j)
R , q)

is computed as the average distance between p
(j)
R and its

support points q ∈ i3D(R)
(j)

.
Finally, the p

(j?)
R with minimum cost is chosen, i.e.

p
(j?)
R = arg min

p
(j)
R ∈{p

(1)
R ,...,p

(m)
R }

{c(p(j)
R )}

— or none, if no p
(j)
R has sufficient support. Since p

(j?)
R

is only an initial hypothesis based on three 3D points, the
plane parameters are re-estimated by performing a principal
component analysis (PCA) on its support set i3D(R)

(j?)
.

This results in the (least-squares) best-fitting plane

pR = (qR, ~nR)

By computing the size sR ∈ R3
+ of i3D(R)

(j?)
with respect

to its principal axes, we obtain

p′R = (qR, ~nR, sR)

in camera coordinates, which is consistent with the planar
surface representation proposed in Sec. III-A.

We use RANSAC plane fitting for two reasons: First, it
is computationally efficient due to its randomization. Sec-
ond, it is robust to large amounts of outliers. This is very
important because there are numerous sources of outliers in
i3D: ranging from sensor noise to mismatches during stereo
correlation, objects partially occluding planar surfaces, and
undersegmentation in the textureless case that causes the
Ri◦RGB

(l) to contain non-coplanar parts of the scene as well.
So far we have described how P = {p′R | R ∈ R}

is computed from i3D and iRGB . The set P is computed
independently for each frame. This way, our system is able to
detect and estimate static planar surfaces as well as arbitrarily
moving ones. Once the single-frame representations p′R ∈ P
have been obtained, they are transformed into global coor-
dinates using the kinematics of the robot to compensate for
ego-motion. Then, spatio-temporal coherence is established
in order to obtain stable representations: This is achieved by
considering a short history

H = {P (f?), . . . ,P (f?−h)}

containing the

P (f) = {p(f)
1 , . . . , p(f)

nf
}

of subsequent frames f , where nf ∈ N0 denotes the number
of planar surfaces that have been detected and estimated in
frame f , f? ∈ N0 denotes the current frame and h ∈ N0 is
the history length. By performing nearest neighbor clustering
across the P (f) ∈ H, a set

P = {P 1, . . . ,P n}

is obtained. The representations in each P ∈ P correspond
to the same planar surface in the scene. Stable representations

P = {p1, . . . , pn}

are then obtained by computing the (componentwise) average
of the representations in each of the P i, i.e.

pi =
1
|P i|

∑
p∈P i

p

These representations are fully consistent with the so-called
proto-object representations used in [21].

IV. RESULTS

In order to evaluate our method, we have performed sev-
eral experiments in an indoor environment using the Honda
humanoid robot ASIMO [22]. ASIMO was equipped with a
calibrated stereo camera that acquires RGB color images at
a resolution of 400× 300 pixels. For 3D reconstruction, the
commercial software described in [18] was used, which is a
local stereo-correlation method. The resulting 3D maps had
a resolution of 400× 300 pixels as well and were available
at a framerate of 23 fps. Both the 3D maps and the camera
images were downsampled by a factor of 2 before being fed
into our architecture.

5720



A. Changing Visual Appearance

To begin with, we give an example of a textured planar
surface and a textureless one. The purpose is to illustrate
the fundamental difference in how our method reconstructs
them in 3D space, and to familiarize the reader with the
visualization of the resulting 3D representations.

As an example of a textured planar surface, we covered the
seat base of an office stool with a textured tablecloth and pre-
sented it to the robot (see Fig. 2, upper left). The green ellipse
is the result of back-projecting the corresponding 3D proto-
object representation onto the image plane. Note that the
proto-object representation itself is fully three-dimensional,
as described in Sec. III-A: The two straight lines are in fact
orthogonal, in 3D space, and represent the principal axes,
their intersection corresponds to the 3D center point, and
the ellipse visualizes the size. Obviously, the textured seat
base is successfully detected and reconstructed.

Fig. 2, upper right, shows the disparity map underlying
the 3D points from which the planar surface is reconstructed.
One can see that, due to the texture of the tablecloth, dense
disparities are available for reconstruction.

We then removed the tablecloth from the office stool in
order to expose its textureless visual appearance (see Fig.
2, bottom left). This was done at run-time, without pausing
the system and without changing any parameters. Obviously,
despite the changed visual appearance the seat base is still
successfully detected and reconstructed, as can be seen by
the green ellipse, which resembles the one obtained in the
textured case.

Fig. 2, bottom right, reveals that only sparse disparities are
available in the textureless case and that these concentrate
along the boundaries. As described in Sec. III-A, this is
a fundamental difference between textured and textureless
planar surfaces, which is the reason for the two parallel sub-
systems we employ in our approach.

B. Multiple Planar Surfaces

In Sec. IV-A, we have only considered a single planar
surface at a time. In this experiment, we test our method
on an object that consists of more than one planar surface.
The planar surfaces involved differ from each other in terms
of their orientation in 3D space and, in one part of the
experiment, also in terms of their visual appearance.

We presented an office chair to ASIMO that consists of
two different planar surfaces: seat base and backrest. While
the chair itself is textureless, we first covered its backrest
with a textured tablecloth, thus presenting a textured planar
surface and a textureless one at the same time. In addition,
we turned the chair during run-time (see Fig. 3, upper row).

Obviously, both the seat base and the backrest of the chair
are successfully detected and reconstructed, independent of
the viewing angle. This demonstrates that, in this case,
the sub-system for detection of textured planar surfaces
(backrest) and the sub-system for detection of textureless
planar surfaces (seat base) are active at the same time.

Note that the drawing color of the ellipse corresponding
to the backrest varies with the orientation of the backrest,

Fig. 2. Example of a textured and a textureless planar surface.

Fig. 3. Example of an object that consists of more than one planar surface.

ranging from red over magenta to blue. The reason is that
the 3D normal (x, y, z) of each planar surface representation
defines the drawing color (r = x, g = y, b = z) in
RGB color space in which the representation is visualized.
Horizontal planes, for example, are drawn in green, fronto-
parallel planes are drawn in blue, and vertical planes viewed
from the side are drawn in red. Moreover, the color of a
fronto-parallel planar surface rotating to a side-view varies
smoothly from blue over magenta to red, as with the backrest
of the chair, and the color of a horizontal plane rotating into
a fronto-parallel position would range from green over cyan
to blue.

In the second part of this experiment, we removed the
textured tablecloth from the backrest of the chair, revealing
its textureless appearance. Together with the textureless seat
base, we were thus presenting an object consisting of two
textureless planar surfaces at the same time (see Fig. 3,
bottom row). We turned the chair the same way as in the
first part of this experiment.
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As can be seen from the images, both backrest and seat
base of the chair are again successfully detected and recon-
structed. The ellipses resemble their respective counterparts
in the upper row. For a detailed quantitative analysis of the
accuracy of the planar surface representations computed by
our method, see Sec. IV-D.

Exemplarily considering the sub-system for textureless
planar surfaces, the second part of this experiment shows
that our approach is not limited to one planar surface per
sub-system. This is further emphasized by the following
experiment.

C. More Complex Scenes

In this experiment, we consider more complex scenes, not
only an individual object in isolation. Examples of such
scenes are depicted in Fig. 4, which consist of a table
with several different objects on top. The planar surfaces
provided by these objects vary considerably in terms of their
orientation and their visual appearance.

As one can see, our system enables ASIMO to correctly
perceive the most important planar surfaces corresponding to
the objects on the table. As for the table top itself, occluded
parts are not represented because these have insufficient 3D
points corresponding to the table and not to the occluding
objects. Nevertheless, the non-occluded part of the table
top that is closest to ASIMO, which is for this reason the
behaviorally more relevant part, is reliably represented.

D. Quantitative Analysis

In order to evaluate the 3D proto-object representations
computed by our method under controlled conditions, fo-
cusing on their accuracy and their framerate, we presented
a single planar surface to ASIMO and systematically varied
both its distance and its orientation. For simplicity, the planar
surface was always presented directly ahead and at eye level
of ASIMO. Its distance was varied within a range from 3 m
(farthest) to 1 m (closest), in steps of 0.25 m, which is a
realistic operating range for ASIMO. At each distance, the
orientation of the planar surface was varied in terms of its
elevation, ranging from 90◦ (steepest) to 0◦ (shallowest) in
steps of 22.5◦. This experiment has been conducted twice,
one time with the planar surface being textureless and one

Fig. 4. More complex scenes, consisting of various objects with planar
surfaces.

Fig. 5. Perceived distance of a textureless (left) and textured (right) planar
surface, depending on its actual distance and its orientation.

Fig. 6. Perceived size of a textureless (left) and textured (right) planar
surface, depending on its distance and its orientation.

time being textured. As planar surface we chose the seat base
of the stool used in Sec. IV-A, having a radius of 0.20 m.

Throughout the experiment, we measured the distance,
size and elevation of the planar surface as perceived by our
system as well as the overall framerate. The results can be
seen in Fig. 5 – Fig. 8. In each figure, the left graph shows
the results for the textureless planar surface and the right
graph shows the results for the textured planar surface. The
red lines indicate the ground truth.

The graphs in Fig. 5 both show a strong agreement
between the perceived distance and the actual distance of
the planar surface. The average error is about 6 cm in
the textureless case and 5 cm in the textured case. The
error is not significantly affected by the distance itself: It
is not affected at all in the textureless case, and not in
a systematic way in the textured case. In contrast, there
is a correlation between the perceived distance and the
orientation of the planar surface: In both cases, the perceived
distance decreases as the elevation of the planar surface
increases. We attribute this to the experimental setup: For
practical reasons, the center of rotation was not identical with
the center point of the planar surface but rather below that
point (referring to an elevation of 0◦). In combination with
the thickness of the planar surface, increasing its elevation
thus indeed slightly decreased its distance.

The graphs in Fig. 6 both show a strong agreement
between the perceived size and the actual size of the planar
surface. The maximum error occuring is approximately 2
cm in the textureless case and 4 cm in the textured case.
Apparently, the error is not significantly affected by the
distance of the planar surface. Accuracy is better in the tex-
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Fig. 7. Perceived elevation of a textureless (left) and textured (right) planar
surface, depending on its actual orientation and its distance.

Fig. 8. Overall framerate of our architecture while detecting a textureless
(left) or textured (right) planar surface, depending on their distance and
orientation.

tureless case, which is because the detection and estimation
of textureless planar surfaces involves determining their exact
contours in the camera images (see Sec. III-B). In contrast,
textured planar surfaces are detected and estimated directly
from the 3D maps which, as a consequence of the stereo
correlation method used in this experiment, preserve contours
only coarsely.

The graphs in Fig. 7 both show a strong agreement
between the perceived elevation and the actual elevation of
the planar surface. A closer look reveals that the accuracy
depends on the distance of the planar surface: Considering
the full range of up to 3 m, the average error is about
4.3◦ in the textureless case and 4.9◦ in the textured case.
Considering a range of up to 2 m, the average error reduces
to approximately 3.7◦ in the textureless case and 3.8◦ in the
textured case. At a distance of 1 m, the average error reduces
further to approximately 2.9◦ in the textureless case and 3.8◦

in the textured case. Thus, accuracy significantly increases as
the planar surface draws closer, which can be achieved by
letting the robot approach the planar surfaces it perceives,
for example.

The graphs in Fig. 8 show that the framerate of our
system enables a robot to interact with the planar surfaces it
perceives in real-time: In the textureless case, the framerate
ranges from approximately 14 fps to 17 fps, while in the
textured case it ranges from approximately 12 fps to 18
fps. Obviously, the framerate depends on the distance of the
planar surface: At distances of about 3 m about 17–18 fps
are achieved, while at distances of about 1 m the framerate
reduces to approximately 12–14 fps. The reason for this is

that the projection of the planar surface in the images gets
larger as the planar surface gets closer, which implies that
increasingly more 3D points are involved in the detection and
estimation of the planar surface. The textured case is affected
stronger because textured planar surfaces are reconstructed
from dense 3D points, while textureless planar surfaces are
reconstructed from sparse 3D points (see Sec. III-B and Fig.
2).

V. CONCLUSION
We have presented an architecture for detection and esti-

mation of planar surfaces in the scene from calibrated stereo
images. Robustness to the unreliable 3D data obtained by lo-
cal correlation is achieved by Gauss filtering the 3D data and
by employing a RANSAC approach to plane fitting. Due to
the different sub-systems for textured and textureless planar
surfaces, operating either directly on the 3D map or focusing
on similarity between pixels in the camera images rather than
on their absolute values, planar surfaces of arbitrary visual
appearance can be handled. Since coplanarity of 3D points
is the only geometric property evaluated by our architec-
ture, assumptions about other geometrical properties such as
orientation, shape or presence of straight lines are avoided.
By computing 3D representations for each individual frame,
arbitrarily moving planar surfaces as well as static ones can
be handled. Stable percepts are obtained by transforming
these single-frame representations into global coordinates,
thus compensating for the ego-motion of the robot, and
by establishing spatio-temporal coherence across successive
frames. The experiments show that our architecture is able
to provide these percepts in real-time while at the same time
achieving a degree of accuracy that is sufficient to enable
an autonomous robot to interact in a basic manner with the
planar surfaces in its environment (see Fig. 9 for an example).

Fig. 9. ASIMO detecting and approaching the planar seat base of a chair.
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