
Real Time Tracking using an Active Pan-Tilt-Zoom Network Camera

Thang Dinh, Qian Yu, Gerard Medioni

Abstract—We present here a real time active vision system
on a PTZ network camera to track an object of interest. We
address two critical issues in this paper. One is the control of the
camera through network communication to follow a selected
object. The other is to track an arbitrary type of object in
real time under conditions of pose, viewpoint and illumination
changes. We analyze the difficulties in the control through
the network and propose a practical solution for tracking
using a PTZ network camera. Moreover, we propose a robust
real time tracking approach, which enhances the effectiveness
by using complementary features under a two-stage particle
filtering framework and a multi-scale mechanism. To improve
time performance, the tracking algorithm is implemented as a
multi-threaded process in OpenMP. Comparative experiments
with state-of-the-art methods demonstrate the efficiency and
robustness of our system in various applications such as
pedestrian tracking, face tracking, and vehicle tracking.

I. INTRODUCTION

Based on open IP standards, a network camera can connect
to any kind of IP network, including the Internet, and enables
remote viewing and recording from anywhere in the world.
This provides a promising solution for video surveillance
in terms of easy deployment and flexibility in building a
multi-camera system. A large number of fixed CCD cameras
may be needed to cover an area. By contrast, just a few
active PTZ cameras can cover the same area. In order to
release human operators from monitoring and controlling
these surveillance cameras, real time autonomous control
of a PTZ network camera is required. Automatic visual
tracking on a PTZ network camera is challenging. Firstly,
tracking itself is difficult when there exists apparent pose,
illumination and viewpoint changes. Secondly, control over
network needs to take care of many practical issues, includ-
ing communication delay, packet loss and response time.
Considering tracking and control together, the requirement
of real time performance of tracking is strict. Recently, some
methods have been proposed in different applications using
PTZ camera such as face tracking, humans and vehicle
tracking, driving assistance by tracking obstacles (i.e rear
view of target vehicles) with a mounted PTZ camera on
car. The face tracking system [8] uses template matching,
which is poor in dealing with cluttered background or
abrupt changes in object appearance. In the humans and
vehicles tracking system [9], an integral histogram method
is adopted to compute color signature of object, which
makes it impossible to overcome the problem of abrupt
motion, viewpoint and illumination changes. The framework

All of the authors are with Institute for Robotics and
Intelligent Systems, University of Southern California, USA
{thangdin,qianyu,medioni}@usc.edu

in driving assistance [10] needs a learning stage (which takes
about 7 seconds) and does not update the model during
tracking, which causes the inability to adapt to appearance
changes.
We propose a novel real time tracker for any previously

unknown object using a PTZ Network Camera as an input
with multi-threading mechanism in receiving, processing,
controlling, displaying and saving results. The tracker is
robust against abrupt motion and changes in viewpoint and
illumination. Our first contribution is a novel framework
to overcome the issues in controlling an off-the-shelf PTZ
Network Camera while maintaining the quality of service in
various real applications. Our second contribution is a robust
tracker: a two-stage particle filter and multi-scale mechanism
deals with large motion caused by concurrent movements of
object and camera, and the delay in communication over the
network. It also uses complementary features to enhance its
power.
Figure 1 illustrates the overview of our approach, in which

the initialization is provided either of two ways: manual
or automatic (using detectors when the type of object is
previously known). The control part handles all of the issues
from control of the camera over the network to maintainance
of the quality of service. Finally, the core tracker is a robust
real time one with the ability in tracking an arbitrary object.
The rest of this paper is organized as follows. The control
part of our approach is presented in section II. Details of
the tracker are discussed in section III. The experiments
and applications are described in section IV, followed by
conclusions, future work, and acknowledgements.

II. CONTROL OF A PTZ NETWORK CAMERA
There are many good approaches to follow objects with an

active camera optimally and state-of-the-art theories on adap-
tive control of time delay systems have been proposed [11]–
[14] . However, such approaches need highly-configured
devices which can be accessed through low-level interfaces
while our goal is tracking via a typical commercial PTZ
Camera with limited support (as described below in the
description of the camera). Therefore, we adopt the simple
but efficient proportional control with a time-sharing strategy
to overcome the time delay of the system.
Communication between the control center and the PTZ

camera is via TCP/IP network, i.e. all captured images and
control commands are sent through the network.

A. Description of the camera
We use the off-the-self Sony PTZ Network Camera SNC-

RZ30N. This camera offers a large focal length range and

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 3786

Fig. 1. Our proposed active system

wide field-of-view. Another advantage of the camera is the
simplicity of installation. The camera protocol is popular
and compatible with many other types of SONY Network
cameras. This makes the system easy to extend to multiple
cameras. The camera specifications and the configuration of
our experiment setup are shown in Figure 2. The wireless
connection is established through a Cisco Aironet 350 series
adapter.
Although the network camera (especially through wireless

network) is easy to deploy and communicate, proper control
is very difficult. Due to the nature of network communi-
cation, there is a delay in receiving acquired frames and
sending control commands. Also, the overhead occurred in
getting the camera status, e.g. pan-tilt pose and focal length,
is expensive in terms of time constraints in real-time systems.
In order to handle this problem, a time-sharing strategy is
introduced to balance the load of sending control commands
and inquiring the camera status. Another issue in the control
part is that the camera provides a discrete speed control due
to the use of stepping motors, i.e. 14 levels of speed control
for tilt and 18 levels for pan. Therefore, we first calibrate
the pan-tilt speed at each level and store this information in
a lookup-table.

B. Formulation

In the PTZ camera model, let O,C represent the optical
center and the principal point respectively. f is the focal
length of the camera. The center of the target is projected at
P in the image plane. The size of the projection of the target
is represented as S. Intuitively, the goal of the tracking is to
1) keep the target in the center of the image.
2) keep the projection of the target at a proper size.

(a) Experimental setup

(b) Lens specifications

(c) Pan/Tilt specifications

Fig. 2. Experimental setup and specifications from manual

Pan and tilt are defined in camera coordinates along the
X,Y axes respectively. The first goal can be achieved by
controlling pan and tilt, while the second one can be obtained
by changing the focal length f . Suppose θ is the angle
between the ray passing through the target center and the
optical axis and S0 is the desired size of the projection of
the target in the image plane, the goal of control is{

S → S0
θ → 0

(1)

θ is determined by two factors: θ = arctan ||P−C||
f

. The
numerator is the distance between the projection of the target
center P and the principal point C (note that C is the image
center which is used as an approximation). The goal is to
minimize the distance between P and C with respect to the
current focal length. For instance, when f is large (zoom-in
on the target) a small pan-tilt motion drastically changes the
offset in the image plane.

C. Control
Since a request over the network has large communication

delay, we cannot acquire accurate camera pose information
at every frame. The only way to control the network camera
is by sending the command to change the motion direction
and speed of the camera. In other words, the camera status
can be changed by altering the derivatives of the state S(t),
i.e.

S(t+ 1) = S(t) + Ṡ(t) (2)

where S(t) represents the control variable, including pan,
tilt and zoom S(t)

Δ
= [pan(t), tilt(t), zoom(t)]. The target

3787

of interest may undergo continuous generic 3D motion and
the tracking result may contain errors. Considering these
two practical conditions in tracking, we adopt the P control,
where the correcting term is proportional to the current
error value. Let u(t) represents the input to the PTZ control
process,

u(t) = Kpe(t) (3)

where Kp is the proportional gain and e(t) is the current
error term. We adopt the following proportional term,

Ṡ(t) =

[
K1
||P − C||X

f
,K2

||P − C||Y
f

,K3

(
S

S0
− 1

)]

(4)
where ||P−C||X and ||P−C||Y represent the offset between
P and C along X and Y axes in the camera coordinates.
Since there is no integral term in Eq.4, this may cause system
oscillation. In practice, the integral term may make a slow
response to the whole system due to the target undergoing
continuous motion. Therefore, a truncated negative feedback
is used to avoid oscillation and achieve a fast response,
namely

Ṡ(t) =
[
K1δ

(||P−C||X
f

, λ1

)
,K2δ

(||P−C||Y
f

, λ2

)
,

K3δ
(
S
S0
− 1, λ3

)] (5)

where the function δ(·, λ) is a truncation function,

δ(x, λ) =

{
x, x ≥ λ
0, x < λ

(6)

In Eq.4, we need to know the current focal length to deter-
mine proper pan and tilt speed. However, frequent inquiry
commands increase communication overhead and cannot
be achieved on the current network camera. Fortunately,
the focal length of the camera does not change drastically
compared to the pan and tilt speed. Thus, we do not request
the focal length at every frame.
There are three types of control commands defined in this

system. One type is to change the pan and tilt speed, which is
rated as high priority to make sure the camera can follow the
target.The second type is to change the current focal length
and the third type is to inquire the current focal length, which
is given low priority since focal length should not change
often. The PTZ camera has individual modules to respond
to each type of commands. None of these commands can
be sent too frequently, otherwise the command queue fills
up and later commands are ignored. In order to manage to
communicate with the camera by using these three types of
commands, a time-sharing strategy is applied. A number of
Pan-Tilt commands and Zoom commands form a sending
group. Several sending groups with one inquiry command
then form one control loop. The frequency of each type of
command is determined by its weight. In our experiments,
we adopt one Pan-Tilt command and one Zoom command as
one sending group, and two sending groups with one inquiry
command form a control loop. Note that we cannot acquire
the absolute pan, tilt or zoom information by accumulating
the increments with initial status. The command sent to the

camera is achieved by mechanical processes, which may
contain some errors. These errors are difficult to estimate
or to predict. Accumulating the increments produces a large
accumulated error. The only way to acquire the camera status
is by request.

D. Validation
In the API package of the SONY camera, there are

two functions which help to pan/tilt and zoom to a speci-
fied position and area, respectively: directPT(x,y) and area-
Zoom(x,y,w,h). We adopt a simple and fast tracker to follow
a face and keep it always in a proper size. The camshift
tracker with skin color model is applied because of its ex-
tremely fast running speed. However, these functions are only
applicable when dealing with static objects. By mentioning
static objects we want to emphasize that as long as the
object is moving, those two functions cannot track the current
position/size of the object. By the time they try to pan/tilt
or zoom to the preferred region, the target has moved far
away. Therefore, instead of using these high-level supporting
functions, we use the primitive APIs to follow the object.
In section IV, several challenging situations are shown to
demonstrate the robustness of our control and tracker in
different settings.

III. TRACKING
Object visual tracking is a very broad research area.

There is a strong relationship between object representations
and tracking algorithms. Also, selecting informative features
that describe the attributes of objects is an important is-
sue. Different features represent different complexities and
tracking outcomes. An objects can be represented as a set
of feature points with a specific structure [5] which is an
efficient representation but it needs high resolution input
and lacks of other important information such as color and
pattern. A contour can also be used to represent an object
when its boundary is more stable such as in [6]. An object
can also be represented as a segmentation, which provides
the most accurate, pixel-level representation of an object
in the 2D image. Given such a representation, one can
always switch to any other simpler representation, like point,
shape and contour. Moreover, it can be used to represent a
large variety of objects: rigid or non-rigid objects, simple
shape or complex shape objects. Several tracking methods
based on pixel-level segmentation have been proposed such
as [15]. However, both contour and segmentation based
representation need a good initialization for tracking an
arbitrary object, which is not applicable in our system. The
commonly used features for visual tracking include color,
local features (point, curve, patch), and global pattern. Color
is invariant to camera motion and scale changes. Successful
color trackers include [16], [17]. However, color is not
always available, e.g. in IR videos and may be distracted by
background. Local features such as [1], [18] can provide an
efficient representation and accurate localization; however, it
needs enough resolution of input sequence for robustness.
Pattern encodes the global appearance of objects like in

3788

(a) Abrupt motion in two consecutive frames (b) Motion blur

Fig. 3. Tracking issues with a PTZ Camera (cropped from original images)

[19], [20], but not invariant to camera motion. Thus, we
adopt a combination of these three types of features in our
system. Due to the active steerable network camera where the
concurrent movement of object and camera, and the network
latency exist, we often encounter abrupt motion and motion
blur (see Figure 3), which is hard to cope with. To address
this issue, the idea of using a cascade of particle filters which
has been successfully applied in low frame rate video [21]
is adopted to propose a two-stage particle filter. In the first
stage, a discriminative pre-filter automatically chooses the
feature which best separates object and background from
feature pool to build a confidence map which helps to remove
all bad samples, i.e. ones have low confidence. In the second
stage, a rough model of object appearance is built at the
beginning and continuously updated according to all changes
in pose, viewpoint, illumination by encoding them in a low
dimension subspace. Moreover, a multi-scale selection is
used to improve the coverage of sampling without the need
of increasing number of samples. Also, the KLT features [1]
are tracked simultaneously to guarantee the consistency of a
tracked region. The advantages of this approach are from real
time performance with efficient implementation and utilizing
the power of complementary features: pixel, local patch, and
pattern. Figure 4 shows the overview of our tracker.

A. Probabilistic framework
The tracking problem is formulated as a temporal filter

which estimates:
P (st|Ft) (7)

where t=1, 2, 3..., Ft = (f1, f2, ..., ft) are the image frames
and st is the state of the object at time t. We use st =
[x, y, ρx, ρy, θ, ω] where (x, y) is the center of the tracking
box (ρx, ρy) is the scale regards to the predefined size of the
object and θ, ω is the rotation and skew angles, respectively.
To avoid drifting, the tracker needs to find the the object
with an accurate center position at the right scale, rotation
and skew. At frame It, the result given by the tracker is a
cropped image determined by the state of the tracked object.
Assuming a Markovian state transition, we formulate the
posterior as a recursive equation:

p(st|Ft) ∝ p(ft|st)
∫

p(st|st−1)p(st−1|Ft−1)dst−1 (8)

where p(st−1|Ft−1) is the posterior distribution from all the
previous observations while p(ft|st) and p(st|st−1) are the
observation and transition model respectively. Typically, we

Fig. 4. Overview of the tracker

can assume the smoothness in changing state st of the object
over time. We assume the transition is Gaussian

p(st|st−1) = N (st; st−1,Ψt) (9)

where Ψt is the time variant diagonal covariance matrix. The
recursive inference in Eq.9 is implemented with sampling-
based particle filtering [7], in which the conditional density
is approximated by maintaining a set of weighted particles.
The critical issue is the estimation of the likelihood of

the new observation given the posterior distribution. In our
approach, for real time performance, a new observation is
evaluated in two stages. In the first stage, the likelihood is
computed by calculating the total density from the confidence
map of each sample using the discriminative selection feature
model; while in the second stage, the confidence is the joint
likelihood computed from the object appearance model built
by the online learning subspace and the consistency of KLT
features maintained in each sample. The tracking result (in
the new frame) is the particle with the highest likelihood
in the second stage. However, the confidence of samples in
the first stage is only used to filter bad samples, while just
the values computed from the second one are applied for re-
sampling process. Another key part to improve the speed of
our system is the parallel evaluation. Because the particles
are independent of each other, each one can be evaluated
individually. To optimize this process, the evaluation step
is implemented in multi-threading manner which can be
naturally mapped to a multi-core or distributed system.

3789

Fig. 5. Multi-scale illustration

B. Multi-scale selection
The risk of missing the target is very high because of

abrupt motion, which usually happens when dealing with
active cameras. Our case is even more extreme when the
network delay issue makes the abrupt motion severe. To
address this issue, we propose a multi-scale selection which
helps to increase the search range by enlarge the coverage
of sampling. The multi-scale approach using belief prop-
agation [4] has been successfully proposed to deal with
abrupt motion. However, we only focus on improving the
coverage of particle filtering to avoid the need to increase
the number of particles in order to maintain the robustness
of the tracker. The smaller the scales, the larger the search
range can cover. Moreover, because our sample has a relative
small pre-defined size (20x20), it is not necessary to keep
the input object region large. In our framework, three scale
levels: 640x480, 320x240, and 160x120 (see Figure 5) are
chosen with respect to the size of the current tracked object.

C. Discriminative feature selection model
In the first stage of our framework, we apply a simple

classifier [17] in order to fast discard bad samples before
transferring the rest to the second stage. The key idea of
this method is to find the feature that best distinguishes
between object and background. The feature pool is a set
of features composed of linear combinations of R,G,B color
with relative weights

F ≡ {a1R+ a2G+ a3B|a∗ ∈ [−2,−1, 0, 1, 2]} (10)

Given a feature fk = {ak, bk, ck}, the histogramsHfg(i) and
Hbg(i) for the pixels on foreground (object) and background
are computed, where i denotes the ith bin in the histograms.
The log likelihood at the ith bin is given by:

L(i) = log
max{pfg(i), δ}
max{pbg(i), δ} (11)

where δ is a small value (which is set to 0.001) to avoid
the division by zero issue while pfg and pbg are the dis-
crete probability densities of the object and background
respectively. Then the variance ratio is calculated given
the log likelihood function and the probability densities of

(a) (b) (c) (d)

Fig. 6. Rotated histogram rectangle computation and confidence map.
From left to right: (a) original image, (b) the cropped face area, (c) the
approximated rectangles decomposition, and (d) the final confidence map.

foreground and background:

V R(L; pfg, pbg) ≡ var(L; (pfg + pbg)/2)

var(L; pfg) + var(L, pbg)
(12)

in which the variance of L(i) with respect to p is defined as

var(L; p) =
∑
i

p(i)L2(i)− [
∑
i

a(i)L(i)]2 (13)

Therefore, intuitively, in Eq.12 and Eq.13, the goal is to
maximize the variance between two classes while minimizing
the within class ones. The top discriminative feature having
highest V R score is chosen to compute the likelihood images
(i.e. confidence map).
It is important to note that we prefer to apply the feature

selection procedure after each 30 frames interval in order
to adapt with the appearance change of the object and
background.
Approximate Rotated Integral Histogram
In order to utilize the pixel-level information from the

discriminative feature selection method within pattern-like
framework, in which a rotated window is considered, the ac-
cumulated confidence of all pixels in a window is calculated.
Moreover, to select the best feature in the discriminative
model, a histogram calculation is needed. With respect to
real-time performance, to reduce the computational time for
evaluating the total confidence of a rotated rectangle, we
apply the integral image and approximately decompose that
rectangle into union of sub-rectangles with sides parallel
to the image coordinates. As shown in Figure 6, after the
integral image I is computed, the total confidence of a region
R is estimated as: C(R)=ΣC(ri)|ΣS(ri) ≈ S(R), where
S(x) is the area of the rectangle x as shown in Figure 6.

In addition, given the integral image I, C(ri) represented
as C(x1, y1, x2, y2) is calculated quickly as follows:

C(ri) = I(x2, y2)−I(x1, y2)−I(x2, y1)+I(x1, y1) (14)
The average confidence is then obtained:

C̄(R) =
C(R)

S(R)
(15)

In practice, in our system, the object is relatively small com-
pared with image size, we roughly compute the confidence
of a rotated area by dividing it into 10 rectangles. This
approximation is also applied in estimating the pixels inside
any rotated rectangle to compute its histogram.

3790

D. Object appearance model
Since the appearance of the object may be different due to

the changes of pose, view angle, illumination, etc. by time,
it is necessary to model all of those variations compactly
and precisely. We adopt the power and efficiency of the
method proposed in [19], which encodes the appearance
of the object into a low-dimension linear subspace and
incrementally update it during tracking process.
For initialization, after collecting several samples by sim-

ple template matching we train the model of the object from
those n training images Iini = {I1, ..., In} by computing
the eigenvectors U of the covariance matrix 1

n−1
∑n

i=1(Ii −
Ī)(Ii− Ī)T , where Ī =1

n
∑

n

i=1
Ii
is the mean of the training

images. And, this can be done by solving the singular value
decomposition (SVD) A = UΣV T of the centered data
matrix [(I1 − Ī)...(In − Ī)]
Given newm images Iadd = {In+1...In+m}, the subspace

needs to be updated by calculating [A B] where B is the
new observation matrix according to Iadd. As the result of
derivation in [19], we have

[A B] =
(
[U B̃]Ũ

)
Σ̃

(
Ṽ T

[
V T 0
0 1

])
(16)

In which B̃ is the component of B orthogonal to U.
Finally, we have U ′ = [U B̃]Ũ and Σ′ = Σ̃ as the updated
eigensystem. In our implementation, for efficiency, the top k
eigenvectors (k = 10) are maintained to represent the model
of the learned face.

E. Sample evaluation
1) Appearance model evaluation: Given a subspace Ω

with the first k eigenvectors, the projection of x on Ω is
y=(y1, ..., ym)T = UT (x− x̂). Then the likelihood of x can
be expressed as:

p(x|Ω) =

⎡
⎢⎢⎣
exp

(
− 12

m∑
i=1

y2i
λi

)

(2π)m/2
m∏
i=1

λ
1/2
i

⎤
⎥⎥⎦ ·

⎡
⎣exp

(
− ε2(x)

2ρ

)
(2πρ)(d−m)/2

⎤
⎦ (17)

Where λi is the eigenvalue with respect to yi, d is the dimen-
sion of the input, ε(x) = |x−UUT x| is the projection error.
The parameter ρ = 1

d−m
∑d

i=m+1 λi, can be approximated
as ρ = 1

2λm+1.
2) KLT evaluation: KLT features are detected and tracked

simultaneously within the object region from the first frame.
The confidence of KLT tracker is given by the ratio of
features maintained in a tracked region compared to the
previous state

pKLT =

(
ncur

nprev

)2
(18)

The final likelihood is the product of the two independent
evaluation given in Eq. 17 and Eq. 18. In experiments, to
avoid the risk of drift when the object is small and the
number of KLT features is limited, the evaluation is only
based on appearance model when the number of features is
less than a predetermined threshold θ (θ = 8). It is only

TABLE I
COMPARISON BETWEEN OUR TRACKER AND OTHERS INCLUDING:
IVT [19] AND ODT [17] IN DIFFERENT CHALLENGING DATASETS.

Object type Frames IVT ODT Ours
Seq1 Face (indoor) 427 287 142 427
Seq2 Face (indoor) 328 232 328 328
Seq3 Face (indoor) 195 80 195 195
Seq4 Vehicle(outdoor) 470 470 470 470
Seq5 Vehicle(outdoor) 233 233 233 233
Seq6 Vehicle (UAV) 235 62 105 235
Seq7 Human (outdoor) 868 394 244 858

a rough threshold to keep the system conservative when
lacking of local features.

F. Validation
To validate the robustness of our tracker, we compare

it with the Incremental Visual Tracker (IVT) [19] 1 and
the Online Discriminative Tracker (ODT) [17]. The ODT
is implemented in C++ and does not consider large scale
change and rotation. It is worth to note that ODT uses
kernel-based tracker [3] as a mode-seeking procedure after
having the likelihood map in order to find the object in the
current image. The parameters are set in both methods and
ours are the same. We compare these methods with different
challenging situations for different types of object: face
(seq1-seq3), vehicle (seq4-seq6), and human (seq7). The data
also contain different environments such as indoor (seq1-
seq3) and outdoor (seq4-seq7). Seq6 is UAV data of a turning
car. The challenging conditions include significant changes
in illumination (seq1-seq3, and seq7), abrupt motion (seq1,
seq6, and seq7), viewpoint changes and large pose variations
(seq1-seq3, seq6, and seq7). Seq1-seq3 are captured in
the lab using the PTZ Camera. Seq4-seq5 are from PETS
2001 dataset (Dataset5-Testcamera1, Dataset1-Testcamera1,
respectively). Seq6 is drawn from Vivid I dataset, while Seq7
is taken on campus using a handheld camera to follow the
object. Except seq4 and seq5, all of other sequences, which
are captured from moving cameras, contain large motion blur
and dynamic background.
Table 1 shows the comparison result, in terms of the

number of frames tracked by each method. The comparison
shows that our tracker is more robust than the other methods.
Note that the performance of IVT could be improved by
increasing the number of particles; however, this makes the
method extremely slow.
In the ODT [17], only color information is exploited

and no rotation and large scale is considered, which makes
the method not robust. For some of the cases (seq2-seq5),
although it can follow the object till the end of the sequence,
only a part of the object is tracked correctly. During the
experiments, we notice that multi-scale helps in increasing
the search range of the sampling while the two-layer par-
ticle filter framework obtains better coverage by efficiently
increasing the number of particles. At the same time, the

1The implementation is from http://www.cs.toronto.edu/ dross/ivt/

3791

(a) Rearview vehicle tracking (from PETS 2001, Dataset5)

(b) Sideview vehicle tracking (from PETS 2001, Dataset1)

(c) UAV Data (from VIVID I Dataset)

(d) Pedestrian tracking

Fig. 7. Some results (seq4, seq5, seq6, and seq7) of our tracking approach.

Fig. 8. Indoor face tracking results includes abrupt motion and motion blur while panning/tilting and zooming, with large variations in viewpoint,
illumination.

Fig. 9. Outdoor pedestrian tracking in a high-cluttered background includes occlusions, large variations in viewpoint, abrupt motion and motion blur.

KLT plays an important role in getting our tracker on the
right track at the beginning while IVT attaches some noise
background very soon when the appearance model is still
not good enough. Some of our tracking results are shown in
Figure 7.
However, the failure cases of our approach happen when

there is an abrupt change in object appearance to which has
not been observed by the appearance model before.
Our method runs at 35 fps when processing VGA video

sequence with a 640x480 resolution; whereas IVT runs at
4.5fps and the ODT runs at 6fps.

IV. EXPERIMENTS AND APPLICATIONS

A. Experiment details

The experiments are performed using the camera described
in Section II and a wireless router and wireless adapters as
shown in Figure 2. The approach is implemented in C++
using OpenCV on an Intel Core2duo 3.73GHz with 3GB
RAM. The speed is 40 fps (without saving results) when
processing VGA video sequences. However, to maintain
the quality of service as discussed in the previous section,
we set the transfer/display speed to 15 fps. The multi-

3792

threading OpenMP API is used to improve the running
speed significantly. In order to reach our real time goal,
for sampling, 1500 particles are generated which are then
reduced to by 50% after the pre-filtering stage. In this step,
the size of the auto-select background region is fixed to three
times of the size of the target. In the appearance model,
an image vector of 20x20 is applied; 10 eigenvectors are
maintained during tracking. After a batch of 5 processed
frames, we update the model one time. The number of
threads simultaneously processing the sample evaluation step
are set to 4, which increases the performance by a factor of 3.
In the KLT feature tracker, we use the patch window 10x10
as a candidate feature. In practice, consistency is guaranteed
as long as the difference in total energy is less than 40%.
The agreement between the evaluation of our appearance
model and this KLT tracker is also maintained when over
50% feature points are covered. This is just a soft constraint
to avoid some distracters when the model has not been built
robustly enough, i.e. in the very first frames.

B. Applications
1) Face tracking: We can tag a face or run in automatic

mode (using the cascades of boosting classifiers face de-
tector proposed in [2]). All of the appearances of the face
are encoded. The results shown in Figure 8 are from a
sequence taken in an indoor environment. The difficulties
include abrupt motion and motion blur when the control part
keeps panning/tilting and zooming to maintain the proper
position/size of the object. The variations in viewpoint are
also large. This video sequence has 735 frames at a resolution
of 640x480.
2) Pedestrian tracking: We tag then follow a walking

pedestrian in a large view by pan and tilt. The experiment
shown in Figure 9 is taken outdoor. The issues raised here
include high-cluttered background with many distracters,
abrupt motion, occlusion, and viewpoint changes. The video
contains 145 frames with a resolution of 640x480.
For more experimental results, please refer to the supple-

mental video.

V. CONCLUSION AND FUTURE WORK
We presented a novel tracking approach using a commer-

cial PTZ Network Camera that can be widely applied in
many applications because of robustness and real time. The
proposed framework also addresses the issues of controlling
the camera while maintaining quality of service. The tracking
methodology can follow previously unknown objects under
variations in viewpoints, illumination and abrupt motion.
The approach not only utilizes the power of complementary
features such as pixel color, local patch, and pattern but also
successfully overcomes the abrupt motion and motion blur
under a two-stage particle filters with multi-scale mechanism.
The tracking approach fits well with the control part to form
a real time system which can track an arbitrary object in
multiple environments using the PTZ Network Camera. The
tracking approach also produces better results than current
state-of-the-art methods. However, the zoom control of PTZ

camera is still an open issue which needs to be improved.
In the future, we would like to increase the frame rate of
the camera by filtering bad images. We are also interested
in developing our framework on robotic platforms for more
applications.

VI. ACKNOWLEDGEMENTS
This research was funded, in part, by MURI-ARO

W911NF-06-1-0094. The first author was also supported by
Vietnam Education Foundation. We thank Eunyoung Kim for
helping us to collect data. We also thank Dr. Jongmoo Choi
and Himanshu Neema for helpful discussions.

REFERENCES
[1] J. Shi and C. Tomasi. Good features to track. In CVPR, pages 593–

600, 1994.
[2] P. Viola and M. Jones. Robust real-time object detection. In IJCV,

volume 57, pages 137–154, 2004.
[3] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking.

In PAMI, volume 25, pages 564–577, 2003.
[4] G. Hua and Y.Wu. Multi-scale visual tracking by sequential belief

propagation. In CVPR, pages 826–833, 2004.
[5] N. Dowson and R. Bowden. Simultaneous modeling and tracking

(smat) of feature sets. In CVPR, pages 99–105, 2005.
[6] T. Schoenemann and D. Cremers. Globally optimal shape-based

tracking in real-time. In CVPR, pages 1–6, 2008.
[7] M. Isard and A. Blake. Condensation - conditional density propagation

for visual tracking. In IJCV, volume 29, pages 5–28, 1998.
[8] T. Funahasahi, M. Tominaga, T. Fujiwara, and H. Koshimizu. Hier-

archical face tracking by using ptz camera. In FGR, pages 427–432,
2004.

[9] M. Lalonde, S. Foucher, L. Gagnon, E. Pronovost, M. Derenne, and
A. Janelle. A system to automatically track humans and vehicles with
a ptz camera. In Visual Information Processing XVI, 2007.

[10] X. Clady, F. Collange, F. Jurie, and P. Martinet. Object tracking with a
pan-tilt-zoom camera: application to car driving assistance. In ICRA,
pages 1653–1658, 2001.

[11] A. P. Detection and T. using Fuzzy Controlled Active Cameras.
K. bernadin, f. van de camp, r. stiefelhagen. In CVPR, pages 1–8,
2007.

[12] V. K. Singh, P. K. Atrey, and M. S. Kankanhalli. Coopetitive multi-
camera surveillance using model predictive control, 2008.

[13] M. R. Matausek and A. D. Micic. On the modified smith predictor
for controlling a process with an integrator and long dead-time. In
IEEE Transactions on Automatic Control, volume 41, pages 1199–
1203. 1996.

[14] F. C. Teng, G. F. Ledwich, and A.C.Tsoi. Extension of the dahlin-
higham controller to multivariable systems with time-delays. In Int.
J. Control, volume 25, pages 337–350, 1994.

[15] I. Leichter, M. Lindenbaum, and E. Rivlin. Bittracker-a bitmap tracker
for visual tracking under very general conditions. In PAMI, volume 30,
pages 1572–1588, 2008.

[16] K. Nummiaro, E. Koller-Meier, and L. vanGool. Object tracking with
an adaptive color-based particle filter. In DAGM, pages 353–360, 2002.

[17] R. T. Collins, Y. Liu, and M. Leordeanu. Online selection of
discriminative tracking features. In PAMI, volume 27, pages 1631–
1643, 2005.

[18] Z. Kim. Real time object tracking based on dynamic feature grouping
with background subtraction. In CVPR, pages 1–8, 2008.

[19] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental learning
for robust visual tracking. In IJCV, volume 77, pages 125–141, 2008.

[20] X. Li, W. Hu, Z. Zhang, X. Zhang, and G. Luo. Robust visual tracking
based on incremental tensor subspace learning. In ICCV, pages 1–8,
2007.

[21] Y. Li, H. Ai, T. Yamashita, S. Lao, and M. Kawade. Tracking in low
frame rate video: A cascade particle filter with discriminative observers
of different lifespans. In CVPR, pages 1–8, 2007.

3793

