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Abstract— A major barrier preventing the wide employment
of mobile networks of robots in tasks such as exploration,
mapping, surveillance, and environmental monitoring is the
lack of efficient and scalable multi-robot passive and active
sensing (estimation) methodologies. The main reason for this
is the absence of theoretical and practical tools that can
provide computationally tractable methodologies which can
deal efficiently with the highly nonlinear and uncertain nature
of multi-robot dynamics when employed in the aforementioned
tasks.

In this paper, a new approach is proposed and analyzed for
developing efficient and scalable methodologies for a general
class of multi-robot passive and active sensing applications. The
proposed approach employs an estimation scheme that switches
among linear elements and, as a result, its computational
requirements are about the same as those of a linear estimator.
The parameters of the switching estimator are calculated off-
line using a convex optimization algorithm which is based on
optimization and approximation using Sum-of-Squares (SoS)
polynomials. As shown by rigorous arguments, the estimation
accuracy of the proposed scheme is equal to the optimal
estimation accuracy plus a term that is inversely proportional to
the number of estimator’s switching elements (or, equivalently,
to the memory storage capacity of the robots’ equipment). The
proposed approach can handle various types of constraints such
as communication and computational constraints as well as
obstacle avoidance and maximum speed constraints and can
treat both problems of passive and active sensing in a unified
manner. The efficiency of the approach is demonstrated on a
3D active target tracking application employing flying robots.

I. INTRODUCTION

Despite the significant impact that groups of mobile robots

can have on duties that currently require human participation,

their potential has not yet been realized. The main reason

for this is the absence of theoretical and practical tools

that can provide computationally tractable methodologies

which can deal efficiently with the highly nonlinear and

uncertain nature of multi-robot dynamics when employed in

the aforementioned tasks. As a matter of fact, the majority

of techniques and methods for multi-robot sensing and

estimation applications are based on local approximations

of the overall system dynamics (team of robots + mea-

surement model + the external environment): for instance,

in Passive Sensing (PS) applications such as robot posi-

tion and orientation estimation using robot-to-robot distance
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measurements, passive target tracking, localization, mapping

and Simultaneous Localization And Mapping (SLAM), the

majority of existing approaches employ Extended Kalman

Filter (EKF) techniques which are based on linearization of

the overall system dynamics, see e.g. [16], [13], [6] and

the references therein. A similar situation is also present

in Active Sensing (AS) applications such as active target

tracking, Combined Localization and Active Target Tracking

(CLATT) and combined SLAM and Exploration (SLAM-E),

where the objective is to generate the robots’ trajectories

so that estimation accuracy is optimized. In most of the

existing approaches, the trajectory generators are usually

based on convex or local approximations (relaxations) of

non-convex optimization problems, see e.g. [16], [8], [10]

and the references therein. However, linearization (in case

of PS) or relaxation (in case of AS) may have a significant

or even devastating effect on the overall system efficiency:

poor estimation accuracy or even divergence of the estimator

in the case of EKF and getting trapped into local minima in

case of trajectory generation.

Attempts that have been made to employ techniques that

avoid the usage of linearization or convex/local relaxations

face the well-known problem of curse of dimensionality: for

instance, the usage of polynomial EKF, see e.g. [7], [12], for

estimation purposes or the usage of dynamic programming

techniques for trajectory generation, see e.g. [8], require

the implementation of algorithms that scale poorly with the

number of the robot team members and, as a result, their de-

ployment in large-scale, real-life applications is formidable.

In this paper, we propose and analyze a new approach

that has the potential to overcome the above mentioned

shortcomings of the existing methodologies. The proposed

approach adopts a general framework that can treat in a

unified manner:

• both PS and AS multi-robots problems;

• a large class of multi-robot sensing applications such as

relative pose estimation using only inter-robot measurements,

target tracking, localization, SLAM, SLAM-E and CLATT.

Contrary to the approaches that are based on linearization

or local approximation/relaxation techniques, the proposed

approach uses the full nonlinear model of the overall multi-

robot system dynamics in order to construct an estimator

and/or a trajectory generator that fulfills the computational,

communication, etc requirements imposed by the particular

multi-robot application. Moreover, it guarantees stable, con-

vergent and efficient performance of the overall estimation

process. The main attributes of the proposed approach can

be summarized as follows:

• The proposed approach employs an estimation scheme
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that switches among linear elements and, as a result, its

computational requirements are about the same as those of a

linear estimator. The parameters of the switching estimator

are calculated off-line using a convex optimization algorithm

which is based on optimization and approximation using

Sum-of-Squares (SoS) polynomials. Stable and convergent

estimator’s performance is guaranteed, overcoming the short-

coming of many existing methodologies where there is

always the possibility of estimator error divergence.

• The estimation efficiency (accuracy) of the proposed esti-

mator is equal to the optimal estimation accuracy plus a term

that is inversely proportional to the number of estimator’s

switching elements (or, equivalently, to the memory storage

capacity of the robots’ equipment).

• All the aforementioned properties of the proposed approach

are retained in case where the multi-robot sensing application

is subject to communication constraints (e.g. the overall

estimation process should be implemented in a distributed

manner where each single robot uses only a portion of the

available sensor information) or other types of constraints

such as obstacle avoidance and maximum speed constraints.

As a matter of fact, all these types of constraints can be

straightforwardly handled by the proposed approach.

We close this section by noticing that due to space

limitations, the proofs of the theoretical results as well as

simulation experiments on a variety of different multi-robot

PS and AS applications, are not presented here. The inter-

ested reader can download the full-version of the paper [9],

where detailed theoretical analysis as well as a description

and evaluation of the simulation experiments are presented.

A. Notations and Preliminaries

w.p.1 denotes “with probability 1”. dim(x) denotes the

dimension (length) of the vector x. For a vector x ∈ R
n,

|x| denotes the Euclidean norm of x ( i.e., |x| =
√
xτx),

while for a matrix A ∈ R
n2

, |A|, tr(A) denotes the induced

matrix norm and the trace, respectively. For a symmetric

matrix A, the notation A ≻ 0 (A � 0) is used to denote

that A is a positive definite (resp. positive semidefinite)

matrix. If P ≻ 0, then |x|P =
√
xτPx. The notation

vec (A,B,C, . . . , ), where A,B,C, . . . are scalars, vectors or

matrices, is used to denote a vector whose elements are the

entries of A,B,C, . . . (taken column-wise). For a compact

subset X ⊂ R
n, a smooth function f : R

n 7→ R
m and

a collection of nonnegative integers A we define ‖f‖A
X =

supj∈A supx∈X

∣

∣

∣

∂jf
∂xj (x)

∣

∣

∣
. For a smooth function V (x1, x2)

where xi are vectors, the following notation is also used:

Vxi
(x1, x2) = ∂V

∂xi
(x1, x2), Vxixi

(x1, x2) = ∂2V
∂x2

i
(x1, x2).

For a function f : ℜ+ 7→ ℜ+ , we say that f(a) = O(a)
if f(a) ≤ ca,∀a ∈ ℜ+, for some positive constant c
independent of a. For two positive integers L, n, we will

use the following notation:

Pn(L) =
(L+ n)!

L!n!
+ n− 1 (1.1)

The following definition will be finally needed in the paper.

Definition 1: Fix the positive integer L; the notation

z(x) = ML
n(x) will be used to denote that the vector

function z : R
n 7→ R

Pn(L) is defined as follows:

z(x) =
[√
x1, . . . ,

√
xn, x1, x2, . . . , x

a1
1 x

a2
2 · · ·xan

n , . . . , xL
n

]τ

where ai are nonnegative integers satisfying
∑n

i=1 ai ∈
{1, . . . , L}.

II. ACTIVE ESTIMATOR DESIGN

In general, the dynamics of a team of M robots performing

an active sensing (estimation) task can be represented by a

set of stochastic nonlinear state-space differential equations

given as follows:

ẋ = f(x) + g(x)u+ gω(x)ω
y = h(x) + hξ(x)ξ

(2.1)

where x ∈ R
n denotes the state vector that is associated to

the particular problem, u ∈ R
m denotes the vector of control

inputs to the robots, y ∈ R
k denotes the vector of all avail-

able sensor measurements, f, g, h, gω, hξ are smooth nonlin-

ear functions of appropriate dimensions, and ω, ξ correspond

to vectors of zero-mean, unity-variance Gaussian processes.

There are two different estimation problems associated with

(2.1):

(PS) Passive Sensing: Given the time-histories of the

available signals y(s), u(s), s ∈ [0), construct an

estimator x̂(t) = PS(y(s), u(s)) such that the es-

timation error1 accuracy E(t) = E
[

|x(t) − x̂(t)|2
]

converges to as small values as possible.

(AS) Active Sensing: Given the time-history of the avail-

able signal y(s), u(s), s ∈ [0), construct a com-

bined estimator/trajectory generator [x̂(t), u(t)] =
AS(y(s), u(s)) such that the estimation error ac-

curacy E(t) = E
[

|x(t) − x̂(t)|2
]

converges to as

small values as possible.

Please note that the fundamental difference between PS and

AS is that while in the first case the robot trajectories x(t) or,

equivalently, the robot control inputs u(t) are pre-specified or

calculated on-line based on a procedure that is external to the

estimation process, in the later case the robot trajectories are

designed in the aim of optimizing the estimator’s accuracy;

as expected, if AS is employed, the estimator’s accuracy can

be significantly increased as compared to the PS case. In the

rest of the section, we will concentrate in the AS problem

and come back to the PS problem in the next section.

Remark 1: Active target tracking, CLATT and SLAM-E

are some of the standard multi-robot estimation problems

that belong to the AS category as defined above. In all these

problems, the state vector x is defined according to

x =
[

x(1)τ
, . . . , x(M)τ

, x
(1)
T

τ
, . . . , x

(K)
T

τ]τ

1It should be emphasized that convergence of E(t) to small values is the
main but not the only criterion imposed in AS or PS applications; the rate
of convergence, the worst-case performance of E(t) as well as – in the case
of AS – the stability of the robot trajectories are additional criteria that are
taken into account in AS and PS designs. The above issue will be clarified
further later in this and the next sections.
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where x(i) denotes the i-th robot’s pose (position and ori-

entation) vector and x
(i)
T denotes the position of the i-th

target (in the case of active target tracking and CLATT) or

of the i-th landmark or feature (in the case of SLAM-E).

Note that in the case of SLAM-E, x
(i)
T is typically assumed

constant (stationary environment) while in the case of active

target tracking and CLATT, the ith target’s position is usually

assumed to evolve according to a stochastic linear model

of the form ẋ
(i)
T = F (i)x

(i)
T + G(i)ω for some known con-

stant matrices F (i), G(i). The sensor measurements vector

y comprises robot-to-target or robot-to-landmark distance

or bearing measurements, robot-to-robot distance or bearing

measurements as well as IMU and/or GPS and/or odometer

measurements, etc employed for robot localization. The

interested reader is referred to e.g. [8], [10], [16], [14] and

the references therein for more details on these two problems.

⋄
Remark 2: Typically, in multi-robot PS and AS applica-

tions the functions gω and hξ are assumed to be constant

matrices in which case the system (2.1) dynamics reduce

to a (nonlinear) additive Gaussian model. The more general

– than the additive Gaussian model – formulation (2.1)

allows, however, to deal with cases where the noise and/or

disturbances have a multiplicative effect on the overall sys-

tem dynamics, like applications involving odometry readings

where it is more realistic to assume a multiplicative noise

model for the effect of these readings, see e.g. [12].

The AS estimator for generating x̂(t) is assumed to take

the following form:

˙̂x = f(x̂) + g(x̂)u+ uo

ŷ = h(x̂)
(2.2)

where uo is an auxiliary time-varying vector which – together

with u – is available for design. Assuming that the estimator

(2.2) is employed, the optimal AS estimator design associated

to (2.1) can be formulated as a stochastic optimal control

problem described according to

min
(u(s),uo(s),s∈[0,∞))

J (2.3)

where

J = J(x(0), x̂(0))

= E

[
∫ ∞

0

(

|u(s)|2R + |uo(s)|2Ro
+ |x(s) − x̂(s)|2Q

)

ds

]

with R ≻ 0, Ro ≻ 0, Q ≻ 0 being user defined matrices.

Note that the above cost-criterion is in form similar to the

cost criteria used in Linear Gaussian Quadratic Estimation

and Control; similar to these cost criteria, different choices

for the positive-definite matrices R,Ro, Q can be used to

balance the trade-off between efficient steady-state and ef-

ficient transient performance. It is worth noticing that the

proposed approach does not require the selection of the

matrices R,Ro, Q; the definition of these matrices as well as

of the cost criterion J were made only for analysis purposes.

We will make the following assumption regarding the

optimal choices for u, uo:

(A1) The optimal u∗, u∗o (minimizing J ) satisfy

u∗(t) = kc(Y ) (y − h(x̂))
u∗o(t) = ko(Y ) (y − h(x̂))

(2.4)

for some smooth functions kc, ko, where Y is

calculated according to

Ẏ1 = −aY1 + y, Y1(0) = 0
...

Ẏp = −aYp + Yp−1, Yp(0) = 0
Y = vec(x̂, Y1, . . . , Yp),

with a being a positive user-defined constant and p
a positive integer satisfying p ≥ n/k + 1.

It should be emphasized that in the deterministic case –

i.e. the case where ω, ξ are either bounded-amplitude or

bounded-energy signals – it can be seen that assumption (A1)

holds: the deterministic case involves the design of a stable

observer for system (2.1) whose dimension is generically

sufficient to be equal to 2n+1, see e.g. [1] and the references

therein. The observer (estimator) structure assumed in (2.2),

(2.4) can be seen that is capable of representing any smooth

observer of dimension 2n+ 1 (the proof of such a claim is

pretty straightforward and is based on the fact that kc, ko can

be chosen to be arbitrary functions). For the more general

(stochastic) case treated in this paper, it is not known –

to the best of our knowledge – whether an estimator of

the form (2.2), (2.4) can represent the optimal estimator;

however, experimental investigations with estimators of the

form (2.2), (2.4) indicate that they are capable of producing

quite satisfactory performance. Nevertheless, all the results

of this paper can be easily extended to the case where a

different structure for the estimator (2.2), (2.4) is assumed

as long as this estimator remains linear2 wrt y.

We return to the stochastic optimal control problem (2.3).

By adopting a stochastic dynamic programming framework,

we let Ṽ denote the optimal “cost-to-go” function, see e.g.

[15], defined according to

Ṽ (x(t), x̂(t)) = min J(x(t), x̂(t)) (2.5)

J(x(t), x̂(t)) = E

[
∫ ∞

t

(

|u(s)|2R + |uo(s)|2Ro

+|x(s) − x̂(s)|2Q
)

ds

]

(2.6)

It is a well-known fact that Ṽ can be obtained as a

solution of a partial differential equation [the Hamilton-

Jacobi-Bellman (HJB) equation associated with (2.1), (2.2),

(2.5); see e.g. [15]]. The HJB is not possible, in general, to

be solved on-line (in real-time). Moreover, the solution Ṽ of

the HJB equation is not defined in the usual sense of smooth

solutions: the solution Ṽ , if exists, is typically defined by

using the notion of viscosity solutions, see [4]. However, if

2The assumption that the estimator is linear wrt y is crucial for our
analysis: if such an assumption does not hold, then the overall estimator’s
dynamics become nonlinear wrt the noise term ξ, in which case it is
not possible to apply the arguments in the proof of Theorem 1 (see the
Appendix).
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Ṽ admits a viscosity solution it can be approximated to any

degree of accuracy by a smooth solution V ; this is all that

we need for our analysis.

We will impose the following assumptions regarding the

optimal “cost-to-go” function and the associated optimal

signals u∗, u∗o defined in (A1).

(A2) For all admissible initial conditions, the optimiza-

tion problem (2.5) – or, equivalently, the associated

HJB equation – admits a unique viscosity solution

Ṽ satisfying Ṽ (x, x) = 0, Ṽ (x, x̂) > 0 if x 6= x̂.

(A3) Suppose that the admissible initial conditions sat-

isfy (x(0), x̂(0)) ∈ X0 where X0 ⊂ R
2n is a com-

pact subset. Then, under the optimal u∗(t), u∗o(t)
defined in (A1), (x(t), x̂(t)) ∈ X̄ ⊃ X0 and

Y (t) ∈ Ψ̄ for all t ∈ [0,∞), where X̄ ⊂ R
2n, Ψ̄ ⊂

R
dim(Y ) are compact subsets.

Assumption (A2) requires that the problem at hand makes

sense, i.e. that for all admissible x(0), x̂(0), there exists

a control strategy u(t) = kc(Y )(y − h(x̂)) that renders

system (2.1) stochastically observable; the proof of the above

claim is quite technical and is based on converse Lyapunov

arguments such as the ones in [3], [5]. Assumption (A3)

states that if the initial states x(0), x̂(0) belong to a bounded

subset, then x(t), x̂(t), Y (t) will remain bounded. From a

mathematical point of view, assumption (A3) is very strict

for general systems of the form (2.1). However, in the multi-

robot applications of our interest, such an assumption is

practically valid as long as the robot trajectories remain

within a pre-specified area. It has to be emphasized that the

assumption that the system states remain bounded is a typical

assumption made in the nonlinear estimation and filtering

literature, see e.g. [2]. In the full version of the paper [9] we

show how this assumption can be relaxed to allow X̄ , Ψ̄ to

become unbounded.

Based on assumptions (A1)-(A3), we can see that the

following Lyapunov-type result holds.

Proposition 1: Fix the positive matrices R,Ro, Q and let

V be a smooth approximation of Ṽ satisfying

V (x, x) = 0, ‖Ṽ (x, x̂) − V (x, x̂)‖{0,1,2}

X̄
= ε (2.7)

for some positive constant ε (note that ε can be made

arbitrarily small). Then, there exist positive constants λi such

that for all (x, x̂) ∈ X̄ , Y ∈ Ψ̄, the following is valid:

λ1|x− x̂|2 ≤ V (x, x̂) ≤ λ2|x− x̂|2 (2.8)

LV (x, x̂)
△
= V τ

x f(x) + V τ
x̂ f(x̂)

+
1

2
tr

{

gτ
ω(x)Vxxgω(x)

}

+ A(x, x̂)

+ (V τ
x g(x) + V τ

x̂ g(x̂)) kc(Y )(y − h(x̂))

+V τ
x̂ ko(Y )(y − h(x̂))

≤ −λ3|x− x̂|2 + λ4|ξ|2 + O(ε) (2.9)

where A(x, x̂) = 1
2 tr

{

(g(x̂)kc(Y )hξ(x) + ko(Y )hξ(x))
τ

Vx̂x̂ (g(x̂)kc(Y )hξ(x) + ko(Y )hξ(x))

}

.

In order to understand the meaning of the above Proposition

and its relation to the optimal control problem (2.3) we note

that (2.8), (2.9) imply that

E∗(t) ≤ λ2

λ1
e−

λ3
λ2

[

|x(0) − x̂(0)|2
]

+
λ2

λ3λ1

{

λ4 + O(ε)
}

(2.10)

where E∗(t) denotes the estimation error accuracy under the

optimal signals u∗(t), u∗o(t) [the proof of (2.10) is along the

same lines as the proof of (2.14) in Theorem 1]. In other

words, any optimal AS estimator – parametrized by R,Ro, Q
– satisfies inequality (2.10) for some positive constants λi

that depend on the particular choice for R,Ro, Q. As a

result, different choices for the matrices R,Ro, Q in the

optimal control problem (2.3) result in different values for

the constants λi and, thus, in different transient and steady

state characteristics for the optimal AS estimator.

We are now ready to present the proposed approach. Let

ǫi, i = 1, 2, 3, 4 be four user-defined positive constants and

let X ,Ψ be two compact supersets of X̄ ,Ψ, respectively,

which are assumed to be sufficiently large so that they con-

tain all possible solutions (x(t), x̂(t)) and Ψ(t) generated by

the proposed AS estimator. Also, fix a positive integer L and

a strictly increasing function R : Z+ 7→ Z+ [e.g. R may be

chosen according to R(L) = Pn(L) where Pn(L) is defined

in (1.1)] and consider a partition of R(L) disjoint subsets

Ψj , j ∈ {1, . . . , L} satisfying
⋃R(L)

j=1 Ψj = Ψ and designed

so that they minimize
∫

Ψ

∣

∣

∣
ψ − ∑R(L)

j=1 ψ̄jφj(ψ)
∣

∣

∣

2

dψ where

φj denotes the indicator function defined according to

φj(Y ) =

{

1 if (Y ) ∈ Ψj

0 otherwise

and ψ̄j denotes the centroid of Ψj , i.e. ψ̄j =
∫

Ψ
xφj(ψ)dψ/

∫

Ψ
φj(ψ)dψ. Then the proposed scheme for

the calculation of u, uo is as follows:

u(t) =
∑R(L)

j=1 θ
(j)
c φj(Y )(y − h(x̂(t))

uo(t) =
∑R(L)

j=1 θ
(j)
o φj(Y )(y − h(x̂(t))

(2.11)

where the matrices θ
(j)
o and θ

(j)
c are calculated as the solu-

tions of the convex optimization problem (2.12) described in

Table I.

The following Theorem summarizes the convergence prop-

erties of the proposed scheme.

Theorem 1: Let assumptions (A1)-(A3) hold. Then, there

exists a positive integer L̄ such that the following holds for

all L ≥ L̄: Suppose that the user-defined parameters ǫi, i =
1, 2, 3, 4 satisfy

ǫ1 = λ1 − ν1, ǫ2 = λ2 + ν2, ǫ3 = λ3, ǫ4 = λ4

for some positive constants λi, i = 1, 2, 3, 4 that are asso-
ciated to the optimal control problem (2.3) as described in
Proposition 1 and some positive constants νi = O(1/L), i =
1, 2. Then, the estimator (2.2), (2.11) satisfies with probabil-
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Table I: AS and PS Estimator Design

min
θc,θo,P

N
∑

i=1

µi (2.12)

s.t. (here i = 1, . . . ,N )

µi ≥ V [i]
x

τ
f(x[i]) + V [i]

x̂

τ
f(x̂[i]) +

1

2
tr

{

gτ
ω(x[i])V [i]

xxgω(x[i])

}

+ Ā(x[i], x̂[i])

+
(

V [i]
x

τ
g(x[i]) + V [i]

x̂

τ
g(x̂[i])

)

κ[i]
c (y[i] − h(x̂[i])) + V [i]

x̂

τ
κ[i]

o (y[i] − h(x̂[i]))

+ǫ3

∣

∣

∣
x[i] − x̂[i]

∣

∣

∣

2

+ ǫ4

∣

∣

∣
ξ[i]

∣

∣

∣

2

µi ≥ 0

V [i] ≥ −ǫ1

∣

∣

∣
x[i] − x̂[i]

∣

∣

∣

2

, V [i] ≤ −ǫ2

∣

∣

∣
x[i] − x̂[i]

∣

∣

∣

2

P � 0

where

• N is a positive integer satisfying N ≫ N where N = 1
2
Pn(L) × (Pn(L) + 1) + R(L) × (k + n).

• z(x, x̂) = ML
3n(vec(x − x̂, x, x̂));

• V(P ; x, x̂) = zτ (x, x̂)Pz(x, x̂), V [i] = V(P ; x[i], x̂[i]), V [i]
x = Vx(P ; x[i], x̂[i]), etc.

• κo(θo; Y ) =
∑R(L)

j=1 θ
(j)
o φj(Y ), κc(θc; Y ) =

∑R(L)
j=1 θ

(j)
c φj(Y ), κ

[i]
o =

∑R(L)
j=1 θ

(j)
o φj(Y

[i]), κ
[i]
c =

∑R(L)
j=1 θ

(j)
c φj(Y

[i]).

• (x[i], x̂[i]) is a collection of N random pairs generated according to a uniform random distribution in X ; similarly, Y [i] is a collection

of N random vectors generated according to a uniform random distribution in Ψ and ξ[i] the corresponding sensor noise vectors.

• Ā(x[i], x̂[i]) = 1
2
tr

{

(

g(x̂[i])κ
[i]
c hξ(x

[i]) + κ
[i]
o hξ(x

[i])
)τ

V [i]
x̂x̂

(

g(x̂[i])κ
[i]
c hξ(x

[i]) + κ
[i]
o hξ(x

[i])
)

}

.

• θo = vec(θ
(1)
o , . . . , θ

(R(L))
o , θc = vec(θ

(1)
c , . . . , θ

(R(L)
c )).

In the case of PS estimator design, the first constraint in (2.12) is replaced by the following constraint:

µi ≥ max
u:|u|≤umax

{

V [i]
x

τ
f(x[i]) + V [i]

x̂

τ
f(x̂[i]) +

1

2
tr

{

gτ
ω(x[i])V [i]

xxgω(x[i])

}

+ ĀPS(x[i], x̂[i])

+
(

V [i]
x

τ
g(x[i]) + V [i]

x̂

τ
g(x̂[i])

)

u + V [i]
x̂

τ
κ[i]

o (y[i] − h(x̂[i])) + ǫ3

∣

∣

∣
x[i] − x̂[i]

∣

∣

∣

2

+ ǫ4

∣

∣

∣
ξ[i]

∣

∣

∣

2
}

(2.13)

where ĀPS(x[i], x̂[i]) = 1
2
tr

{

(

κ
[i]
o hξ(x

[i])
)τ

V [i]
x̂x̂

(

κ
[i]
o hξ(x

[i])
)

}

.

ity 1:

E(t) ≤
λ2 + O(1/L)

(λ1 −O(1/L))
e
−

λ3
λ2+O(1/L)

[

|x(0) − x̂(0)|2
]

(2.14)

+
λ2 + O(1/L)

λ3 (λ1 −O(1/L))

{

λ4 + O(ε) + O(1/L)
}

In simple words, Theorem 1 states that if the user-defined

constants ǫi are appropriately selected and the user-defined

integer L is sufficiently large, then the proposed estimator

can approximate – with arbitrary accuracy – the performance

of an optimal AS estimator [minimizing J in (2.3) for some

matrices R,Ro, Q]. Note that the integer L determines both

the size of the monomial z used in the optimization prob-

lem (2.12) and the number R(L) of estimator’s switching

elements. Several comments are in order:

• Note that the number R(L) of estimator’s switching

elements has a negligible effect on the computational re-

quirements of the proposed scheme. Similarly, the dimension

of the “monomial-like” vector z(x, x̂), although it increases

exponentially with the L, it does not have any effect on the

computational requirements of the proposed scheme as the

vector z(x, x̂) is employed only in the off line computations

used to solve the optimization problem (2.12).

• As already noticed above, the solution of the – convex

but still quite computationally demanding – optimization

problem (2.12) is constructed off-line. This is quite similar

to existing PS or AS approaches employing reinforcement

learning (or neuro-dynamic programming), particle filters

and their extensions/variants. However, there are two fun-

damental differences between the existing approaches and

the proposed one: (a) extensive, carefully-designed and,

sometimes, quite elaborate simulations of the overall multi-

robot/exogenous environment system are required in the

case of existing approaches, while, for the case of the

proposed approach, simulation of the measurement model

(for the generation of the signals Y [i]) is only required;

(b) due to the fact that the proposed method is based on

Lyapunov-stability and standard control-based principles, the

robustness of the proposed scheme (due to e.g. uncertainties

in the functions f, g, gω, h, hξ) can be easily guaranteed and

analyzed, something that it is not possible, in general, for the

existing approaches. As a matter of fact, inequality (2.14) can

be used in a similar fashion as in simple first order closed-
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loop linear systems in order to choose the constants ǫi so

that robustness is guaranteed.

• Theorem 1 provides no constructive method for the choice

of the constants ǫi. As a result, different choices for these

constants may have to be tried and the resulting AS estimator

should be analyzed using (2.14): by noticing that the term

O(ε) + O(1/L) in (2.14) can be conservatively estimated –

by using the solution of the optimization problem (2.12) –

according to O(ε) + O(1/L) ≈ maxN
i=1 µi, we can replace

in inequality (2.14) the term O(ε) + O(1/L) by maxN
i=1 µi

in order to estimate the effect of a particular choice for the

constants ǫi to the AS estimator’s efficiency.

III. PASSIVE ESTIMATOR DESIGN

The results reported in the previous section for the case

of AS estimator design can be easily modified to cope with

the case of PS estimator design. Since, in the later case the

control input u(t) is determined by a process external to the

estimation process, special attention has to be paid in order

to deal with such a problem: the optimal control design in

the PS case must be performed over all possible choices

of admissible control inputs. Without loss of generality, we

will assume that the class of admissible control inputs is

defined according to |u(t)| ≤ umax, for some known positive

constant umax; other, more general or different cases for

the class of admissible control inputs can be dealt similarly.

Then, the optimal “control” problem (2.3) is modified for the

PS case according to

min
(uo(s),s∈[0,∞))

J (PS) (3.1)

J (PS) = sup
u(s), s ∈ [0,∞)
|u(s)| < umax

E

[
∫ ∞

0

(

|uo(s)|2Ro

+ |x(s) − x̂(s)|2Q
)

ds

]

Working similarly to Proposition 1 and Theorem 1, we can

establish the following result.

Theorem 2: Proposition 1 and Theorem 1 hold with the

following modifications:

(a) J in (2.3) is replaced by J (PS) defined in (3.1)

and the constants λi, i = 1, 2, 3, 4 depend only on

the matrices Ro, Q (since there is no matrix R in

the PS case).

(b) The first constraint in the optimization problem

(2.12) is replaced by the constraint (2.13) [cf. Table

I].

IV. EXTENSIONS: INCORPORATING CONSTRAINTS

The proposed approach can be straighfowardly modified

in order to incorporate various types of constraints such as

communication, obstacle avoidance, maximum speed con-

straints, etc. The reader is referred to the full version of the

paper [9] for more details.

V. SIMULATIONS

The interested reader can download the full-version of the

paper [9], where a detailed description and evaluation of

the simulation experiments are presented.

VI. CONCLUSIONS

In this paper, a unified methodology for treating a large

class of passive and active multi-robot sensing (estimation)

applications has been proposed and analyzed. The main

advantage of the proposed methodology is that it provides

stable, convergent and efficient estimation performance.
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