
Emergence of Evolutionary Interaction with Voice and Motion

between Two Robots using RNN

Wataru Hinoshita, Tetsuya Ogata, Hideki Kozima, Hisashi Kanda, Toru Takahashi, and Hiroshi G. Okuno

Abstract— We propose a model of evolutionary interaction
between two robots where signs used for communication emerge
through mutual adaptation. Signs used in human interaction,
e.g., language, gestures and eye contact change and evolve in
form and meaning through repeated use. To create flexible
human-like interaction systems, it is necessary to deal with
signs as a dynamic property and to construct a framework
in which signs emerge from mutual adaptation by agents.
Our target is multi-modal interaction using voice and motion
between two robots where a voice/motion pattern is used as
a sign referring to a motion/voice pattern. To enable evolu-
tionary signs (voice and motion patterns) to be recognized and
generated, we utilized a dynamics model: Multiple Timescale
Recurrent Neural Network (MTRNN). To enable the robots to
interpret signs, we utilized hierarchical neural networks, which
transform dynamics model parameters of voice/motion into
those of motion/voice. In our experiment, two robots modified
their own interpretation of signs constantly through mutual
adaptation in interaction where they responded to the other’s
voice with motion one after the other. As a result of the
experiment, we found that the interaction kept evolving through
the robots’ repeated and alternate miscommunications and re-
adaptations, and this induced the emergence of diverse new
signs that depended on the robots’ body dynamics through the
generalization capability of MTRNN.

I. INTRODUCTION

Signs used in human interaction e.g., language, gestures

and eye contact change and evolve in form and meaning

through repeated use. Such diversity and fluctuations in

signs cause miscommunication, and humans adapt to this by

guessing one another’s intentions. The repetition of miscom-

munication and re-adaptation leads to further evolution in

signs. Thus, interaction is essentially evolutionary. Miwa et

al. investigated the evolutionary nature of human interaction

including the repetition of miscommunication and successful

communication, which they called “incoherent states” and

“coherent states” respectively [1].

Existing interaction robots and systems are constructed

on the assumption of top-down fixed signs. While they are

practical for domain-limited and goal-oriented interaction,

they are not designed for flexible human-like interaction in

which signs evolve.

On the other hand, agent-based methods of modeling inter-

action based on the viewpoint where interaction is regarded

as a dynamic complex system have attracted a great deal of

attention [2]. There have been several studies that have made
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use of these methods (e.g., Hashimoto [3], Igari and Ikegami

[4]). Most of these have constructed models that dealt with

highly abstracted interaction separated from the real world

because their purpose was to mainly analyze the mechanisms

for interaction. Therefore, it is difficult to apply these models

directly to interaction robots or systems in the real world.

As a step toward achieving flexible human-like interaction

robots, we construct a model of evolutionary interaction

between them. In the model, diverse signs emerge on the

basis of the agent robots’ body dynamics and the signs are

shared between them through mutual adaptation. Our target

is multi-modal interaction using voice and motion between

two robots, where a voice/motion pattern is used as a sign

referring to a motion/voice pattern. The two robots have their

own voice-motion mapping as a way of interpreting signs.

They modify the mapping constantly throughout mutual

adaptation in an interaction where they respond to the other’s

voice with motion one after the other.

There are two issues in our evolutionary interaction: first,

the development of a recognition and generation system

for evolutionary motion and voice signs; second, the de-

velopment of a flexible voice-motion mapping system for

interpreting signs. We dealt with these issues through the

following approaches: first, by utilizing a dynamics model

for dealing with voice and motion; second, by transforming

dynamics model parameters of voice and motion mutu-

ally with hierarchical Neural Networks (NN). For the first

approach, we used Multiple Timescale Recurrent Neural

Network (MTRNN) [5] as the dynamics model. This model

learns, recognizes, and generates sequential data through

self-organizing its own parameter space with its capability

for generalization. MTRNN is used to integrate the robots’

sensory and motor information by learning them simultane-

ously; its parameter space is self-organized as a cognitive

structure on the basis of the robot’s body dynamics. In the

second approach, the robots modify their own interpretation

of signs by retraining their NN.

The rest of the paper is organized as follows. Section II

gives an overview of our interaction model and the methods

we utilized for it. The configurations and procedures for the

interaction experimental system are described in Section III,

and Section IV describes two different experiments. The first

is an imitation experiment for evaluating the ability of a

robot to recognize and generate signs, and the second is an

interaction experiment. Section V discusses the results across

disciplines. Our conclusions and future work are presented

in Section VI.
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II. INTERACTION MODEL AND METHODS

This section gives an overview of the interaction model

and methods.

In our target interaction, two robots try to convey a

motion/voice pattern to the other robot using a voice/motion

pattern as a sign. If the interpretation of the sign is shared

between them, they have conveyed their intention to the other

correctly, otherwise incorrectly.

Given the evolutionary nature of interaction, signs used

in the interaction should emerge through agents’ mutual

adaptation, without presuming any form or meaning. So we

constructed our interaction system as follows. To recognize

and generate signs (voice and motion patterns), we utilized a

dynamics model, MTRNN. Its generalization capability en-

ables the robots to deal with diverse forms of signs, which are

not given a priori. To interpret signs, we utilized NN, which

transforms dynamics model parameters of voice/motion into

those of motion/voice. Meanings of signs emerge and change

while the robots retrain their own NN in interaction.

A. Interaction Model Overview

There is an overview of our interaction model in Fig. 1.

An agent robot has a pair of NNs to interpret signs and

two MTRNNs for voice and motion. The MTRNN for voice

(Voice MTRNN) is used for two-way translation of sound

waves and MTRNN parameters. The MTRNN for motion

(Motion MTRNN) is used for two-way translation of robot

physical movements and MTRNN parameters. The pair of

NNs (Interpretation NN) is used for two-way translation of

MTRNN parameters for voice and motion. A process, for

example, that a robot interprets a voice sign as a motion

pattern is as follows. (1) recognition: The observed voice is

transformed into voice parameters by Voice MTRNN. (2)

interpretation: The voice parameters are transformed into

motion parameters by Interpretation NN. (3) generation: The

motion parameters are transformed into a motion pattern by

Motion MTRNN.

Through interchanging voice and motion, each agent robot

modifies its interpretation of signs to adapt to that of the other

by retraining its Interpretation NN.

B. Recognition and Generation of Signs

We utilized MTRNN for recognizing and generating signs

(voice and motion). MTRNN can learn multiple sequential

data and self-organize its parameter space by generalizing
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Fig. 1. Overview of Interaction Model

these data. The model is capable of learning more complex

data compared to Recurrent Neural Network with Parametric

Bias (RNNPB) [6], which also has similar features. The

model works as a recognizer and a generator of actions

by simultaneously learning sensory and motor information.

Furthermore, it recognizes and generates new actions with its

generalization capability. This capability provides a diversity

of actions that are used as signs, which is the essence of

evolutionary interaction.

1) Dynamics Model MTRNN: MTRNN, proposed by Ya-

mashita et al. [5], is an extended RNN model. Composition

of MTRNN is outlined in Fig. 2. This model deals with

sequential data through calculating the next state S(t + 1)
from the current state S(t). The model is composed of three

neuron groups, each with an associated time constant. The

three groups in increasing order of the time constant, are

input/output nodes (IO), fast context nodes (C f ), and slow

context nodes (Cs). The output value of the i-th neuron at

step t (yi,t ) is calculated as follows.

yi,t =
1

1+ exp(−ui,t)
(1)

ui,t =
(

1−
1

τi

)

ui,t−1 +
1

τi

[

∑
j

wi jx j,t

]

(2)

x j,t = y j,t−1 (3)

ui,t : internal value of the i-th neuron at step t

τi : time constant of the i-th neuron

wi j : connection weight from the j-th neuron

to the i-th neuron

x j,t : input from the j-th neuron at step t

If neurons have larger time constant, their states change

more slowly and they deal with more abstract information.

Therefore, C f represents primitives of sequential data, and

Cs represents a sequence of the primitives (Fig. 3). Thus,

MTRNN is able to deal with longer and more complex

sequential data compared to RNNPB [6]. MTRNN represents

various data patterns depending on the initial values of

Cs (CCCsss000). Moreover the model self-organizes the parameter

space (CCCsss000 space) through generalizing training patterns.

To train MTRNN, the Back Propagation Through Time

(BPTT) algorithm is utilized. When using the algorithm, the

input values x j,t of IO neurons is calculated with feedback

from the teacher signal as follows.

x j,t = 0.9× y j,t−1 +0.1×Tj,t−1 ( j ∈ IO) (4)

Ti,t : the teacher signal for the j-th neuron at step t

Output S( t +1)

Input S( t )

Cf Cs

Fig. 2. Composition of MTRNN

Sequence of 
Primitives Whole Dynamics

Primitives

Cs

Cf

Fig. 3. Dynamics Representation of
MTRNN
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Connection weights (wi j) and CCCsss000 ( xi,0 s.t. i ∈ Cs ) are

updated as follows.

wi j(n+1) = wi j(n)−η
∂E

∂wi j

(5)

xi,0(n+1) = xi,0(n)−α
∂E

∂xi,0
(i ∈Cs) (6)

E = ∑
t

∑
i∈IO

(yi,t −Ti,t)
2 (7)

n : iteration number in the updating process

η ,α : learning rate constant

E : prediction error

CCCsss000 parameter space is self-organized depending on a dy-

namical structure among training patterns through the pro-

cess where connection weights, which are shared by all

patterns and CCCsss000, which is proper to every pattern are

simultaneously updated. This parameter space contains var-

ious new patterns which are products of the generalization

capability of MTRNN.

To recognize a sequential data, the CCCsss000 vector representing

the data pattern is calculated through BPTT with connection

weights fixed (cf. (6)). In the recognition phase, input values

of IO node where the teacher signal is given are calculated by

(4) and input values of the others are calculated by (3). Thus,

MTRNN can recognize sequences if only partial information

is given.

A sequential data is generated by executing forward cal-

culation (cf. (1), (2), (3)) recursively with CCCsss000 representing

the sequential data set.

2) Framework of Sensori-motor Integration with MTRNN:

Each agent needs capabilities to recognize the other’s signs

(voice, motion) and to generate signs by itself for interaction.

We enabled these capabilities with MTRNN that have learned

and generalized sensori-motor sequence data obtained from

each robot’s actions. The trained MTRNN (sensori-motor

integrated model) is capable of recognizing and generating

diverse signs on the basis of each robot’s body dynamics.

This framework of sensori-motor integration consists of three

phases: learning, recognition, and generation (Fig. 4).

1) Learning (Acquisition of Sensori-motor Integrated

Model): The agent robots make actions and perceive

the results of the actions through their sensors. The

obtained motor-information and sensory-information

sequences are learned simultaneously by MTRNN.

Through this process, the MTRNN parameter space is

self-organized reflecting each robot’s body dynamics.

2) Recognition: An agent robot acquires the sensory-

information sequence through observing the other’s

action. A CCCsss000 vector representing the action is cal-

culated from the sensory information by BPTT with

the connection weights fixed.

3) Generation: The motor-information sequence repre-

sented by a CCCsss000 vector is generated through the for-

ward calculation of MTRNN.

C. Interpretation of Signs

For the interpretation of motion and voice signs, we

utilized a pair of NNs (Interpretation NN) which translates

CCCsss000 vectors for voice and those for motion mutually. To share

the interpretation of signs, robots need to modify their Inter-

pretation NN. They guess the other’s interpretation through

observing its behavior and modify their Interpretation NN to

adapt their own interpretation to the other’s. However, if their

interpretations change inconsistently every time they interact,

sharing signs through mutual adaptation is impossible. To

maintain the consistency of each robot’s interpretation after

it had been modified, we utilized a consolidation learning

algorithm for retraining the Interpretation NN as follows.

1) A robot obtains a voice-motion pair connected mutu-

ally by the other’s interpretation through speaking to

it and watching its response motion.

2) Voice-motion pairs from current interpretation are

stored. To be more precise, grid-point data are input

into the NN and stored with the corresponding output.

3) Interpretation NN is retrained using the new voice-

motion pair obtained in (1) and the pairs stored in (2).

III. INTERACTION EXPERIMENTAL SYSTEM

A. System Configuration

We used a small life-like robot “Keepon” [7] as the

platform for our experiments. A Keepon has four degrees

of freedom, two of which used in the experiments: PAN and

TILT (Fig. 5). It also has two CCD cameras at its eyes and

a microphone at its nose. The two Keepons faced each other

at intervals of 230 mm, and we placed speakers beside them.

The system is shown in Fig. 6.

To synthesize sound for the Keepons’ voice, we used

“Maeda model”: the vocal tract model proposed by

Maeda[8]. This model has seven parameters (listed in Ta-

ble I) that determine the vocal tract shape, and sound is

synthesized depending on these. By using Maeda model,

we can apply the framework of sensori-motor integration to

recognize and generate voices. Our method of dealing with

voices is based on a study by Kanda et al. [9].

MTRNN

Motor Information
Sequence

Sensory Information
Sequence

Update Weight Self-organizing 
Parameter Space

A. Learning

MTRNN

Weight Fixed BPTTB. Recognition

Forward CalculationC. Generation

Motor Information
Sequence

MTRNN

Sensory Information
Sequence

Cs Vector

Cs Space0

Cs Space0

Cs Space0

0

Cs Vector0

Fig. 4. Framework of Sensori-motor Integration with MTRNN
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PAN TILT

Fig. 5. Axes of Motion

230 mm

Speaker

Camera Microphone

Keepon

Fig. 6. Hardware Configuration

TABLE I

MAEDA MODEL PARAMETERS

Parameter numbers Parameter names

1 Jaw position (JP)

2 Tongue dorsal position (TDP)

3 Tongue dorsal shape (TDS)

4 Tongue tip position (TTP)

5 Lip opening (LO)

6 Lip protrusion (LPR)

7 Larynx position (LP)

B. Procedure

The interaction emergence procedure consists of two

phases. First, both robots acquire sensori-motor integrated

models for voice and motion by training MTRNN. Through

this process, they obtain the capabilities of recognizing

and generating signs. Second, they constantly modify their

interpretations of signs to adapt to those of the other by

retraining their Interpretation NN throughout the interaction.

1) Phase 1 - Acquisition of Sensori-motor Integrated

Model: To train Voice MTRNN, we utilized Maeda model

parameters as motor information, and features extracted from

the sound generated by the Maeda model from the parameters

as sensory information (Fig. 7). We dealt with voice from

the articulatory movements controlled by the first six Maeda

parameters in Table I. We used an eight-dimensional vector

of MFCC (Mel-Frequency Cepstrum Coefficient) comprising

the third to the tenth coefficient as the sound features. The

MFCC is configured as follows: a sampling frequency of

16000 Hz, a frame length of 25 millisecond, a frame shift

of 10 millisecond, and 24 filter bank channels.

We prepared 124 articulatory movement patterns as se-

quential Maeda parameters composed of transitions of the

Utterance

Sound
Feature

Maeda
Parameter

Training of Voice MTRNN    

Listening

Fig. 7. Training of Voice MTRNN
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Fig. 8. An Example of Training Patterns for Voice

four vowels /a/, /i/, /u/, and /e/. We use some of the patterns

for training and rest of them to validate the ability of the

trained MTRNN to recognize and generate patterns. There

is an example of the patterns and sound features obtained

through the voice in Fig. 8.

To train Motion MTRNN, we utilized the Keepons’ motor

values (PAN, TILT) as the motor information, and features

extracted from the images captured by their cameras as

the sensory information (Fig. 9). For the image features,

a position (x, y) of an anchoring point in an image of a

Keepon’s eyesight was used to represent change of view

according to a its physical movement. We used a center of

the other Keepon’s nose as the anchoring point. Sequential

data of the image features obtained through watching the

other’s motion is the reverse of one obtained through making

same motion on their own. Therefore, sensory information

needs to be reversed before it is input into Motion MTRNN

when a Keepon recognizes other’s motion. This is a simple

mechanism for transforming viewpoints. We presumed that

the mechanism is given to Keepons a priori.

We prepared 80 physical movement patterns composed of

combinations of PAN and TILT value sequences expressed

as simple sine curves. We use some of them for training and

the rest for validation. There is an example of the patterns

and image features obtained through the motion in Fig. 10.

The numbers of input data dimensions for Voice MTRNN

and Motion MTRNN are shown in Table II.

2) Phase 2 - Sharing of Sign Interpretation: The process

of sharing sign interpretations by the two Keepons consists

of the following steps. This is portrayed in Fig. 11. We call

the two Keepons “A”, and “B” from now on.

1) A speaks to B.

2) B recognizes the voice, and based on its own interpre-

tation makes the motion associated with it.

3) A recognizes B’s motion, and retrains its Interpretation

NN to connect A’s first voice and B’s response motion.

4) Repeat steps (1) to (3) but with reversed roles. ( In the

next sequence of the steps, the topic of the interaction

is inherited.)
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Fig. 9. Training of Motion MTRNN
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TABLE II

NUMBER OF INPUT DATA DIMENSIONS FOR MTRNN

Number of Input Data Dimensions
Voice MTRNN Motion MTRNN

Motor 6 (Maeda Model 2 (Robot Motor
Infomation Parameters) Values)

Sensory
8 (Sound Features) 2 (Image Features)

Infomation

Total 14 4

Speak to the Other Observe Response Adapt to New Sign
Fig. 11. Phase 2: Sharing of Sign Interpretation

IV. EXPERIMENTS

We carried out two sets of experiments. First, through

imitation experiments, we evaluated the robots’ capabilities

to recognize signs generated by the other and to generate

signs by themselves. Second, we carried out an interaction

experiment, in which we observed the dynamic process of

the interaction.

A. Experiment 1 - Evaluation of Capability for Recognition

and Generation through Imitation

We trained Voice MTRNN and Motion MTRNN as de-

scribed in Section III-B.1 and their configurations are listed

in Table III. Time constants (τ) for them were both set for

IO of 2, for C f of 5, and for Cs of 70. In this experiment,

Keepon A imitates the B’s actions as follows.

1) B makes an action.

2) A obtains the sensory information by observing the

action, and translates it into CCCsss000 vector by MTRNN.

3) A makes an action generated by MTRNN from the CCCsss000

obtained in (2).

We evaluated the imitation error defined as the mean

square error between the sequential data of motor informa-

tion of B’s action in (1) and those of A’s action in (3).

The imitation errors in the voice and motion are listed

in Table IV. The result of voice imitation whose imitation

error is 0.00157 (closest to the average error of whole voice

patterns) is plotted in Fig. 12. The result of motion imitation

whose imitation error is 0.00162 (closest to the average error

of whole motion patterns) is plotted in Fig. 13.

We confirmed from these results that the robots have

capabilities of recognizing and generating signs by using the

framework of sensori-motor integration. We also confirmed

TABLE III

CONFIGURATION OF MTRNN FOR IMITATION EXPERIMENTS

Voice MTRNN Motion MTRNN

Cf Nodes 40 30

Cs Nodes 7 5

Input Data Steps 51 (30 msec/step) 45 (66.6 msec/step)

Training Patterns 110 70

TABLE IV

IMITATION ERROR

Imitation Error
Voice Motion

Average of Whole Patterns
0.00153 0.00154

(124 patterns) (80 patterns)

Average of Training Patterns
0.00160 0.00157

(110 patterns) (70 patterns)

Average of Validation Patterns
0.00101 0.00135

(14 patterns) (10 patterns)
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Fig. 12. Result of Voice Imitation (Imitation Error: 0.00157)

that they have the capability of generalizing their experience

because they were able to imitate unknown validation pat-

terns as well as training patterns (cf. Table IV).

B. Experiment 2 - Observation of Dynamic Process of the

Interaction

We trained Voice MTRNN and Motion MTRNN as de-

scribed in Section III-B.1, and their configurations are listed

in Table V. Time constants (τ) for them were both set for IO

of 2, for C f of 5, and for Cs of 10000. We provided the two

Keepons with the same Voice MTRNN and Motion MTRNN.

Interpretation NN had 10 hidden layer nodes. The procedure

described in Section III-B.2 was repeated 3000 times through

computer simulation, and communication error was evaluated

for each iteration. We defined A’s communication error as the

mean square error between the sequential data of the motion

that A primarily intended when speaking and those of the

motion that B responded with (B’s communication error is
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TABLE V

CONFIGURATION OF MTRNN FOR INTERACTION EXPERIMENT

Voice MTRNN Motion MTRNN

Cf Nodes 20 25

Cs Nodes 3 3

Input Data Steps 21 (50 msec/step) 20 (66.6 msec/step)

Training Patterns 12 20

similarly defined by interchanging the roles of A and B).

The results of the experiment are shown in Fig. 14.

The graph at the top of Fig. 14 shows the sequence of

communication errors for Keepons A and B. The others show

the voice and motion patterns generated in segments I, II, and

III of the interaction.

These results from the experiment revealed the following

facts. There is repetition of coherent states with low error

and incoherent states with high error in the interaction. In

coherent states, both robots conveyed their intention to the

other correctly, and interacted stably using similar voice-

motion pairs (cf. segments I and III in Fig. 14). On the

other hand, in incoherent states, they failed to convey their

intention and exhibited irregular behaviors (cf. segment II

in Fig. 14). The signs used for communication in coherent

states (e.g., segments I and III) were different. Moreover,

the voice and motion patterns used as signs differed from

the training patterns described in the section III-B.1. The

communication error tended to decrease on the whole, but

the interaction kept evolving without convergence.

V. DISCUSSION

A. Evolutionary Process of Interaction

As a result of the experiment, we found that interaction

with our model kept evolving through repeating coherent

states, where the robots communicated with each other

successfully, and incoherent states, where they miscommu-

nicated. In the interaction, the robots created new diverse

signs that depended on their body dynamics and experi-

ence through the framework of sensori-motor integration

with MTRNN, and they shared the meanings of the signs

through mutual adaptation. In conclusion, we confirmed the

possibility of our approach to model evolutionary interaction

in which diverse signs emerge and evolve through repetitive

miscommunication and re-adaptation.

B. Modeling of Interaction Based on Dynamical Systems

Methods of modeling interaction or language that are

based on multi-agent systems and on viewpoints that regard

them as complex dynamical systems have attracted a great

deal of attention [2]. Hashimoto utilized these methods in his

study [3] as did Igari and Ikegami [4]. They also modeled

interaction evolving through agents’ mutual adaptation. Both

of them dealt with the emergence of structures from various

words or symbols in software simulations. On the other

hand, we dealt with the emergence of signs themselves that

depended on the agent robots’ body dynamics and their

experience.
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of interaction.

C. Interaction with Mirror System

The discovery of mirror neurons has revealed that humans

(and primates) recognize others’ actions reflecting their own

body dynamics. For example, according to Liberman’s motor

theory of speech perception [10], humans recognize speech

reflecting their own articulatory structure. This cognitive

framework that matches observed events (sensory informa-

tion) to similar, internally generated actions (motor informa-

tion) is known as a mirror system. The mirror system forms

a link between a observer and a actor, and is regarded as a

necessary prerequisite for any type of communication [11].

Our sensori-motor integration framework by MTRNN is a

model of the mirror system.
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D. Dynamical Systems with Semiotics

Semiotics [12] is the study of signs and of their meaning

and use. Charles S. Peirce, a founder of semiotics, offered a

triadic model of a sign composed of a “sign” (to be exact, a

“representamen”), an “interpretant” and an “object”. In his

model, a subjective dynamic process called “semiosis” where

a sign gets connected to an object through an interpretant is

emphasized. This is in contrast to an objective static structure

of a connection between a sign and an object. Umberto Eco

expanded the term “semiosis” offered by Peirce to designate

a social dynamic process where society produces signs and

attributes shared meanings to these signs. The process in

our model, where a voice/motion sign becomes connected

to a motion/voice through an Interpretation NN proper to

each agent, corresponds to the process of semiosis offered

by Peirce. The process of sharing signs by mutual adaptation

through the interaction in our model corresponds to the social

semiosis expanded by Eco. Semiosis has attracted much

attention recently from researchers in engineering fields.

There is even a project called “Design Theory for Dynamical

Systems with Semiosis” [13].

E. Symbolic Interactionism

Symbolic interactionism is a sociological, social-

psychological perspective based on following three premises

[14].

1) Human beings act toward things on the basis of the

meanings that the things have for them.

2) The meanings are derived from or arise out of the

social interaction that one has with one’s fellows.

3) These meanings are handled in, and modified through,

an interpretive process used by a person in dealing with

the things he/she encounters.

Our interaction system is a model of symbolic interactionism.

The three premises in our model correspond to the following.

1) Keepons act (move/speech) in response to the other’s

signs (voice/motion patterns) on the basis of the mean-

ings that the signs have for them.

2) The meanings are derived from or arise out of the

interaction between Keepons.

3) These meanings are handled in, and modified through,

an interpretation NN used by a Keepon in dealing with

the signs it encounters.

From this perspective, the meanings of things (signs) in the

society continuously, dynamically change and evolve through

repeated formation and re-formation without given specific

goals. Our experiments produced results that were consistent

with this.

VI. CONCLUSIONS

We proposed an interaction model from the point of

view that the bottom-up emergence of signs through agents’

mutual adaptation is essential for evolutionary interaction.

As a result of our experiments on imitation, we confirmed

from our model that the agent robots could self-organize

their cognitive structures through generalizing experience,

and that they had the ability to recognize each other’s actions

in the real world. We carried out an interaction experiment

and observed its dynamic evolutionary process. As a result,

we confirmed that the interaction in our multi-agent system

kept evolving through repeating alternately coherent states

where agents successfully communicated with each other

and incoherent states where they miscommunicated. In such

interaction, diverse new signs (motion and voice patterns)

depending on the robots’ body dynamics emerged through

the generalization capability of MTRNN. In conclusion, we

found that our approach can be used to model evolutionary

interaction in which diverse signs emerge through repetition

of miscommunication and re-adaptation.

In future work, we intend to introduce contextual infor-

mation to Interpretation NN to deal with the emergence

of language that has syntax. We also aim to improve our

interaction model so that it becomes a system in which turn-

taking phenomena emerge.
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