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Abstract— We report an autonomous observation system with
multiple pan-tilt-zoom (PTZ) cameras assisted by a fixed wide-
angle camera. The wide-angle camera provides large but low
resolution coverage and detects and tracks all moving objects
in the scene. Based on the output of the wide-angle camera,
the system generates spatiotemporal observation requests for
each moving object, which are candidates for close-up views
using PTZ cameras. Due to the fact that there are usually much
more objects than the number of PTZ cameras, the system first
assigns a subset of the requests/objects to each PTZ camera. The
PTZ cameras then select the parameter settings that best satisfy
the assigned competing requests to provide high resolution
views of the moving objects. We solve the request assignment
and the camera parameter selection problems in real time. The
effectiveness of the proposed system is validated in comparison
with an existing work using simulation. The simulation results
show that in heavy traffic scenarios, our algorithm increases
the number of observed objects by over 200%.

I. INTRODUCTION

Consider a wide-angle camera installed at an airport

for human activity surveillance or in a forest for wildlife

observation. The wide-angle camera can provide large, low

resolution coverage of the scene. However, recognition and

identification of humans and animals usually require close-

up views at high resolution which need PTZ cameras. The

resulting autonomous observation system consists of a fixed

wide-angle camera with multiple PTZ cameras as illustrated

in Figure 1. The wide-angle camera monitors the entire field

to detect and track all moving objects. Each PTZ camera

selectively covers a subset of the objects.

However there are usually more moving objects than

the number of PTZ cameras. With these competing spa-

tiotemporal observation requests, the major challenge is the

control and scheduling of the PTZ cameras to maximize the

“satisfaction” to the competing requests. The system design

emphasizes the “satisfaction” to the requests which takes into

account 1) the camera coverage over objects, 2) camera zoom

level selection, and 3) camera traveling time. We approach

the control and scheduling problem in two steps. In the

first step, a subset of the requests/objects is assigned to

each PTZ camera. In the second step, each PTZ camera

selects its PTZ parameters to cover the assigned objects. We

formulate the problems in both steps and solved them in real
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time. We implemented the system and conducted numerical

simulations. The experiment results show that our method

outperforms an existing work by increasing the number of

observed objects by over 200% in heavy traffic scenarios.

II. RELATED WORK

The proposed autonomous observation system relates to

the existing works on active video surveillance systems and

the frame selection problem.

In the recent decade, multiple camera surveillance sys-

tems, especially those with both static and active cameras

have attracted growing attention of research. Most of the

works are master-slave camera configuration [1]. The master

static camera(s) provide the general information about the

wide-angle scene while the slave active cameras acquire the

localized high-resolution imagery of the regions of interest.

This is a relatively new research area with many directions

to explore. A very recent live system in this category can be

found in [2]. Our work belongs to this category.

Most works in this category schedule the active cameras

based on simple heuristic rules. Zhou et al. [1] choose the

object closest to the current camera setting as the next

observation object. Hampapur et al. [3] adopt the simple

round robin sampling. Bodor et al. [4] and Fiore et al. [5]

propose a dual-camera system with one wide-angle static

camera and a PTZ camera for pedestrian surveillance. Human

activities (walking, running, etc.) are prioritized based on

the preliminary recognition by the wide-angle camera. The

PTZ camera focuses to the activity with the highest priority

for further analysis. Costello et al. [6] are the first to

formulate the single camera scheduling problem based on

network packet scheduling literatures. The authors propose

and compare several greedy scheduling policies. With differ-

ent assumptions towards the observation scene and objects,

various scheduling formulation and schemes are proposed.

In Lim et al. [7], the scheduling problem is formulated as a

graph matching problem. Bimbo and Pernici [8] truncate the

continuous scheduling problem by a predefined observation

deadline and each truncated camera scheduling problem is

formulated as an online dynamic vehicle routing problem

(DVRP). However these methods assign only one object to

one active camera. Our system assigns multiple objects to

individual cameras by selecting PTZ camera parameters such

that the camera coverage-resolution tradeoff is achieved. This

also enables group watching which is very meaningful in

many applications.
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Fig. 1. System architecture.

Very few work considers the selection of the zoom level

of active cameras and assigns multiple objects to individual

cameras. Lim et al. [9] construct the observation task for

each single object as a “task visibility interval” (TVI) based

on its predicted states and corresponding camera settings.

When TVIs have non-empty intersection, they are grouped

to form a “multiple task visibility interval” (MTVI). Based

on the order of the starting time of (M)TVIs, a directed

acyclic graph (DAG) is constructed. The scheduling problem

is formulated as a maximal flow problem. A greedy algorithm

and a dynamic programming scheme are proposed to solve

it. Zhang et al. [10] construct a semantic saliency map to

indicate the observation requests. An exhaustive algorithm

finds the optimal single frame that minimizes the information

loss. Sommerlade and Reid [11] use an information-theoretic

framework to study how to select a single active camera’s

zoom level for tracking single object so as to balance the

chances of loosing the tracked object and that of loosing trace

of other objects. In contrast to these works, our scheduling

dose not require accurate motion prediction for the entire

duration of objects in the FOV as in [9]. The assignment

of multiple objects to individual PTZ cameras is carried out

by selecting the camera parameters to achieve the tradeoff

between coverage and resolution.

Our group focuses on developing intelligent vision systems

and algorithms using robotic cameras for a variety of appli-

cations such as construction monitoring, distance learning,

panorama construction and natural observation [12]. In the

context of using PTZ camera for the collaborative observa-

tion, competing observation requests need to be covered by

camera frame(s) to maximize the overall observation reward.

This issue is formulated as the frame selection problem

[13]. A series of algorithms for single frame selection (SFS)

problem have been proposed [13], [14]. Song et al. [15]

propose an autonomous observation system in which a single

PTZ camera is used to fulfill competing spatiotemporal

observation requests. In this work, multiple PTZ cameras

are used to increase the observation coverage. Recently,

an approximation algorithm for the multi-frame selection

problem is proposed [16]. The algorithm coordinates p (p ≥
1) camera frames to cover n (n ≥ p) competing obser-

vation requests in O(n/ǫ3 + p2/ǫ6) time, where ǫ is the

approximation bound. This algorithm inspires the direction

of simultaneous multi-object observation using multiple PTZ

cameras as in this work.

III. SYSTEM ARCHITECTURE AND TIMELINE

Figure 1 shows the architecture of the system. The system

consists of p (p ≥ 1) PTZ cameras and a wide-angle camera.

All cameras are calibrated. The wide-angle camera detects

and labels all moving objects in the scene. The states of the

objects (e.g., size, position and velocity) in the 2D image

space are tracked and predicted. Based on the prediction,

the observation request generation module generates the

competing spatiotemporal observation requests (shadowed

ellipses) for all objects. Then the request assignment module

assigns a subset of the objects/requests to each PTZ camera

by computing the p-frame settings that best satisfy the

requests. Each PTZ camera tracks the objects assigned to

it by selecting the PTZ parameter settings that best satisfy

these requests to capture high resolution images/videos of

the objects.

Figure 2 shows the timeline of the system. An observation

cycle starts at time t = t0. The states of the objects at

time t = t0 + δl are predicted, where δl is termed as “lead

time”. Based on the predicted states, the system generates

the observation request at time t = t0 + δl for each object.

A subset of these objects is then assigned to each PTZ

camera. Then the system starts to adjust the PTZ cameras

according to the request assignment. The camera traveling

time is bounded by the “lead time” δl so that the cameras

intercept the objects at time t = t0 + δl. After that, each

PTZ camera tracks its object subset for time δr until the

beginning of the next observation cycle. δr is termed as

“recording time” and is evenly divided into nr intervals with

each of length τ . Based on the state prediction, the PTZ

camera parameter selection module computes each camera’s

setting at the end of each interval. Then each camera micro-

adjusts its settings for up to τ time and prepares for the

next interval. By capturing images/videos for δr time, the

request assignment module re-initiates and the operations

above repeat. T = δl + δr is called one observation cycle.
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Fig. 2. System timeline. An observation cycle starts at t = t0. Within each cycle time T = δl + δr , all PTZ cameras first take no more than δl time to
adjust the PTZ parameters based on the request assignment. Then each PTZ camera micro-adjusts its parameters within interval τ to track the assigned
subset of objects. This tracking lasts δr time until a new observation cycle starts.

IV. CAMERA SCHEDULING ALGORITHM

For p PTZ cameras, there are usually much more objects.

With the competing spatiotemporal requests, we need to con-

trol and schedule the PTZ cameras to capture sequences of

images/videos that best satisfy the requests. Frame selection

and camera scheduling module is developed for this purpose.

A. Observation request generation

The wide-angle camera detects all motions and tracks them

continuously. Each object is represented by an iso-oriented

elliptic region which is determined by a 4-parameter vector,

[u, v, a, b]T , (1)

where (u, v) indicates the center of the ellipse in the image

space; a and b denote the two axes of the ellipse, respectively.

Thus the state of the object at time t can be represented by

x(t) = [u(t), v(t), a(t), b(t), u̇(t), v̇(t)]T , (2)

where (u̇(t), v̇(t)) indicates the velocity of the ellipse center

in the image space at time t.
A non-parametric Gaussian background subtraction model

[17] is used to detect and label any moving objects. A

kernel-based mean-shift [18] algorithm is used to track the

segmented objects. For predicting the object state, each

labeled object is assigned a Kalman filter. A commonly used

constant velocity model is adopted. Kalman filter is also

able to handle short-term occlusion by predicting the object

motion. It is worth mentioning that a lot of existing tracking

algorithms [19] can be applied here.

Given the predicted state of i-th object at time t is

x̂i(t) = [ûi(t), v̂i(t), âi(t), b̂i(t), ˆ̇ui(t), ˆ̇vi(t)]
T ,

we define the spatiotemporal observation request as,

ri(t) = [ûi(t), v̂i(t), âi(t), b̂i(t), zi, ωi(t)]
T , (3)

where û(t), v̂(t), âi(t) and b̂i(t) define the desired rectangu-

lar requested region in the same way as u, v, a and b in (1);

zi indicates the desirable resolution and ωi(t) is the temporal

weight, which indicates the emergency/importance level of

the i-th object at time t. ωi(t) plays an important role in

balancing the observation service across all the objects and

will be discussed in details later.

B. Request assignment

As shown in Figure 2, at the beginning of each recording

time δr, we need to coordinate p PTZ cameras so that each

camera is assigned a subset of the objects. We choose the

p-frame settings that best satisfy all the requests at that time.

In our system, the PTZ camera setting is parameterized by

a 3-vector,

c = [x, y, z]T ,

where (x, y) is the center point of the camera frame, which

essentially indicates pan and tilt settings; z is the resolution

of the frame. With a fixed aspect ratio (e.g., 4:3), z also

determines the size of the frame.

The “satisfaction” to the observation request is quantified

by a metric. We extend the Resolution Ratio with Non-

partial Coverage (RRNPC) metric in [16] to cope with the

spatiotemporal requests. Given a request ri(t) and a frame

c, we derive the definition of the satisfaction function as,

s(c, ri(t)) = ωi(t) · I(c, ri(t)) · min(
zi

z
, 1), (4)

where I(c, ri(t)) is an indicator function,

I(c, ri(t)) =

{

1 if ri(t) ⊆ c,

0 otherwise.
(5)

The term min( zi

z
, 1) indicates the resolution ratio. It reaches

the maximum of 1 when the resolution level of the camera

frame is better than that of the request. In (5) we abuse

the set operator ⊆ in the way ri(t) ⊆ c indicates that the

requested region is fully contained in that of the frame.

This means we do not accept partial coverage over the

request. This is necessary for many purposes such as object

recognition and identification. To maximize the overall cov-

erage of the p frames, we also restrict that any two camera

3804



frames do not fully contain a request region in common.

This constraint also avoids multiple count for one request.

Therefore, the overall satisfaction of a p-frame set Cp(t) =
{c1(t), c2(t), ..., cp(t)} over n requests is the sum of the

satisfaction to each individual request ri(t), i = 1, 2, ..., n,

s(Cp(t)) =

n
∑

i=1

p
∑

u=1

s(cu(t), ri(t)) (6)

=

n
∑

i=1

p
∑

u=1

ωi(t) · I(cu(t), ri(t)) · min(
zi

zu(t)
, 1).

Thus the request assignment problem is formulated as finding

the optimal p-frame settings that maximizes the overall

satisfaction,

Cp∗(t) = arg max
Cp(t)

s(Cp(t)). (7)

This problem can be solved in [16] with running time

O(n/ǫ3 + p2/ǫ6), where ǫ is the approximation bound.

After assigning the requests by finding the optimal p frame

settings, we find the best camera-setting pairs that minimize

the time for adjusting the PTZ cameras.

We summarize the request assignment scheme in Algo-

rithm 1. We assume the states of the objects can be predicted

trivially ahead of time. This is usually true for Kalman filter

predictor.

Algorithm 1: Request Assignment (RA)

Input: Current time σ; predicted object states at time

ξ, (ξ ≥ σ + δl), X̂(ξ) = {x̂1(ξ), x̂2(ξ), ..., x̂n(ξ)}.
Output: p-frame settings Cp∗(ξ) = {c∗1(ξ), c

∗

2(ξ), ..., c
∗

p(ξ)},
with i-th camera being assigned an object subset.

Generate requests at time t, R(ξ) = {r1(ξ), r2(ξ), ..., rn(ξ)}1

based on X̂(ξ); O(n)
Compute Cp∗(ξ) as in (7); O(n/ǫ3 + p2/ǫ6)2

Find pairs of camera and setting that minimize the camera3

traveling time; O(p2 log p)
Adjust p cameras based on Cp∗(ξ) by t = ξ; O(1)4

Theorem 1: Algorithm RA runs in O(n/ǫ3 + p2/ǫ6 +
p2 log p) time.

C. PTZ camera parameter selection

After each camera is assigned a subset of objects, the

camera tries to track these objects for the recording time

δr. This requires to select the camera parameter setting such

that the satisfaction is maximized for each recording interval.

Given each recording interval is represented as [t − τ, t)
and the i-th camera is assigned a subset of objects with

predicted states at time t, X̂i(t) = {x̂1(t), x̂2(t), ...}. The

corresponding observation requests are generated Ri(t) =
{r1(t), r2(t), ...}. The camera setting at time t, c∗(t), is then

determined by maximizing the satisfaction to Ri(t),

c∗(t) = argmax
c

∑

ri(t)∈Ri(t)

s(c, ri(t)). (8)

This problem can be solved in [14] with running time

O(|X̂i|/ǫ3), where |X̂i| is the cardinality of X̂i and ǫ is

the approximation bound. However, (8) does not consider

the fact that within time τ , the PTZ camera can only micro-

adjust within a limited setting range. We assume the pan,

tilt and zoom motion of the camera are independent. The

reachable ranges for pan, tilt and zoom settings within time

τ are α, β and γ, respectively. Then we rewrite (8) as,

c∗(t) = arg max
c∈α×β×γ

∑

ri(t)∈Ri(t)

s(c, ri(t)). (9)

It is worth mention that most PTZ cameras’ pan and

tilt motion is fast enough to keep tracking most objects in

the scene. For example, the empirically estimated transition

speed of the Panasonic HCM 280 camera is 300◦/sec.
for pan, 200◦/sec. for tilt and 5 levels/sec. for zoom.

Considering the camera has 21× zoom levels and only less

than 50◦ FOV, the time for changing pan and tilt settings

is much less than the time for changing the camera zoom.

Changing the zoom level when the camera is moving also

creates significant motion blurring and requires re-focusing.

Therefore, in practice, we only search for the pan and tilt

settings in α × β while remain the zoom level.

We summarize the PTZ camera parameter selection

scheme in Algorithm 2. Note
∑p

i |X̂i| ≤ n.

Algorithm 2: PTZ Camera Parameter Selection (PTZ-CPS)

Input: Current time ξ; i-th camera current setting c∗i (ξ);
predicted object subset states

X̂i(ξ + τ ) = {x̂1(ξ + τ ), x̂2(ξ + τ ), ...}.
Output: i-th camera setting at time ξ + τ , c∗i (ξ + τ ).
Generate requests Ri(ξ + τ ) = {r1(ξ + τ ), r2(ξ + τ ), ...}1

based on X̂i(ξ + τ ); O(|X̂i|)
Compute α, β, γ based on c∗i (ξ); O(1)2

Compute c∗(ξ + τ ) as in (9); O(|X̂i|/ǫ3)3

Micro-adjust i-th camera based on c∗i (ξ + τ ) by4

t = ξ + τ ; O(1)

Theorem 2: Algorithm PTZ-CPS runs in O(|X̂i|/ǫ3)
time, where |X̂i| is the cardinality of X̂i. Computing pa-

rameters for all p cameras takes O(n/ǫ3) time.

D. Dynamic weighting

If we keep the request weight in (3) unchanged, the system

will create a “biased frame selection” model that always

prefers certain objects instead of balancing the camera re-

source for all objects. We address this issue by carefully

designing the temporal weight ωi(t) based on two intuitions:

1) object exiting FOV sooner is of more importance and

2) object less satisfied in history is of more importance.

The first intuition is derived from the earliest deadline first

(EDF) policy [6]. The policy addresses the emergency of the

requests. The second intuition addresses sharing the camera

resource for all objects to achieve balanced observation over

time. We define,

ωi(t) = µi(t) · νi(t),

where µi(t) and νi(t) address the first and second intuitions,

respectively. One candidate form of µi(t) is,

µi(t) = min(ρ(d̂i−t), 1), (10)
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Fig. 3. Simulated scene. Each object is represented as an ellipse and
enters the scene from one of the four sides following a Poisson process. The
orientation is bounded within [−40◦, 40◦] with respect to the perpendicular
of the side. The object maintains constant velocity and its time to exit the
scene is predicted.

where d̂i is the predicted deadline for i-th object to exit

the FOV and 0 < ρ < 1 is a parameter that controls how

quick the emergency increases. When t → d̂i, µi(t) → 1, as

maximum.

To design νi(t) we need to first define the accumulative

unweighted satisfaction (AUS) ηi(t),

ηi(t) =

p
∑

j=1

∑

tk≤t

s(cj(tk), ri(tk))

ωi(tk)
, (11)

where the variable tk refers to the discrete times when

cameras take frames. The AUS essentially reflects how well

an object is satisfied in history. We design νi(t) as,

νi(t) = max(1 −
ηi(t)

ne

, 0), (12)

where ne is a parameter indicating the extent to which an

object need to be observed. When ηi(t) ≥ ne, νi(t) is zero

and we contend the object is fully satisfied and needs no

observation any longer. Both µi(t) and νi(t) are bounded

in range [0, 1], which keeps the satisfaction metric in (4) a

standard metric.

V. EXPERIMENT

We carry out a simulation for evaluating the scheduling

scheme based on random inputs. The system is programmed

in Microsoft Visual C++. The simulation is carried out on a

Windows XP desktop PC with 2.0 GB RAM, 300 GB hard

disk space and a 3.2 GHz Pentium CPU.

A. Simulation setup

As shown in Figure 3, a simulated 80×60 meters scene is

constructed. There are 4 entrances on each side. The size of

the entrance is 30 meter. Each object enters the scene through

one side and maintains a constant velocity. Seven random

numbers are needed to characterize each object. First, a

random integer number ranging from 1 to 4 is generated

to indicate which side the object enters through. Then a

random real number in [0, 1] is generated to indicate the

entering point along the side. After that, the orientation of

the object is determined by a random angle within the range

[−40◦, 40◦] with respect to the perpendicular of the side. The

object speed is generated from a truncated Gaussian with a

mean of 1.5 m/s and standard deviation of 0.5 m/s, which

is basically the speed of a walking people. The lengths of

the two axes of the ellipse that represents the object are

randomly generated from a range [1.5, 2.5] m. Finally, the

desirable resolution of the object is generated from a range

[1, 21] (magnification), which is also the Panasonic HCM280

camera zoom range. The cameras run in 10 fps, which means

τ = 0.1 s. Then α = 30◦ and β = 20◦. 5000 objects

arrive in the scene following a Poisson process with arrival

rate λ, which represents the congestion level of the scene.

We set the lead time δl = 4s, which guarantees that in the

request assignment phase, camera adjustment is completed

before cameras intercept the objects. We set δr = 6s, which

is equivalent to nr = 60 frames. We set the parameter

ne = nr in (12) and ρ = 0.5 in (10) and ǫ = 0.25. Two

PTZ cameras are used, i.e., p = 2. We set the approximation

bound ǫ = 0.25.

B. Metric and results

We compare our scheduling scheme with the earliest dead-

line first (EDF) policy proposed in [6]. EDF is a heuristic

scheme where the camera always picks the object with

earliest deadline. With each congestion setting, 20 trials are

carried out for average performance. We first compare the

two schemes based on the ratio of number of objects that

are observed for at least nr/2 times to the total number

of objects pass through the scene. We term this metric as

Mn. This metric essentially indicates how many objects

the system can capture and observe for a period of time.

Figure 4(a) shows the comparison result. It is shown that

when the Poisson arrival rate λ is small, i.e., there are few

objects in the scene, both scheduling schemes can reach

almost best possible ratio (100%). When λ increases, i.e.,

the traffic in the scene becomes heavy, the performance of

EDF deteriorates significantly quicker than our method. In

the heavy traffic scenario, our method outperforms the EDF

by over 200%.

We also compare based on the satisfaction to the objects

since it takes into account not only the times that an object

is observed, but also the resolution of the observation. As

mentioned earlier, the AUS as defined in (11) indicates how

well an object is satisfied. We define the second metric

Ms as the ratio of average AUS to the maximum possible

satisfaction for each object (i.e., ne). Figure 4(b) summarizes

the comparison based on Ms. It is shown that our method

deteriorates even slower as λ increases. In the heavy traffic

scenario, our method outperforms the EDF by 250 %. This is

not surprising since in heavy traffic situations, objects tends

to be close to each other, where multi-object coverage has

much greater advantage.

The computation time for both request assignment and

camera parameter selection depends on the value of λ. In

the heaviest scenario (i.e., λ = 1), the maximum number of

object in the scene at any time is less than 100. In this case,

the computation time for request assignment is less than 0.5

3806



��

���

����

� ���� ��� ���� �3RLVVRQ�DUULYDO�UDWH����REMHFW�VHFRQG�

Q
(')
2XU�PHWKRG

(a) Comparison of scheduling poli-
cies based on Mn.

��

���

����

� ���� ��� ���� �
3RLVVRQ�DUULYDO�UDWH���REMHFW�VHFRQG�

0
V

(')
2XU�PHWKRG

(b) Comparison of scheduling poli-
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second which is significantly less than δl. The computation

time for all PTZ cameras’ parameter selection is less than

0.05 second which is also less than τ .

Careful analysis reveals that our satisfaction formulation in

(4) is actually a generalization of many existing scheduling

schemes. For example, if we tune parameter ρ in (10)

approaching to zero, then the change in µi(t) dominates

the change in the overall weight. That means we extremely

care the emergency of the request and thus the scheduling

converges to the earliest deadline first (EDF) policy [6]. Also,

given we set the requested resolution close to highest camera

resolution, or we change the resolution ratio term min( zi

z
, 1)

in (4) to indicator function I(zi ≥ z). This means we only

accept the images with least requested resolution. Then the

frame selection algorithm would assign at least single object

to each PTZ camera in the worst case, which is exactly

the scheduling scheme based on single object tracking as

in almost all existing works. This is also one reason our

scheduling scheme outperforms the existing work.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present an autonomous vision system that

consists of multiple robotic PTZ cameras and a fixed wide-

angle camera for observing multiple objets simultaneously.

We present the system with observation request generation,

request assignment and PTZ camera parameter selection

modules. We formulate the PTZ camera scheduling as a se-

quence of request assignment and camera parameter selection

problems with objective of maximizing the satisfaction to

requests. The problems are solved by our recent algorithms

on frame selection problem. We compare the system with

an existing work based on simulation. The simulation re-

sults show our system significantly enhances the observation

performance especially in heavy traffic situations.

In the future, we will investigate how different frame selec-

tion formulation would impact the system performance and

how they fit human user need in practice. Another interesting

extension is to consider the camera traveling time within the

request assignment. Intuitively, asynchronized observation by

multiple PTZ cameras would further enhance the system

performance. The camera content delivery through internet

would be another interesting topic especially when number

of camera increases.
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