
  

  

Abstract—In this paper, we propose a system which 
reconstructs the environment with both color and 3D 
information. We perform extrinsic calibration of a camera and 
a LRF (Laser Range Finder) to fuse 3D information and color 
information of objects. We also formularize an equation to 
measure the result of the calibration. Moreover, we acquire 3D 
data by rotating 2D LRF with camera, and use ICP (Iterative 
Closest Point) algorithm to combine data acquired in other 
places. We use the SIFT (Scale Invariant Feature Transform) 
matching for the initial estimation of ICP algorithm. It offers 
accurate and stable initial estimation robust to motion change 
compare to odometry. We also modify the ICP algorithm using 
color information. Computation time of ICP algorithm can be 
reduced by using color information. 

I. INTRODUCTION 
 It is essential to determine the regions where vehicles can 

reach and to plan the paths where the vehicles should go when 
it comes to UGV (Unmanned Ground Vehicle) navigation. 

Path planning requires determining reachable regions 
which require terrain perception, and there are many 
advantages for using terrain perception such as accuracy [1] if 
we use both 3D model and color information. Therefore, 
effective reconstruction of environment with 3-dimensional 
and color information enables improving the UGV 
navigation.  
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When a rescue robot sends information from an accident 
place, 3D and color information together are more helpful for 
understanding the situation of the accident place than sending 
just one of them.  

To reconstruct 3D environment, Andreas Nüchter [2] used 
rotational 3D LRF and data acquired with stop-scan-go 
fashion. ICP algorithm was applied to infer the motion of the 
robot. The initial estimation for ICP algorithm was given by 
odometry information with a heuristic method. The odometry 
information provides 2D information of motion of a robot, so 
a problem occurs when the robot shows a big 3D motion 
difference between frames, and the reconstructed 3D 
environment doesn’t include color information. Michael 
Montemerlo [3] installed a rotational 3D LRF and GPS/IMU 
on a Segway to reconstruct 3D environment without color. 
Yunsu Bok [4] installed an LRF and a camera on a vehicle. 
He reconstructed environment with color by fusing a camera 
and an LRF. He found correspondences of the fusion data and 
inferred motion between frames with correspondences. If the 
fusion data is acquired from plane, it may cause a degenerate 
case. 

 In this paper, we propose a system which reconstructs the 
environment with both color and 3D information. We install a 
rotational 3D LRF and a camera on a mobile robot (Fig. 9).  

The geometric relation between a camera and an LRF is 

acquired by extrinsic calibration of the camera and the LRF to 
fuse 3D information from the LRF and color information 
from the camera. We suggest a method for measuring and 
reducing the error of extrinsic calibration of the camera and 
the LRF.  
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Fig. 1.  System Overview 
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We use stop-scan-go fashion to acquire data fr
places and ICP algorithm to infer the motion. W
estimation using SIFT matching for the initial e
ICP algorithm. It provides a stable result rob
motion even though the robot has 3D movemen
modified color ICP algorithm is proposed to
execution time. 

II. EXTRINSIC CALIBRATION OF A CAMERA AN

The result of single camera calibration [5, 6] 
of planar plane whose surface is defined by a c
(Fig. 3) in an LRF plane is used for extrinsic cal
camera and a LRF for fusion of 3D information fr
and color information from the camera [7]. 

A. Geometric Constraints 
A 3D point of the planar pattern in an LRF c

can be mapped to a 2D point on the image coordi
(1). 

f

f
-1

P = ΦP + Δ

p = KP

p = KΦ (P - Δ)

               

P represents a 3D point in the camera coordin
a rotation matrix between a camera and an LRF w
is a translation vector between a camera and an
LRF, and K is intrinsic parameters of camera. 

That is, the result from camera calibration (K
between the camera and a planar pattern w.r.
(translation between camera and planar pattern w
and Pf gives us the result of camera-LRF calibra
These can be used to combine the data from the 
camera. (Fig. 2(a)) 

We use vector N in order to get Ф and Δ. N 
vertical vectors in planar pattern, and this vector 
from origin of camera frame to planar pattern as it
This vector can be derived from the geometric re
planar pattern from calibration of a camera. R3 in
the third column of R. This N satisfies (2) with a
from the camera coordinate. 

f

2T T -1N P = N = N Φ (P -Δ)   

Ф and Δ can be derived from (2), and the 
calibration can be improved by optimization w
number of Pf and N.  
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rom different 
e use motion 
estimation of 
bust to robot 
nt. Moreover, 
o reduce the 

ND A LRF 
and the data 

checkerboard 
libration of a 
from the LRF 

oordinate, Pf 
inate, p using 

              (1) 

nate, and Ф is 
w.r.t, LRF. Δ 
n LRF w.r.t. 

K, R (rotation 
.t camera), t 

w.r.t camera)) 
ation (Ф, Δ). 
LRF and the 

is parallel to 
has distance 
ts magnitude. 
elation of the 
n Fig. 2(b) is 

a new point P 

               (2) 

accuracy of 
with enough 

B. Measuring the error 
True value of calibration is hard to ge

origins of the LRF and the camera. The er
calibration with method above was e
mapping the LRF planar pattern data and th
on the image plane. Calibration error m
gauche pattern plane, LRF error, or camera
In order to reduce this error from calibration
make the error in numeric.  

In order to measure the error, we assume
of result from camera calibration is reliable 
of the LRF and the bottom are parallel. M
image plane and (1) are used for this. Extri
the camera and the LRF is performed with
planar plane, not with a single pose. 

Points in Fig. 3 (a) are the mapped point
accurate extrinsic calibration of the cam
Mapped points are parallel to LC because th
LRF and the bottom are parallel as assume
points in the planar plane, therefore mappe
planar plane. Points in Fig. 3 (b) are the
projected with inaccurate extrinsic calibrat
and the LRF. We numerate the difference 
and Fig.3 (b), and use it as an error formula

k

di i ci i
i=1

[ w d  + w sinθ  ] +∑

k is the number of pose used for calibr
i-th pose of planar plane. LM is the mapped
and LR are respectively the left, center and r
plane acquired by the corner points of
indicates how far the mapped points (LM) a
plane. d1 is distance between LL and the mo
d2 is distance between LR and the most righ
larger of d1 and d2 becomes di. The interna
LC is θi. Therefore, if LM and LC are paralle
0. Inaccurate extrinsic calibration of the ca
makes a large internal angle of LM and LC, 
sinθi. wdi and wci are weight coefficients 
ranges from 0 to image width, and sin θi r
So we must equalize the order of sinθi and d
We measure the approximate value of tran
camera and a LRF. If the translation f
calibration of the camera and the LRF is far
value, merr is added. 

(a)                                                
Fig. 3. Projected planar plane points (p).  
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In order to get a calibration result with less er
through the following. Some points were selec
RANSAC (Random Sample Consensus) in orde
inaccurate points of the planar pattern, and the d
rectified plane pattern, was created with the po
through line fitting. This rectified data was appl
get a new calibration result. Then, using (3), w
error in numeric. Through some iteration of thi
we have chosen the calibration result with the l
numeric. 

III. MOTION ESTIMATION 
We used the ICP algorithm [8] to infer th

relation between the data acquired in different po
ICP algorithm requires two clouds of points an
geometric relation between the two clouds of 
assumed that the initial geometric relation is clos
approximately known. The output of ICP algorith
accurate 3D motion between 2 clouds of points. 

Generally odometry is used for the initial estim
However, odometry gives only 2D information o
sometimes is inaccurate. So we used 3D motio
using SIFT matching [9] for the initial estimation
SIFT features are local and based on the appea
object at particular interest points, and are invari
scale and rotation. They are also robust to 
illumination and noise. Consequently, it gives u
accurate initial estimation compared to odometry

A. ICP algorithm 
ICP algorithm is processed through the follow

1)  Find the closest points satisfying th
constraints. 

(a)                         
Fig.7.  (a) Distribution of I channel quantized with fixed ra

Fig. 4.  Closest points with color information. 
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2) Update the matching through stat
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3) Compute the motion between the two
updated matches. 

4) Apply the motion to all points and th
previous frame. 

5) Repeat 2) to 4). 

Let us define x a point in the first cloud 
find the closest point y in the second clou
given point x. The closest point is the po
least Euclidean distance to a given point
procedure to all points in the first cloud o
point x has the closest point y. And if an
closest points is larger than maximum tole
exclude the pair. Then the maximum tol
renewed using statistic analysis of the clo
distance of the closest points is larger 
maximum tolerable distance, we exclud
motion between two clouds of points is c
updated closest points. After computing th
clouds, we apply it to the first cloud of po
procedure above. 

Fig.6. Distribution of I channel value before quant

               
                                                                                       (b) 

ange. (b) Distribution of I channel quantized with dynamic range. 

 Fig. 5.  2D histogram using I and Q channel  
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B. Closest Point with Color Information (Color ICP) 
If we use not only the 3d information of points, but also the 

color information fused by camera and LRF calibration, we 
can get improved result when we find closest points [10]. (Fig. 
4) This is the color ICP. 

Equation (4) is the definition of distance for color ICP. 

2 2 2
color 1 1 2 2 1 2 3 1 2d = + α (a - a ) +α (b - b ) +α (c - c )1 2x - x   (4) 

x1, x2 are the points with 3D information, and 1 2x - x  is 

the Euclidean distance between x1 and x2. αi (i=1~3) is a 
weight coefficient, and aj, bj, cj (j = 1, 2) are respectively YIQ 
model of Y, I and Q value transformed from RGB model. 
Reference [10] used YIQ model instead of RGB model in 
order to reduce the effect of luminance change. In the YIQ 
model, the intensity of light is conveyed by the Y channel and 
the hue and the saturation is conveyed by the I and Q channels. 
To reduce the effect of luminance change, we make 
coefficient for the Y channel very small. 

C. Modified Color ICP 
Color ICP and ICP search all points in the cloud of points 

to find the closest points. These algorithms have order of O(n2) 
time complexity for searching the closest point. We propose a 
modified color ICP algorithm which reduces search time to 
find the closest points and keeps the accuracy merit of color 
ICP. We only search similar colors to find the closest points. 
We analysis the intrinsic color information (I channel and Q 
channel) of a point cloud and made 2D histogram (Fig. 5) for 
this. 

We quantize the I and the Q channel of YIQ model from 0 
to 255 respectively. We can make a 2D histogram with 
65,536 bins, and each bin includes the 3D coordinates of 
points. So when we find the closest points to x, we just search 
some points in the neighboring bins whose center bin has the 
same color with x. (Fig. 11) The color information is used to 
determine which point is searched, so that we can find the 
closest points more accurately than ICP. We also use 
Euclidean distance instead of (4). This fact brings that we  can 
easily update the maximum tolerable distance same with [8]. 
The image is imported with RGB model and its range is from 
0 to 255. When we linearly transform of RGB model to YIQ 
model, the maximum and the minimum value of YIQ model 
are fixed as ±151.91 for the I channel and ±133.26 for the Q 
channel. If I and Q channel is quantized from 0 to 255 with 
the fixed range, the data can be concentrated in some values. 
(Fig. 7(a)) It means that there are too many points in a 
particular bin of 2D histogram, so the search time can’t be 
reduced enough. We propose a solution to this problem as the 
following. Figure 6 shows the distribution of I channel value 
before performing quantization. The max and min value in 
Fig. 6 is less than a third of ±151.91. Figure 7(a) shows the 
distribution of I channel value after performing quantization. 
We can confirm that the distribution of I channel value is 
concentrated in a narrow range. We use the dynamic max and 
min value instead of fixed max and min value to solve this 
problem. At first, we analyze the max and the min value of 
each I and Q channel of cloud of points, and apply (5) to 
quantize the analyzed value from 0 to 255. 

Min
Max Min Max Min

255 -255Q = V + ( V )
V - V V - V

× ×      (5) 

V and Q are the values before and after quantizing 

Fig.9. System configuration  
  

(a)                                                  (b) 
Fig.10. (a) Projected planar plane point, p using (7). (b) Projected 
planar plane point, p using (8). 

 
(a)                                                                                                         (b) 

Fig.8.  (a) Concept of color ICP which searches all points to find closest points.  (b) Concept of modified color ICP which searches similar color points to 
find closest points. 
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respectively. VMax and VMin are the max and the min values of 
the analyzed values respectively. Figure 7(b) shows the 
distribution of the I channel value after performing 
quantization of Fig. 6 using dynamic max and min range. The 
distribution of Fig. 7(b) is wider than Fig. 7(a). As a result, the 
search time to find the closest points is reduced. 

IV. EXPERIMENTS 
Figure 9 shows the mobile system for reconstruction 3D 

environment with 3D and color information. The mobile 
system is composed of a mobile robot (Pioneer 3DX), a 2D 
LRF (LMS200), a motor (RX-64), a Camera (MF-200) and 
body frame. 

A. Camera LRF calibration 
Equation 6 is the measured approximate value of 

translation between a camera and a LRF 

  TΔ = [35mm 190mm - 70mm]            (6) 

Figure 10(a) and (7) are the calibration result of [7]. Figure 
10(b) and (8) are the calibration result with proposed method 
which uses RANSAC for line fitting. Equation (3) is used for 
Err1 and Err2. 

[ ]1 1

1

o
Φ = 1.14, - 93.30, - 5.67 Δ = [23.32, 232.02, - 78.07]mm

Err = 41.68

 (7) 

[ ]2 2

2

o
Φ = -0.46, - 93.26, -1.99 Δ = [39.23, 197.49, - 64.46]mm

Err = 14.78 (8) 

Comparing Δ1 and Δ2, Δ2 is closer to Δ than Δ1, and Err2 is 
smaller than Err1. Mapped points at Fig. 10(b) fit to planar 
plane better than the mapped points at Fig 10(a). 

B. Modified Color ICP algorithm 
TABLE I is measured with Quad core 2.4GHz, 2GB 

memory and 30488 points containing color information. 
When we searched using 2D histogram and the dynamic 

TABLE I 
COMPARISON OF SEARCHING TIME TO FIND CLOSEST POINTS 

 

 
 

Fig.11. 2D histogram with I and Q channel and number of bins. 

 
(a)                                              (b) 

Fig.13.  (a) Experiment environment which has some color feature and 
little structure feature. (b)  The graph of error and ICP(or modified color 
ICP) iteration. 

Fig.14.  The error and iteration graph of odometry and motion estimation 
using SIFT matching 

(a)                                        (b)                 (c)                 (d) 
Fig.12.  (a) Experiment environment. Reconstruction result of experiment environment. (top view(a), side view(b), front view(c)) 
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range, and the execution time took 1.97% of full search time 
at minimum and 16.03% of search time using 2D histogram 
and fixed range. 

C. Outdoor Reconstruction 
Figure 12 shows the outdoor reconstruction of 30m x 25m 

environment with the proposed system. Total of 119,828 
points were used. 

D. ICP and Modified Color ICP 
 The experiment was performed with the environment 

shown in Fig. 13(a) to compare the convergence speed of ICP 
and modified ICP. We terminated the iteration when both 
rotation and translation errors were less than 10%. The 
rotation error was calculated by transforming rotation matrix 
to vector using Rodrigues’ formula. The environment shown 
in Fig. 13(a) is close to plane so it contains little features of 
structure but some features of color. 

E. Initial Estimation (Odometry and SIFT matching) 
We applied modified color ICP with different initial 

estimation to infer the motion of 2 clouds of points which has 

3D geometric relation between them. Figure 14 shows that 
the difference when we used odometry and SIFT matching for 
initial estimation. When there were 3D motion between two 
clouds of points, convergence speed of using odometry for 
initial estimation of modified color ICP was much slower 
than using motion estimation with SIFT matching. Therefore,  
SIFT matching provided the stable initial estimation robust to 
motion. 

F. SIFT Matching and Modified Color ICP with SIFT 
Matching 

To confirm whether the accuracy of modified color ICP 
using SIFT matching has been improved better than the 
accuracy of motion estimation using just SIFT matching, we 
compared the accuracy of both methods. Figure 15 shows the 
result of 32 times. We confirmed the accuracy has been 
improved in most cases. The average error of using just SIFT 
matching was 12.25%, and the average error of using 
modified ICP with above result was 4.09%.  

G. Measuring accuracy 
 We checked the accuracy of proposed system by 

reconstructing the 7m x 7m indoor environment. We set the 
path of robot as a loop, and we inferred the motion of robot at 
every spot where the robot obtained the data. Therefore the 
first spot and the last spot have same coordinate, and distance 
between the first spot and last spot can be considered as an 
error. Figure 16 shows the reconstruction result and the path 
of robot (white line in center of Fig. 16). TABLE  and Fig. Ⅱ
17 are the coordinates of the robot where the data was 
acquired. The distance between the first and the last spot is 

Fig.15.The rotation error graph of SIFT and modified color ICP using 
SIFT 

TABLE Ⅱ 
POSITION OF ROBOT 

Position of robot X(m) Y(m) Z(m) 
1 0 0 0 
2 0.6201 -0.6203 0.00414 
3 -0.6456 -0.6170 0.01011 
4 -1.757 -1.305 0.06042 
5 -2.189 0.5216 0.07107 
6 -1.161 0.5063 0.07080 
7 0.6379 0.5077 0.07069 
8 0.01934 -0.02180 -0.00104 

 

 
Fig.17.The estimated robot coordinate where data are acquired. 

 
Fig.16.Reconstructed environment and path of a robot(white line at the 
center) 
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0.0292m. It’s 0.47% of 6.25m the whole moved distance. 

V. CONCLUSIONS AND FURTHER WORKS 
 In this paper, we present a system which reconstructs the 

environment with both color and 3D information. We can 
improve the accuracy of extrinsic calibration of a camera and 
a LRF by measuring and reducing errors. Motion obtained 
with SIFT matching for the initial estimation of ICP makes 
the stable system even more robust to motions of a robot. We 
also propose the modified color ICP maintaining the merit of 
color ICP in accuracy and reducing the execution time by 
searching through similar color points. 
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