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Abstract— In this paper, we propose an algorithmic compass
that yields the heading information of a mobile robot using the
vanishing point in indoor environments: VPass. With the VPass,
a loop-closing effect (which is a significant reduction of errors
by revisiting a known place through a loop) can be achieved
even for a loop-less environment. From the implementation
point of view, the VPass is useful because it can be appended
upon any existing navigation algorithms. Experimental results
show that the VPass yields accurate angle information in indoor
environments for paths with lengths of around 200m.

I. INTRODUCTION

In this paper, we propose an algorithmic compass that
yields accurate heading information of mobile robots. To
explain the physical meaning of our approach, let us assume
that there exist two landmarks attached to the ceiling of
a building (Fig. 1) and a mobile robot can detect them in
the building. Then the size of covariance matrix is bounded
within degrees of sensing errors (ellipse around the robot in
Fig. 1), and navigation problems such as localization, SLAM,
and the integrated exploration become more tractable.

We denote this kind of landmark as ‘an absolute land-
mark’ which has the following characteristics. First, it should
be detected at every place (omni-presence). Second, it should
be accurately detected (high accuracy). Third, it should be
distinctive to prevent a false data-association (sparseness).

However, there is no such a landmark in indoor envi-
ronments. Thus previous researches have tried to reduce
localization errors through the following three approaches.

First, researchers have suppressed an error growth rate.
For example, odometry calibration was performed in [1]
because an uncalibrated odometry is a main source of the
error growth. Some researchers utilized a high-performance
sensors (such as laser scanners) to reduce the sensing errors.
One of methods is to gaze on one landmark as long as
possible because the error is bounded by the uncertainty of
that landmark. Recently, the unscented transformation [2] has
been used to decrease the linearization error which is a major
reason of the error growth in an algorithmic point of view.

Yet, These relative localization approaches have weakness
that the errors are apt to be accumulated as the robot moves.
For example, an angle error occurred at point A in Fig. 2(b)
increases errors as the robot moves.

Second, researchers have used a loop-closing technique [3]
by visiting the same place twice and this technique decreased
the error of the second visit to that of the first visit. However
if there is no loop, this method cannot be applied for.
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Fig. 1. Physical meaning of an absolute landmark.
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Fig. 2. For a given map in (a), an angle error occurred at point A in (b)
increases errors as the robot moves.

Third, some researchers have added a geometric constraint
such as orthogonality [4], [5]. This method shows good
performance but there are two weaknesses: it cannot be
applied to an environment without orthogonality as shown
in (Fig. 4(a)) and the constraint cannot be generated auto-
matically.

In this paper, we propose an algorithmic compass that
works as virtual absolute landmarks in indoor buildings:
a VPass (Vanishing point based comPass). It is based on
an idea that vanishing point (VP in short) of corridors
in the same direction is mapped into the same point by
a projective transformation. For example, let us apply a
projective transformation to a loop-less map (thus the loop-

The 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 11-15, 2009 St. Louis, USA

978-1-4244-3804-4/09/$25.00 ©2009 IEEE 936



①

②

③

④

(a)

①

③

④

②

(b)

Fig. 3. Effects of the projective transformation: (a) a loop-less environment
with curved corridors and (b) the map after a projective transformation.
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Fig. 4. A hexagon-like building in (a) has only 3 V P ′s as in (b).

closing cannot be applied for) which contains curved corridor
(thus constraints cannot be assigned) as in Fig. 3(a). Then
we have a projected map as in Fig. 3(b) where the vanishing
points in the same direction are mapped into the same points:
V P1&V P2 → V P ′

α and V P3&V P4 → V P ′
β .

These vanishing points after a projective transformation
(V P ′ in short) are similar to the absolute landmark in the
following aspects. First, one V P ′ is observed at different
places (similar to omni-presence). For example, V P ′

α is
observed at and in Fig. 3(b) and the uncertainty of
angle error at is reduced to that of . Thus the merit
of the loop-closing is achieved in a loop-less map.

Second, the V P ′ can be accurately detected (similar to
high accuracy). With the aid of the laser scanner, two
line equations and a corresponding V P ′ can be accurately
detected.

Third, the V P ′s are sparse enough and thus possibility of
a false data-association is low (similar to sparseness). In a
typical indoor buildings, the corridors are designed along a
few major directions. For example, a hexagon-like building
(Fig. 4(a)) has only 3 V P ′s whose angle differences are
approximately 60◦, and thus a reliable data-association can
be achieved.

Vanishing point in robot navigation has been studied by
many researchers [6], [7]. [6] exploited artificial landmarks
for the navigation and [7] used the vanishing point not to
solve the SLAM problems but to control angular velocity.

The VPass is implemented in an EKF SLAM algorithm

that estimates the heading angle of the robot while utilizing
a V P ′ as landmarks. The major advantage of the VPass is
that it can be used as an algorithmic sensor without artificial
landmarks as used in [6]. In other words, it can be appended
upon many existing navigation algorithms. The only required
change is to extract the heading information not from the
previous algorithm but from the VPass.

Experimental results show that by adding the VPass to the
previous SLAM algorithm, a loop closing effect is achieved
for a loop-less map.

This paper is organized as follows. In section II, several
characteristics of vanishing points are explained. We modify
the vanishing point to represent it in linear forms in section
III. Section IV provides algorithm details. Experimental
results are given in section V and conclusion follows.

II. VANISHING POINT

For two parallel lines (line 1: ax + by + c1 = 0, line
2: ax + by + c2 = 0), the vanishing point is defined as an
intersection point in the homogeneous coordinate as,

V P =

⎡
⎣ ab
c1

⎤
⎦ ×

⎡
⎣ ab
c2

⎤
⎦ = (c2 − c1)

⎡
⎣ b
−a
0

⎤
⎦ . (1)

For a fixed direction of the parallel lines (i.e. fixed a and b),
there exist infinite V Ps as (c2−c1) varies. Thus they cannot
be a candidate of the absolute landmark.

However, if we apply for a projective transformation, all
V Ps for a fixed direction is mapped into the same point
(Fig. 3(b)). Let us define a projective matrix (Hp) as,

Hp =

⎡
⎣p1 p2 tx
p3 p4 ty
v1 v2 1

⎤
⎦ , (2)

where

[
p1 p2

p3 p4

]
is a non-singular matrix,

[
tx ty

]
are

translations along x and y directions, and
[
v1 v2

]
are

projective coefficients. With this Hp, all V Ps are mapped
into one V P ′ as

V P ′ = Hp × V P = (c2 − c1)

⎡
⎣bp1 − ap2

bp3 − ap4

bv1 − av2

⎤
⎦ . (3)

If we represent them in the non-homogeneous coordinate,

V P ′ =

⎡
⎣
bp1−ap2
bv1−av2

bp3−ap4
bv1−av2

⎤
⎦ , (4)

which is independent of c1 and c2.
As it is addressed in the introduction, V P ′ is similar to the

absolute in three aspects. First, one V P ′ is observed in differ-
ent places far apart (similar to omni-presence). Second, the
V P ′ can be accurately detected (similar to high accuracy).
Third, the V P ′s are sparse enough and thus possibility of a
false data-association is low (similar to sparseness). But, V P ′
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Fig. 5. Representation of a line by the shortest distance (ρ) and the normal
angle (ψ).

itself is not adequate to be used for as landmarks because
Hp is basically a nonlinear mapping. Thus, if we use V P ′ as
landmarks, we cannot be free from the linearization errors.
To get a linear form, we modify V P ′ in the next section.

III. TRANSLATION-INVARIANT ANGLE

To successfully work out VPAss algorithm in the EKF
SLAM, we need to modify the V P ′ which is inherently a
nonlinear mapping for the better performance.

Intuitively, it seems like that the normal angle of a line (ψ
in Fig. 5) has the same meaning with the V P ′. However, ψ
cannot be used for because it has two major defects.

First, its relationship with the states of the robot is still
nonlinear and thus the covariance of ψ is affected by the
linearization errors. Let us represent a line by the shortest
distance (ρ) and the normal angle (ψ). Also, let us use a
superscript w and r to denote the base coordinate of the
world and the robot, respectively. Then a sensor measurement
z is the normal angle of a line with respect to the robot’s
coordinate (ψr) and it is a nonlinear function of a robot
posture

[
xr yr θr

]T
. And the normal angle with respect

to the world’s coordinate (ψw) can be written as follows:

z = ψr = atan2(dy, dx) − θr, (5)

where dx = (ρw − xr cosψw − yr sinψw) cosψw and dy =
(ρw − xr cosψw − yr sinψw) sinψw.1

Second, ψr is related to the position of robot and thus the
covariance of ψr is affected by that of the robot position.
Evidently, this is not the characteristic of the V P ′ because
vanishing points are only related to the heading angle of the
robot. This dependency can be identified in Fig. 6 where a
line is represented by two different angles with respect to the
robot’s coordinate (ψr1 = ψr2 + π) according to the position
of robot.

This dependency can be identified in equation, too. The
covariance of ψr is the right-bottom scalar of the covariance
of

[
ρr ψr

]T
. This covariance (denoted by P rl ) is given by,

P rl = JrPrJ
T
r + JlP

w
l J

T
l +R, (6)

1Note that ψr �= atan(tan ψw)− θr = ψw − θr for it is related to the
position of the robot.
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Fig. 6. A line is represented by two different angles with respect to the
robot’s coordinate according to the position of robot.
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Fig. 7. Definition of the TI-angle: (a) original line and (b) a line translated
by +∞ along y-direction.

where Pr is a covariance matrix of the robot state[
xr yr θr

]T
, Pwl is a covariance matrix of line param-

eters
[
ρw ψw

]T
, R is a measurement covariance, and

Jr, Jl are Jacobians with respect to
[
xr yr θr

]T
and[

ρw ψw
]T

. In (6), it is evident that the covariance of ψr

is affected by that of the robot position (Pr).
Instead of the normal angle (ψ), we propose ‘a translation-

invariant angle’ (φ, TI-angle in short) which is not affected
by the robot position and has a linear relationship with
the robot state. The TI-angle is the normal angle of a
line translated by +∞ along y-direction (Fig. 7). By this
translation, φ is bounded in the range of 0 ≤ φ < π.

Now let us use φw as a landmark and ψr as a measure-
ment. Then the state is represented by

[
θr φw1 · · · φwm

]T
(where m is the number of landmarks) and the equation of
measurement expectation is represented in a linear form as
follows:

Measurement expectation

Step 1)

For given states of θr and φw, take two candidates of
measurement expectations as ψ̂r1 = φw − θr and ψ̂r2 =
φw − θr + π.

Step 2)

For a given real measurement ψr, the measurement
expectation is given by ẑ = argmax

ψ̂r
i ,i=1,2

(cos(ψr − ψ̂ri )),

where ψr is the real measurement.

Step 3)
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The covariance of ẑ is given by cov(ẑ) = cov(φw) +
cov(θr), where cov(·) denotes for the covariance.

Note that both ẑ and cov(ẑ) is not related to the robot
position and there is no linearization process.

IV. ALGORITHM DETAILS

For the implementation of the VPass, we adopted the EKF
SLAM framework as follows

Step 1) Initialization

Initialize state X and covariance P by X(1) = θr(1)
and P (1) = cov(θr(1)).

Step 2) Predict

For a given angular velocity (ω) and a sampling period
(Δt),

X(k + 1) = FX(k) +Gω + v,

P (k + 1) = FP (k)FT +Q,
(7)

where F = I(m+1)×(m+1), G =
[

Δt
�m×1

]
, v =[

v1
�m×1

]
, Q =

[
σ2
v �1×m

�m×1 �m×m

]
with v1 ∼ N (0, σ2

v).

Step 3) Measurement of normal angles of lines

Using the laser scanner, detect a distinctive lines around
the robot to extract normal angles ψri .

Step 4) Perform the data-association

For each measurement of ψri , perform the data-
association using the innovation of ψri − ẑ where ẑ is
given by the equation of the measurement expectation
in the previous section.

Step 5) Update

Update the state and covariance by using the EKF
algorithm.

Step 6) Landmark augmentation

If there is ψri that is expected to be a new landmark, find
the TI-angle of the landmark with respect to the world
coordinate (φwi ). Then append φwi at the end of the state
X and update the covariance P as follows.

X ′(k) =
[
X(k)
φwi

]
,

P ′(k) =

⎡
⎣ cov(θr) cov(θr, φw) cov(θr, φwi )
cov(φw , θr) cov(φw) cov(φw , φwi )
cov(φwi , θr) cov(φ

w
i , φ

w) cov(φwi )

⎤
⎦ ,

where cov(θr, φw) is a covariance between θr and
landmarks already registered. Note that cov(φwi ) can be
acquired by the procedures in the previous section and

that P (k) =
[

cov(θr) cov(θr , φw)
cov(φw, θr) cov(φw)

]
.

Step 7) Use of the VPass information

Use of X1(k) = θr(k) as a corrected angle.

Fig. 8. CAD drawing of an indoor building without a loop.

Step 8) Repeat 2-7

V. EXPERIMENTAL RESULTS

We conducted two sets of off-line experiments. In other
words, we saved all the sensor information and applied
for various algorithms in off-line. Firstly, we performed
SLAMs for a long corridor environment without loop whose
CAD drawing is shown in Fig. 8. A pioneer mobile robot
equipped with one laser scanner was used for in a speed of
0.3m/sec at a control frequency of 4Hz. The total travel
length was 180.7m. Fig. 9 shows the grid maps generated
by odometry, line-based EKF SLAM [8]–[10], and a line-
based EKF SLAM with the VPass. From these figures, we
can verify that the line-based EKF with the VPass yields the
best-matched map.

With this result, let us explain in-depth operations of the
VPass. Initially, TI-angles of two lines A and B in Fig. 10(a)
are registered as new landmarks. At step 660, the line C
is being detected with high angle uncertainty and it is data-
associated to the TI-angle of the line B. The angle uncertainty
of the line C is reduced to that of the line B, and this brings
forth the similar effects of the loop-closing. By virtue of the
small TI-angle uncertainty of the line C, the orthogonality
of corridors 1 and 2 is well preserved. Similar phenomenon
occurs when the robot detects a line D at step 2200. The
high angle uncertainty of the line D is reduced to that of A
by data-association.

Note that the corridor 2 in Fig. 9(c) is not linear com-
pared to that of the line-based EKF SLAM (Fig. 9(b)). This
phenomenon was induced because we assigned a relatively
large value of measurement uncertainty for the robust data-
association. We were able to do that for the TI-angles are
sparse enough (in this building, they are separated by 90◦),
and this is one of the advantages of the VPass.

Secondly, we conducted another set of experiments for an
indoor building with one large loop (Fig. 11). The same robot
was used for and the travel length was 197.5m. During the
experiment, a significant rotational error had occurred at the
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Fig. 9. Experimental results: (a) odometry map, (b) a line-based EKF
SLAM map, and (c) a line-based EKF SLAM map with VPass.
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Fig. 10. Description of in-depth operations of the VPass: (a) an exaggerated
map of the building and (b) the registered landmarks according to the time
steps. Initially, TI-angles of two lines A and B in (a) are registered as
new landmarks. At step 660, the line C is being detected with high angle
uncertainty and it is data-associated to the TI-angle of the line B. The angle
uncertainty of the line C is reduced to that of the line B, and this brings
forth the similar effects of the loop-closing. By virtue of the small TI-angle
uncertainty of the line C, the orthogonality of corridors 1 and 2 is well
preserved. Similar phenomenon occurs when the robot detects a line D at
step 2200. The high angle uncertainty of the line D is reduced to that of A
by data-association.

Fig. 11. CAD drawing of an indoor building with a loop.

point A and the line-based EKF SLAM could not be able
to recover it. By this reason, the maps from the odometry
(Fig. 12(a)) and from the line-based EKF SLAM (Fig. 12(b))
show similar poor matching performances. However, by the
virtue of the VPass, the errors were compensated for and we
were able to get an accurate map as shown in Fig. 12(c).

VI. CONCLUSION AND REMARKS

In this paper, we proposed an algorithmic compass that
yields the heading information of a mobile robot using
vanishing points in indoor environments: VPass. The VPass
is an EKF SLAM algorithm that estimates the heading angle
of the robot while utilizing a Translation-Invariant angle (TI-
angle) of lines as landmarks.
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Fig. 12. Experimental results: (a) odometry map, (b) a line-based EKF
SLAM map, and (c) a line-based EKF SLAM map with VPass.

The TI-angle has the following beneficial features. First,
it is observed in different places far apart. Second, it can be
accurately detected. Third, they are sparse enough and thus
a robust data-association can be achieved.

By these virtues of the TI-angle, the VPass yields an
accurate heading information and enables a loop-closing
effect (which is a significant reduction of errors by revisiting
a known place through a loop) even for a loop-less map.
Experimental results for paths around 200m show that the
VPass enhances the performance of previous SLAM algo-
rithms.

Three remarks should be mentioned. First, the VPass
is based on the EKF framework which is apt to diverge
by a false data-association. Thus, we need to analyze the
sensitivity of the data-association according to the changes
of the measurement covariance. Second, at this time, only the
information of the heading angle is used. We believe that the
covariance of the angle will be also useful and will develop
related equations in the near future. Third, for the validation
of robustness, we are planning to perform sonar-sensor based
experiments for a nested-loops environments.
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