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Abstract— For manipulation of remote mobile robots, ade-
quate scheduling of tasks and selecting of operational com-
mands are required. This paper presents an analysis procedure
to make the task switching profile visible by utilizing the Self-
Organizing Map (SOM) and new cluster growing method.
For practical verification, an experiment system with radio-
controlled construction equipments was built, and the proposed
analysis procedure was applied to the experimental task. As a
result, it was confirmed by correlation analysis that distances
among decomposed clusters corresponding to segments of
operation strongly relate to performance index of the task.

I. INTRODUCTION

For an operation of mobile machines, the operator should

perceive and recognize the status of an environment and the

machine, and has to make operational plans to execute a

purpose of work. Hence, analyses of the action and task

scheduling of an operator are useful for the design of as-

sistive systems that adapt to any user. For instance, Therblig

is a practical classification method to analyze the manual

operation, and can be applied to the skill analysis [1]. GOMS

model [2] for a human computer interaction is other frame-

work to model human cognitive action. A concept of multi-

modules and their switching is accepted to explain human

control strategy, and the examples are the stochastic switched

ARX model (that treats switching of Auto-Regression model

with eXogenous input models stochastically and estimates

the parameters using an EM-algorithm [3]) and MOSAIC

(MOdule Selection And Identification Control [4], that is a

comprehensive scheme of human control strategy including

the feedforward-feedback learning modules and the switch-

ing mechanism of the multiple modules). They are, however,

not feasible for an implementation in the machine because

they are tools for human analysts. To embed such function

into the assistive machine, implementable algorithms that

segment human continuous operations are required.

This request comes down to the clustering problem of

multivariable time series data involving operator’s manip-

ulation and an environmental change, and has to be treated

through adequate type of clustering methods. It is difficult

for the discriminant analysis (that finds clusters using linear

hyper-planes) to obtain precise cluster regions because many
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hyper-planes are used to form the clusters against the multi-

dimensional data. The k-nearest neighbor method is a better

method than discriminant analysis; however, a large amount

of computations is required for large data set because the

search is executed using whole structure of all data set. To

avoid this computational problem, a complex procedure, such

as combination with tree search, has to be used [5]. Fuzzy

clustering is the alternative methods, but there may be little

information useful for analysis after the clustering because it

does not consider intrinsic property of the target data, such

as topological information. In the present study, therefore,

an analytical procedure utilizing the Self-Organizing Map

(SOM) [6] was adopted. Since the SOM technique makes

cluster regions on a two-dimensional map by conserving

the topological information, this method is adequate for

clustering of the multi-dimensional time series data of a

machine operation.

After the trained SOM is obtained, a method to find

cluster region is required. U-matrix method is a popular and

effective way to make the SOM clusters visible; however, it

tends to miss finer structure in complicated data because of

averaging computation over neighbors [7]. As other method,

the gravitational method [8] is useful to help manual cluster

extraction. The data topology visualization method on the

SOM grid [9] is also effective to investigate clusters ob-

tained from the trained SOM. These methods are, however,

visualization techniques rather than discrimination methods

of the clusters, and are still inadequate for implementation

to machines. Moreover, if the number of clusters can be

estimated beforehand, it is desirable to search the clusters

by using the preliminary information to prevent small but

significant clusters from missing.

The main contribution of the present paper is to propose

new clustering method for the SOM that can treat ill-

conditioned data of machine operations. The effectiveness

was verified by applying to the remote operational task.

Moreover, the learning process of the operator was inves-

tigated using the proposed method, and the skill transition

of the operator was analyzed. An organization of this paper

is as follows. Section II explains a human-control model for

a remote machine operation and proposes the SOM analysis

procedure with the new cluster growing method. In Section

III, a remote operation experiment system and the test are

described. Section IV shows the experimental result and the

SOM analysis. Last Section V mentions the conclusions and

discussions.
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II. SEGMENTATION OF OPERATION

A. Human processing model and its application to SOM

An operator of remote machines must cope with unpre-

dictable events from exogenous factors since the circum-

stance around the machine changes as the machine moves.

Hence, for evaluation of the operator’s ability, status of

the circumstance should be considered. Specifically, user

cognitive processing appears to be induced by the following

statuses: the machine status (M-status), the environment

status (E-status), and the task substance (T-status). A human

can be treated as a controller that receives the MET-statuses

s and outputs the operational commands ρ, as shown in Fig.

1, where s is described as s := [ qT pT ]T using the machine-

environment variable q and the T-status variable p.
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Fig. 1. Model of human on a remote machine operation, and the SOM
analyzer

The input vector x for the SOM training is defined as

follows using s and the operator’s command ρ ∈ I.

x[t] = [ ρ[t] sT [t] ]T , (1)

where t ∈ N is the sampling counter. Maximum of t, i.e.,

final time, is described as T . A SOM technique conduces to

clusters that correspond to the similar input vector x onto

a two-dimensional lattice of points by iterative update com-

putation of the reference vector mi ∈ RN (i = 1 · · ·L) [6],

where N is the size of the vector x, and L is total amount

of nodes of the SOM lattice. The node that is closest to x[t]
is called the “best-matching node”, c, and is defined as

c[t] = arg min
i
{‖x[t] − mi‖}, i = 1, 2 · · ·L. (2)

The set of the node ni that involves the reference vectors

mi is called map M = {ni}, where i = 1, 2 · · ·L. In the

present study, a rectangular map with hexagonal topology

was adopted, and u and v were described as coordinate

variables for the horizontal right and vertical down direc-

tions, respectively. There are two reasons for a choice of

hexagonal topology: 1) it is popular in SOM applications

and it is easy to be confirmed visually [13], and 2) there

is less skew in distance between two nodes on the planer

map regardless of the direction. Conversion from the node

number i to the node coordinate value (u, v) is given by

i �→ (i−udim(v−1), ⌊(i−1)/udim⌋) =: (u, v), where udim

and vdim are the horizontal and vertical sizes of the lattice,

and the notation of ⌊ ⌋ is a floor function. The node located

at (u, v) is described as node-(u, v), and the corresponding

reference vector is described as m(u, v) below.

B. Cluster growing method

In the present authors’ previous study, it was confirmed

that the command prediction by the trained SOM was

relatively good (at 65% - 74% by the 1st - 5th predic-

tions); however, an objective analysis concerning clusters

had been insufficient. That was because it was difficult to

find boundaries of clusters since conditions of the remote

machine operation differed from usual SOM applications in

the following respects.

• The input vector contains discontinuous time series data

that change always; meanwhile, the usual SOM deals

with static discrete data.

• The input vector includes illegal data due to the erro-

neous or unskilled operation.

These issues prevent clusters from forming clearly even

if the number of the repetition in training computation is

increased. Alternatively in this present study, a method of a

cluster growing from seeds that are termed “cluster core” is

presented. This approach utilizes continuity of a SOM elastic

net to find the core and forms the clusters. Since the map

M is considered as a type of manifold that is spanned by

the reference vectors, a gradient of the reference vector, ∂m,

can be computed by referring the node location on the two-

dimensional map. The nodes of which ∂m(i, j) are small

can be considered as candidates of the cluster cores. The

remaining procedure is to grow the core and to decide the

boundaries of region after adequate candidates of the core

have been decided. The details are below.

1) Computation of gradient: Variation of the reference

vector at each node is computed along the lattice. Assuming

the directions of lattice are termed a, b, and c as indicated

in Fig. 2, six partial gradients of the reference vector m(i, j)
corresponding to the node-(i, j) is computed as

∂m(i, j)/∂a± := m(i ± 1, j)− m(i, j),

∂m(i, j)/∂b+ := m(i + 1, j − 1) − m(i, j),

∂m(i, j)/∂b− := m(i, j + 1) − m(i, j),

∂m(i, j)/∂c± := m(i + 1, j ± 1) − m(i, j).

Gradient ∂m(i, j) is obtained as the average of above-

mentioned partial gradients:

∂m(i, j) :=
1

6

∑

∗

∥

∥

∥

∥

∂

∂∗
m(i, j)

∥

∥

∥

∥

, ∗ = {a+, a−, b+, b−, c+, c−}.

(3)

Gradient values ∂m(i, j) computed at all nodes are stored

into the (i, j)-element of newly defined gradient array ∂M ∈
Rudim×vdim . At that time, the gradient computation at edges

of the rectangular map was eliminated because the mea-

sure space around the edge is skewed; hence, ∂m(i, j) is

computed at the range of i = 2, 3, · · · , (udim − 1), j =
2, 3, · · · , (vdim − 1).

4876



Fig. 2. SOM lattice and its coordinate system

2) Extraction of cluster cores: The number of clusters

K ∈ N that we want to find is specified at first. After sorting

∂m(i, j) in ascending order, the top K nodes are selected

as the cluster cores. If a distance from one core to other

is short, it is believed that the two cores are included to

same cluster, and other new core is chosen from the sorting

list. Specifically, using a threshold δ1, the node-(i′, j′) that

satisfies ‖[i, j]T − [i′, j′]T ‖ < δ1 is not chosen as a core. For

the next step, the cluster number k is stored in the element

(i, j) of the prepared cluster array C ∈ Iudim×vdim , where

all elements of C are initialized to zero at first.

3) Growing of the clusters: Regions of clusters are ex-

panded from the cores. Focusing on one of the cores and

checking the peripheral area around the chosen core, the

peripheral area is added to the original cluster region when

the difference between the original region and the peripheral

area is small. Hereinafter, the details is concretely described:

1) The element storing value of k is extracted from C,

and the mask pattern CB is computed by a logical

operation, CB = C ∩ k.

2) An eight neighbor dilation creates a mask CD from

CB .

3) Region CC of a contour around the cluster-k is ex-

tracted by CC = CD − CB .

4) The search node is selected from nodes that have ele-

ment “1” in CC . If the value of a gradient at the search

node is larger than a pre-determined threshold, other

search node is selected again by checking elements of

CC , because the first search node is considered as a

boundary of clusters.

5) An eight neighbor pattern around the search node,

CCns, is prepared.

6) A logical set SP is computed by a logical product

operation against the original mask CB using CCns.

7) All reference vectors mP of the nodes that have

element “1” in SP is compared with the other reference

vector mCcn of the present search node-(iCcn, jCcn)k .

If ‖mCcn − mP‖ < δ2,
∃mP ∈ SP , it is decided that

the search node is a part of the cluster-k, and the cluster

number k is recorded in a (iCnc, jCns)k-element of the

cluster array C, where δ2 is small threshold parameter.

8) Other search node is selected again, and return to step

4). If above-mentioned processing was finished against

all search nodes, the cluster counter is increased as

k → k + 1, and return to step 1).

9) If the step 8) has finished for all K cluster cores, return

to step 1).

10) All procedure is terminated when a search node for all

K clusters does not remain.

III. REMOTE OPERATION OF RADIO CONTROLLED

CONSTRUCTION EQUIPMENTS

A. Experimental set up

The task is a basic soil excavation. Wireless cameras on the

excavator and the truck captured video images, and displayed

on monitors for the operator, as shown in Fig. 3(a). The

operator manipulated both the excavator and the truck at

one’s own discretion. Figure 3(b) shows the overview of

the work area. The field consists of the motorable road, the

restricted area, three drilling sites, and one unloading site.

The excavator and truck were put at their starting position

at the beginning of trial. The operator moved the machines

to the drilling site, collected the sample pieces with the

excavator, loaded the pieces on the truck bed, and carried

them to the unloading site by the truck. Requests, such as

‘the total trial time as short as possible’, ‘the number of

samples as large as possible’, and ‘the number of trouble

as small as possible’, were asked to the participant. The

participant was also instructed to improve the performance

index J = 1500

Tt
+ S

12
in order to encourage an enhancement

of the skill, where Tt and S are the total time of one trial and

the total number of the collected sample pieces, respectively.

restricted
area

starting  point of truck
& unloading site

drilling
sites

starting point
of excavator

motorable
road

(a) (b)

Fig. 3. Remote operation console (a), and overview of the work area (b).

Positions and directions of the excavator and truck were

computed using the detected positions of the LEDs attached

to them. Compensation for optical distortion was performed

offline using MATALB with Weng model [10]. An angle of

the excavator’s boom and a rotation of the superstructure

were measured by potentiometers. The measured signals

were transmitted by wireless and recorded. Operations of

switches of the console were also recorded. The sampling

frequencies of the video images and analog signals were 30

fps and 1 kHz, respectively.

B. Operational Command

Crawler velocities for the excavator and the truck was

controlled by two sliders with hands. The velocity commands

were converted into the crawler operation mode κc as κc =
{0 (stop), 1 (forward), 2 (left f. steer), 3 (left pinwheel),
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4 (right b. steer), 5 (backward), 6 (left b. steer),
7 (right pinwheel), 8 (right f. steer) }, where

“f.” and “b.” are abbreviations of “forward” and

“backward”, respectively[10]. The bucket arm is

manipulated by two cross levers, and the operator

commands consisted of the superstructure rotation mode;
eκr := {0 : stop, 1 : left rotation, 2 : right rot.}, the arm

mode; eκa := {0 : stop, 1 : arm bend, 2 : arm stretch},

and the bucket mode; eκb := {0 : stop, 1 :
boom up, 2 : boom down}, respectively. The

excavator’s bucket arm operation mode eκh is obtained

as eκh := (32) · eκr + (31) · eκa + (30) · eκb. Finally, all

operation modes, that consist of the truck crawler modes
tκc ∈ {0 ∼ 8}, the excavator crawler modes eκc ∈ {0 ∼ 8}
and the excavator shovel operation mode eκh ∈ {0 ∼ 27},

are summarized into one variable ρ as

ρ(t) := 1 + tκc + (eκc ∧ 1)(eκc + 8) + (eκh ∧ 1)(eκh + 16),
(4)

where superscripts of “t” and “e” denote the truck and the

excavator, respectively.

C. Elements Selection for MET-vector

For this soil excavation, not only position/posture of

the equipments but also the geographical relation to the

digging sites/no restricted area should be considered. Hence,

machine-environment vector q was chosen as follows [11].

q := [ qT
1 qT

2 qT
3 ] ∈ R27 (5)

q1 := [ t(df330 · · ·df210),
e(df330 · · ·df210) ]T

q2 := [ tds,
eds,

tξs,
eξs ]T ∈ R12

q3 := [ tde,
tξe,

ehb ]T ∈ R3,

where dfθ is a distance from the equipment to the restricted

area in a direction of θ [degree] from the traveling direction

of the crawler, tds(
eds) is a distance vector from the truck

(excavator) and the center of each digging site, tξs(
eξs) is

similar vector of relative angles, tde and tξe are the distance

and relative angle from the truck to the excavator’s crawler,

and ehb is a height clearance between the excavator’s bucket

fork and the truck bed, respectively. The task status p was

defined as p := {0 : no payload, 1 : payload on bucket, 2 :
payload on truck bed } using the payload status.

IV. EXPERIMENTAL RESULTS AND SOM ANALYSES

A. Operational Performance

Written consent and ethical approval of 10 participants,

aged 21 to 23 yrs were obtained before the examinations.

At least three trials were repeated for three days, hence

the total were 9 or 10 trials. For the SOM analysis, one

participant was chosen among ten participants because all

data during ten trials without abnormal detection of markers

could be recorded in only case of the participant. Figure

4 shows improvement of Tt, S, and J . The total trial time

Tt indicates decreasing since the gradient and the correlation

factor of the regression line are −0.44 and 0.75, respectively.

Both the sum of samples S and the performance index J

demonstrate an upward trend. Checking recorded movie, the

digging operations at the third and the eighth trials were

not smooth. Especially, at the third trial, the participant tried

to dig samples wrongly four times (normally, three times).

The inadequate operation appears to have affected the low

performance index at the third and eight trials.
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Fig. 4. Improvement of the task time Tt (a), the collected sample pieces
S (b), and the performance index J (c)

B. Clustering of operation by SOM

The computation of the SOM was performed using the

SOM PAK [12]. Each component of the input vector x was

normalized into the [−1, 1] range by using the maximum

and minimum values of the time series data at the ninth

trial. Data of other trials were normalized similarly by using

the same scale parameters. Since it is preferable for the

horizontal and vertical sizes of the rectangular map to be

chosen in proportion to the ratio of two square roots of the

first and second maximum eigen-values of the covariance

matrix {x}{x}T [13], the size of the SOM lattice were

decided as udim = 45 and vdim = 30 (the average ratio of all

nine trials was 1.4999, and the rage of σ1/σ2 was 1.1770 ∼
1.842). A bubble type was chosen for a neighborhood kernel

function. On the learning process, a fine tuned computation

was performed after the rough tuned one was computed. The

learning rate & learning length were specified as 0.05 &

2000 and 0.02 & 1.5 million, respectively, so as to meet

such requirement that the learning length is more than 500

times of the number of nodes [6]. The number of search

clusters was specified as K = 25 because the 16 operational

modes, as shown in Table I, and 9 margins were considered.

Thresholds for the cluster growing were chosen as δ1 = 6
and δ2 = 0.5 by checking the obtained several maps.

As an example, the gradient map for the ninth trial is

shown in Fig. 5(a). The blue (red) area indicates a low (high)

gradient node. The boundary curves can be found, and some

clusters surrounded by the curve are confirmed. There is,
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however, ambiguous area of which boundary is unclear, and

it is difficult to objectively segment such area into clusters.

Figure 5(b) shows a distribution of the cluster cores that were

detected by the proposed method. Colors of the cluster cores

were changed in the figure from blue to red according to the

order of emerging in time series. It can be confirmed that

their nodes are put on by keeping the relatively sufficient

distance. The final result of the growing clustering using

those cluster cores is shown in Fig. 6. Comparison between

the left in Fig. 5 and Fig. 6 demonstrates that blue areas

in the original gradient map were segmented adequately as

clusters.

The clustering method proposed here satisfies an internal

cohesion condition because of the growing from one point

by iteration of the dilation. In addition, an external isolation

condition is also satisfied since termination of the growing

search is decided by checking absolute values of the node’s

gradients; hence, the present method appears adequate for

segmentation of the operational behavior.
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Fig. 5. Gradient map (a), and cluster cores (b)
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Fig. 6. Segmented clusters of manipulation for 9th trial

C. Relational analysis between manipulation and clusters

Finding the input vector x that is a best matching to the

reference vector m of the segmented cluster core, manipu-

lations corresponding to the cluster are summarized to Fig.

7. Numbers described in the vertical direction indicate the

cluster numbers according to the order of the emergence.

Abbreviation labels used in Fig. 7 are explained in Table

I. In the figure, the label colored by red indicates that a

type of the manipulation was unclear. The yellow labels

TABLE I

LABELS OF THE REMOTE OPERATION TASK AND ITS MEANINGS

label meanings

T/A-* truck approach to the *-drilling site
E/A-* excavator approach to the *-drilling site
T/P-* truck positioning around the *-drilling site
E/P-* excavator positioning around the *-drilling site

E/D excavator digging
E/L excavator loading of the payload
T/T truck transport with the payload
T/U truck unloading of the payload

(*=1,2,3 : the drilling site number)

denote multiple clusters that were assigned with same type

of manipulation. Checking the recorded video of the ex-

periment, manipulations corresponding to the yellow-labeled

clusters included operational errors, minor accidents, and

trial-and-errors; hence, such troubles appear to be responsible

for the inadequate clustering. On the other hand, the blue-

labeled clusters are same type of manipulation but differ

in terms of the work places. Lowercase characters were

added in their labels for discrimination of clusters when one

manipulation was segmented into more than two clusters.

The green-labeled cluster denotes one cluster that included

more than two different types of manipulations. Existence

of the blue- and green-labeled clusters may give suggestions

that the difference of the work place and the particle size

of the SOM analysis should be taken into consideration to

enhance the analysis of the clustering. The figure shows

that the inadequate clusters reduced as the trial increased.

Except above-mentioned essentially inadequate cases, the

segmented clusters could match actual subtask reasonably,

and the proposed algorithm appears to work well.

Fig. 7. Meanings of the segmented clusters
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D. Transition analysis of clusters

Investigation of transition in an operator’s skill was tried

using the presented clustering method. It reasoned that

independence among the clusters would increase because

the skilled operator switched manipulation adequately and

quickly according to a change of the MET-status. To confirm

this assumption, similarities of clusters were investigated

by computing distances between clusters. Using the group

average defined as

d(Ci, Cj) :=
1

n1n2

∑

mi∈Ci

∑

mj∈Cj

‖mi − mj‖, (6)

the distance d(Ci, Cj) (i �= j) between clusters Ci and Cj

was computed, where n1 and n2 are the number of nodes

of the clusters Ci and Cj , respectively. Since a minimum

distance between a cluster and others can be considered as an

index for dependency of the clusters, the minimum distance

dk around the cluster-k, which was computed as dk :=
min∀i �=k(d(Ck, Ci)), were investigated. Figure 8 shows tran-

sitions of the average / variance of 25 dks of all clusters. The

average roughly increases, and the maximum was given at

the seventh trial. It is interesting that the transition pattern of

the average resembles the other pattern of the performance

index J shown in Fig. 4(c). Actually, the correlation factor

r1 between the average and the performance index was

relatively large at 0.7736. Concerning the variance of dk,

the correlation factor against the performance index was

also relatively large at 0.7049. The positive correlations

demonstrate that a good or ill clustering of the manipulation

involves strongly in the task performance.
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r
2
(cov(d),J)=0.7049

Fig. 8. Transition of clusters’ distance

V. CONCLUSION

To make the task scheduling on manipulation of remote

machines visible, a procedure to segment the manipula-

tion was proposed using a SOM technique. Applying the

proposed method to a remote operation test proved that

characteristics about the segmented clusters could evaluate

the skill level of the operator. New clustering method to

classify the ambiguous SOM clusters was presented, and it

was confirmed the method works well.

Several issues, however, remain. The present analysis did

not pay attention to an automated discrimination of faulty

manipulation; hence, the reliability to the actual application

is not yet sufficient. Since selection of variables for the input

vector to the SOM analysis was subjective, the selected input

vector was not completely assured to give rich information

to the SOM training. Unfortunately in the present analysis,

data from only one participant were used due to failure in

the data measurement; hence, a statistical verification using

all participants data is required after improvement of the

experiments. In addition, other type SOM like the sphere

SOM has to be considered for enhancement of the analysis

quality. These points would be treated in future work.
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