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Abstract— The context of this paper is to study the use of
capillary microgripper in submerged mediums which requires
the use of microbubbles. This paper presents a model and exper-
imentations of the generation of bubbles. In the microsystems
which uses liquid, gas bubbles can generate forces due to the
surface tension at their interface. To use these bubbles, it is
necessary to generate them in a controlled way. In this paper,
we propose to study the generation of a bubble having a defined
volume, using a syringe pump based device. We first build a
mathematical model to predict the growth of the bubble in the
liquid. Indeed, the compressibility of the gas and the effect of
surface tension are of major importance at microscale, and our
model will demonstrate the existence of an instability during
the bubble growth. We proceed with a dimensionless study that
will allow to predict the existence of the instability on the basis
of a dimensionless number. Finally, we present experimental
results to validate the mathematical model.

I. INTRODUCTION

The study of micromanipulations consists in producing

methods able to position objects whose size is typically

from 1µm to 1mm. Handling and positioning principles used

for common industrial objects cannot be easily miniaturized

because of the scaling effect. In fact, the behavior of the

micro-objects is highly different from the macroscale be-

cause it mainly depends on surface forces. Current indus-

trial handling methods are consequently not adapted to this

particular behavior. Several microhandling strategies have

been proposed in the literature, but their current reliabilities

must be improved. One way to increase the reliability of

microhandling tasks consists in micromanipulate the object

in a liquid [1,2]. Submerged two-fingered grippers have been

proposed where the release of the object is controlled by

dielectrophoresis [3] or chemical principle. Submerged ice

gripper is also an original way to position micro-objects in a

liquid [4]. These submerged handling methods do not enable

compliance which is usually useful in micro-assembly. In

other hand, in air, capillary gripping is able to grasp object

with some compliance (see Fig. 1) and performs micro-

assembly tasks [5]. In a general way, surface tension forces

can be used as an efficient micro-actuation principle, since

they become predominant at small dimensions.
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Fig. 1. Principle of capillary grippers: (a) current gripper in the air, (b)
frame of the paper: submerged capillary gripper

The frame of this paper deals with the study of capil-

lary gripping in a submerged medium. To implement this

principle for liquid environments, it is necessary to have a

gas-liquid interface, and thus it requires generating bubbles.

Consequently the first step of the study of submerged capil-

lary handling consists in the study of the generation of single

bubbles. This paper presents a model and experimentation of

the bubble generation.

Some authors have already used bubbles in microsystems.

For example, [6] use a bubble as a valve in a microfluidic

system, and [7] propose to use bubbles as actuators.

[8], [9] have studied the continuous generation of bub-

bles. [10], [11] proposed numerical methods to estimate the

geometry of a growing bubble. Many of these authors are

interested in the size of bubbles as function of parameters

such as the fluid flow at the bubble generation point. The

applications of these studies are most often in the field of

chemistry and colloids.

In this article, we propose a method to generate only

one bubble of a defined size in a liquid. The idea is very

simple: we propose to push gas to an output channel by mean

of a syringe system. It offers several advantages: the gas

injected is independent of the fluid, contrary to hydrolysis,

and parameters are easy to control compared to the study of

droplet. One of the novelty of the study of bubbles is that

their behavior depends on a coupling effect between surface

tension and gas compressibility.

We present in section II the mathematical model used to

predict the shape of the bubble. The resolution of the model

is presented in section III and will show in some cases the

existence of an instability during bubble growth. We propose

in section IV a study of dimensionless numbers, which lead

to a criterion characterizing the existence of the instability.

Finally, we describe in section V the experimental set up

built to validate the model, and we present some results

showing the good correspondence between the model and
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TABLE I

DEFINITION OF MODEL PARAMETERS

Parameter Description

V0 (m3) Initial volume in the syringe

V (m3) Volume of gas in the spherical cap

δ (m) Displacement of the piston

γ (Nm−1) Surface tension at the liquid-gas interface

P0 (Nm−2) Atmospheric pressure

P (Nm−2) Pressure in the gas tank

T (K) Temperature of the system

R (Nmmol−1 K−1) Universal gas constant

n (mol) Total number of gas mole in the system

S (m2) Section of the piston

s (m) Exhaust channel diameter

r (m) Radius of the spherical cap

h (m) Height of the spherical cap

the experiment.

II. BUBBLE GROWTH MODELING

In this section, we present the model used to predict the

generation of a gas bubble using a syringe pump. We first

introduce the parameters, then the governing equations.

A. Parameters of the Model

The device consists of a gas tank (the syringe) and an

exhaust channel (the needle) immersed in a liquid. The shape

of the bubble is supposed to be a spherical cap. This means

that the pressure inside the bubble is assumed to be uniform,

i.e. we neglect the hydrostatic pressure due to gravity and

dynamical effects, since this is an equilibrium model. The

needle we used have diameters s ranging from 2mm to

150µm.

The parameters are shown in Table I, and the device is

illustrate on Fig. 2.

Fig. 2. Schematic diagram of the bubble and the syringe

The contact angle at the edge of the outlet channel is

assumed to be variable, ranging from 0 ◦ to 180 ◦, and the

contact line is assumed to stay on the inner diameter of the

exhaust channel.

B. Governing Equations

We will build here the mathematical model of the system.

The goal is to find the geometry of the bubble (defined by the

height h and the radius r of the spherical cap, and the needle

channel diameter s) as a function of the other parameters. The

total amount of moles n in the gas is assumed to be constant.

Since the surface tension in the spherical cap will induce

across its interface a pressure gradient which depends on the

size of the cap, the total volume of the gas is not constant.

The pressure P in the gas phase is supposed to be uniform

in the entire system.

To build the governing equation, we use three mathemati-

cal relations: Laplace equation (1), the ideal gas law (2) and

the equations describing the geometry of a spherical cap (3

and 4):

2γ

r
= P−P0 (1)

P(V +V0 − δS) = nRT (2)

r =
s2

8h
+

h

2
(3)

V =
πh

6

(

3s2

4
+ h2

)

(4)

Laplace equation (1) links the pressure gradient P− P0

across the gas-liquid interface with the mean curvature 2/r

of this interface, and the surface tension γ . The ideal gas

law (2) is used to take the compressibility of the gas in

account. Finally, assuming the geometry of the interface to

be a spherical cap (3,4) allows to find a relation between

the tip diameter, the curvature radius and the height of the

bubble. In this model, we will assume that the number of

mole n is fixed by V0 and P0 using the ideal gas relation. This

means that the syringe is filled under atmospheric pressure.

The geometry of the bubble may be defined by two of the

three variables r, s and h. Since s is set by the experimental

setup, we will take it as one of the parameter. We will use

h as the second parameter since it allows to set the resulting

equation in a polynomial form.

Hence our governing equation will be in the form h =
f(V0,P0,γ,T,R,n,S,s,δ ). The solutions of this equation give

the possible heights of the bubble.

π

12
P0h5 +

π

3
γh4 +

π

12
P0s2h3

+

[

−

1

2
nRT +

1

2
P0(V0 − δS)+

π

4
γs2

]

h2

+
[ π

64
P0s4 + 2γ(V0 − δS)

]

h

+
1

8
P0s2(V0 − δS)−

1

8
nRTs2 = 0 (5)

This equation is a fifth order polynomial with h as depen-

dent variable. We cannot find analytical solution, but it can

be easily solved using numerical methods. This expression

will potentially give one, three or five real solutions.
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TABLE II

SETS OF PARAMETERS FOR MODEL INTERPRETATION

Parameters First set Second set Units

V0 2×10−6 5×10−9 (m3)

n 8.1748×10−5 2.044×10−7 (mol)

S 7.8540×10−5 1.9635×10−7 (m2)

s 2×10−3 150×10−6 (m)

δ 0 → 25.5×10−3 0 → 25.5×10−3 (m)
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Fig. 3. Simulation of bubble height h as a function of piston displacement
δ , with first set of parameter. The dashed curve represents the height of
a spherical cap having a volume of Sδ , i.e. without taking compressibility
and surface tension in account. The plain curve takes compressibility and
surface tension in account. One should notice the growth of the bubble is
continuous

III. RESOLUTION OF THE MODEL

In this section, we will solve (5) for two different sets

of parameters and interpret the results. The liquid in which

we create the bubble is supposed to be water and the gas is

supposed to be air. Some of the parameters are common for

both sets: atmospheric pressure P0 = 101325Pa, temperature

T = 298.15K and surface tension γ = 72×10−3 Nm−1. The

universal gas constant is R = 8.314Nmmol−1 K−1.

Two different kind of behavior are obtained: the bubble is

growing continuously or not, as illustrated below.

A. First Behavior: Continuous Growth

Let us consider a first set of parameters (Table II).

Calculating the roots of the polynomial for each value of

piston displacement δ gives the curve illustrated on Fig. 3.

The dashed curve represents the height of a spherical cap

having a volume Sδ , i.e. an incompressible fluid behavior.

This clearly shows the importance of coupling between the

surface tension and the compressibility of the gas on the

bubble behavior. Consequently, for small piston displacement

δ , the height of the bubble h is defined by a physical

equilibrium between the compressibility of gas and the

capillary pressure.

From this figure, we may conclude that if we increase

piston displacement δ , the height of the spherical cap will
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Fig. 4. Simulation of bubble height h as a function of piston displacement
δ , with a second set of parameter. The dashed curve represents the height of
a spherical cap having a volume of Sδ , i.e. without taking compressibility
and surface tension in account. The growth of the bubble is not continuous:
the arrow illustrates the sudden transition of its height at the inflection point
I. Because of this instability, there is a range of bubble height that is not
accessible

increase continuously. In this simulation, we assume that the

bubble never lifts off. However, when the bubble is large

enough, it will actually separate from the output channel and

lift off, due to the Archimedes force.

B. Second Behavior: Discontinuous Growth

Let us now consider a second set of parameters (Table II).

When we plot the evolution of bubble height h as a function

of piston displacement δ , we see the curve is "S"-shaped

(see Fig. 4).

The consequence is that when we push the piston of the

syringe (i.e. we increase δ ), there is an inflection point I

where a discontinuity appears. The size of the bubble will

increase suddenly (arrow on Fig. 4). At this point, the bubble

rapidly expands and the volume of the bubble increases

rapidly (Fig. 5).

This instability occurs when, in our polynomial model,

there are three real roots instead of one.

We observe that the maximal height before the instability

occurs is close to s/2, i.e. a half sphere. This configuration is

particular because the interface curvature is minimal, which

correspond to a maximal pressure inside the bubble.

Because of this instability, there is a range of h that is not

accessible. Moreover, the increase of bubble volume lead to

its uncontrolled lift off.

We will propose a criterion in the next section to predict

the existence of this instability.

IV. DIMENSIONLESS STUDY

Dimensionless numbers are often used to make a similarity

study on a system, or to reduce the number of parameters

in a model. In this section, we use dimensionless numbers

and (5) to predict whether the parameters of the system will

lead to an instability or not.
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Fig. 5. View of a bubble growth instability. The image has been recorded
at 25fps on a CCD camera. The CCD sensor has captured in the same frame
the geometry of the bubble before and after its expansion (left and right of
point I on Fig. 4). The image shows the end of the glass tip used as outlet
channel, the bubble generated (the half-sphere at the end of the tip), and
the bubble after its sudden expansion (the shadow). This indicates that the
expansion is a fast phenomenon

The idea is to find relevant dimensionless numbers for this

problem, in order to define a criterion which characterizes

the stability of the bubble growth.

A. Dimensionless Equation

In order to find the relevant dimensionless number, we

could build the dimensional matrix for each parameters, and

use Buckingham theorem to find a set of dimensionless num-

bers [12]. However, Buckingham theorem does not provide

the most relevant set of dimensionless numbers. In fact,

any combination of these numbers is also a dimensionless

number.

A more efficient strategy is to set our governing equation

(5) in a dimensionless form. Consequently, we normalize

every parameters by a combination of s and γ .

Ẽ =
nRT

γs2
S̃ =

S

s2
P̃ =

P0

γ/s

H̃ =
h

s
Ṽ =

V0

s3
δ̃ =

δ

s

The equation is then rewritten using the normalized pa-

rameters (6).

π
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H̃4 +
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P̃H̃3

+

[

−
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2
+

P̃

2

(

Ṽ − δ̃ S̃
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[ π

64
P̃+ 2

(

Ṽ − δ̃ S̃
)]
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+
P̃

8

(

Ṽ − δ̃ S̃
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Ẽ

8
= 0 (6)

It should be noticed that h is a function of 9 parameters

in (5), and H̃ is a function of only 5 parameters in (6). The
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Fig. 6. Search of the dimensionless number threshold. Crosses (dots) rep-
resent experimental setups that led to an instable (stable) bubble generation

reduction reaches1 up to the number of dimensions in the

model, four in this case.

In our case, we can even go one step further. Since the

output of (6) is H̃, it can be rewritten as follow:

H̃ = f̃
(

P̃, Ẽ,Ṽ − δ̃ S̃
)

(7)

The parameters have been grouped in only 3 sets of

parameters: Ẽ , P̃ and Ṽ − δ̃ S̃. Since piston displacement

δ appears in the set of parameters Ṽ − δ̃ S̃, this set cannot

influence the shape of the curve h(δ ) on Fig. 3 or Fig. 4.

Consequently, it cannot influence the existence of the

instability.

We can conclude that the existence of an instability when

generating a bubble from a syringe pump device is only

determined by two dimensionless numbers: Ẽ and P̃.

B. Determining Threshold of the Dimensionless Numbers

Since only two dimensionless numbers should define the

existence of an instability, we have run a set of numerical

simulations to determine the threshold values for these

dimensionless numbers beyond which the system will be

unstable.

The plot in Fig. 6 shows the results of the simulations. The

crosses correspond to a set of parameters that led to an insta-

bility, and the dots where no instability has been observed.

There is a clear borderline between the area of instability and

the area of stability. The equation of the borderline allows to

define the threshold for the two dimensionless parameters.

The equation of the borderline is well approached by (8)

(the line in Fig. 6).

log Ẽ = 2log P̃ (8)

Hence, the stability condition of the experimental setup is

Ẽ < P̃2 (9)

1Actually, the reduction is given by the rank of the dimensional matrix
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Fig. 7. Chart of maximum admissible initial volume as a function of tip
diameter. If V0 is too large, the bubble generator is likely to produce unstable
bubbles

This condition can also be stated in terms of parameters

with dimension:

σ =
V0 γ

P0 s4
< 1 (10)

This simple criteria characterizes the fact that the complex

equation (5) has only one solution for each value of piston

displacement δ , and thus that the growth of the bubble is

stable. This relation can be used to plot a chart in specific

conditions, in order to ease the choice of the admissible

initial volume V0 regarding the diameter of the output channel

s. We have plotted this chart for a standard pressure and

different values of surface tension (Fig. 7).

C. Scale Effect on the Criterion

If we consider l as the typical size of the problem, the

initial volume V0 is proportional to l3, and s is proportional

to l. The stability criteria σ is thus proportional to l−1.

Consequently, a miniaturization induces an increase of σ and

can lead a non-continuous growing.

Let us consider the case where the tip diameter is identical

to the piston diameter, and let L be the maximum height of

gas in the syringe. The volume is V0 = Lπ s2/4. Hence we

can calculate the ratio of L as a function of a ratio of s:

(L1/L2) = (s1/s2)
2
. If the diameter of the channel is reduced

by a factor of 10, the maximum height of gas in the syringe

is reduced by a factor of 100.

The non-continuous growth of bubble is therefore specific

to microsystems.

V. EXPERIMENTAL VALIDATION

To validate the mathematical model presented here, a set

of experiments has been performed to correlate the growth

of a bubble with the displacement of a piston in a syringe

pump device.

A. Experimental Bench Description

The test bench (Fig. 8) mainly consists of:

• A syringe pump, composed of a syringe whose piston

is actuated by a manual microtranslation stage;

Fig. 8. View of the validation test bench

TABLE III

FIRST EXPERIMENT PARAMETERS

Parameters Value

V0 47.65×10−9 m3 (estimation including connections)

T between 298K and 308K (for theoretical curve, 298K)

S 9.62×10−8 m2

s 150×10−6 m

• a glass micropipette, constituting the output channel.

This kind of micropipette is normally used in in vitro

fertilization;

• a visualization device (including a camera), to perform

the image analysis and find the height of the bubble.

The experiments are performed in DI water, and the gas

injected is air.

Since the microtranslation stage is manual, we perform a

quasi-static experiment by moving regularly the stage by a

predefined quantity.

The images of the movie are analyzed using an edge

detection function. The conversion from pixel to length is

done by first calibrating the visualization device.

B. First Set of Experiments

The parameters for this experiment are given in Table III.

We made two series of measurements on the same mi-

cropipette, that are compared to the theoretical value (Fig. 9).

In this configuration, the dimensionless number σ = 67,

agreeing with the fact that the bubble growth is not con-

tinuous.

The theoretical curve fits the general shape of the exper-

imental curves h(δ ) in good approximation. However, we

observe an horizontal offset that is due to the imprecise

measurement of the zero height of the spherical cap, when

starting the experiment.
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Fig. 9. Experimental validation of the syringe pump bubble generator -
First set of results. There is an horizontal offset because the height of the
spherical cap is not zero when the experiment is started. The experiment is
stopped when the bubble expands

TABLE IV

SECOND EXPERIMENT PARAMETERS

Parameters Value

V0 557.6×10−9 m3 (estimation including connections)

T between 298K and 308K (for theoretical curve, 298K)

S 1.96×10−5 m2

s 150×10−6 m

C. Second Set of Experiments

We performed a second set of experiments with a different

syringe. The parameters are shown in Table IV. In this

configuration, σ = 783.

The results of this set of experiments is shown in Fig. 10.

The theoretical curve seems more steep than the trend of the

experimental points. However, this can be explained by errors

in the theoretical parameters. The dashed curve represent the

model with a variation of 10% of its parameters (S, s, P0

are reduced by 10% and V0 is increased by 10%). Since the

experimental points are located between the two curves, they

are in agreement with the theoretical model.

VI. CONCLUSIONS AND FUTURE WORKS

We have shown that controlling the generation of a bub-

ble at microscale must be done taking into account the

coupling between gas compressibility and surface tension .

The developed model shows the existence of an instability

under some circumstances, making the growth of the bubble

discontinuous. Based on a dimensionless study of this model,

a dimensionless number has been found that allows to predict

the stable or unstable behavior of the system. Hence it is

possible to find a threshold to design the bubble generator

without instability. Finally, we have presented some experi-

mental results to validate our model. The experimental results

showed good agreement with the theoretical predictions. In

micromanipulation application, this model is able to predict

the growth of the bubble before the handling of the micro-

object.
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Fig. 10. Experimental validation of the syringe pump bubble generator -
Second set of results. The model (plain curve) do not fit the experimental
points very well. However, this can be explained by errors in the parameters
of the model. The dashed curve represent the model with a variation of 10%
of the parameters (S, s, P0 are reduced by 10% and V0 is increased by 10%).
The experimental points are located between the two curves, validating the
model

Future works will focus on the study of the interaction

between the bubble and the grasped micro-objects. Model

will be improved to take into account the micro-object. Thus

the generation of microbubble proposed in this paper will be

applicable to microhandling tasks based capillary forces.
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