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Abstract— The capabilities of DLR’s multi-DOF humanoid
robot Justin are extended with the help of a dynamic torque
control component for base reaction minimization. Since the
mobile base of the robot comprises springs, reactions induced
by arm/torso motions lead to vibrations and deteriorate the
performance. The control component is derived from the equa-
tion of motion of the robot, represented as an underactuated
system, and partitioned into a “driven” subsystem (one of
the arms), and a “compensating” subsystem (the other arm,
with or w/o torso contribution). The control component is then
embedded into the existing sophisticated controller structure of
Justin, as a feedforward component, with additional control
signals from an augmented PD feedback controller. It was
possible to obtain satisfactory performance with a very “soft”
compensatory subsystem. The experimental results confirmed
the potential of this model-based approach for use in a complex
multi-DOF system. As far as we know, this is the first time that
a dynamic-coupling compensating controller is applied to a real
system of such complexity, utilizing thereby a torque control
interface.

I. INTRODUCTION

Motion control for minimizing the reaction at a manip-
ulator base is an important control problem for mobile-
base robots, e.g. free-flying space robots, flexible-base space
robots, and others.

A class of flexible-base robots, being developed recently,
are humanoid-type robots, comprising an anthropomorphic
upper body mounted on a mobile base with wheels instead
on legs. Such robots have at least two advantages when
compared with conventional legged humanoids: (1) they are
much more stable since the wheel base of support can be
designed appropriately, and (2), they are much more efficient
from the point of view of energy consumption. Wheel-
base humanoids, on the other hand, have some disadvantage
because they can operate only within flat-floor environments.
This problem can be alleviated to some extent, though, by
using rubber tires and/or spring/dampers for suspension, so
that the robot can negotiate small obstacles, in a similar
way as automobiles can. Note, however, that the passive
elements may introduce significant base deflection, which
would deteriorate the accuracy of manipulation. Therefore,
such wheel-base robots should be regarded as flexible-base
robots, and appropriate methods of control should be applied.
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Fig. 1. Rollin’ Justin.

It is well known that flexible-base robots represent a
challenge from the point of view of control due to the
dynamic coupling between the motion of the manipulator(s)
and that of the flexible base. Vibrations can be induced
into the base by a disturbance wrench, imposed via link
motion. These vibrations lead in turn to disturbances in the
manipulator joint torque, and the system may be destabilized.
In past studies, various control methods have been proposed
to tackle the problem. Methods can be classified into four
wide categories:

1) base vibration suppression control [1]–[4];
2) design of control inputs that induce minimum vibra-

tions [5];
3) end-point control in the presence of vibrations [6], [7];
4) end-point control for interaction tasks [8].

Which method to use will depend very much on the structure
of the manipulator, e.g. dual-arm or single-arm, on the
presence of kinematic and/or dynamic redundancy and on
the availability of sensors for measuring the deflection of
the base and/or in the joints. In our previous research, we
have proposed controllers for combining vibration suppres-
sion with reactionless motion, both for single arm [9] and
dual-arm [10] flexible-base manipulators, for simple planar
systems with deflection feedback based control.

In this work, we use DLR’s humanoid robot Justin,
comprising a torso with two arms, two hands and a head
[11], as an experimental platform. The robot was recently
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mounted on a mobile base with built-in spring and dampers
[12] (see Fig. 1). The two arms are made of two seven-DOF
DLR lightweight manipulators DLR-LWR-III, with flexible
joints and built-in joint torque sensors. The torso is a four-
joint three-DOF spatial system, the upper joint being driven
in a coupled manner via a cable drive. Thus, in addition to
the flexibilities in the base and in the joints, there is also
flexibility in the cable drive. The controller of the robot
consists basically of two closed loops — a fast (3 kHz) inner
torque feedback loop, and a passivity-based outer impedance
control loop [13]. With this controller, structural vibrations
can be suppressed at the individual joint level. The controller
does not account for base vibrations.

The main goal of this work is to extend the capability of
the existing controller towards base reaction minimization,
with the help of a model-based, inertia-coupling feedback
control method, similar to that used in previous studies [9],
[10]. Note, however, that in these or other similar studies
velocity-driven controllers have been addressed. As far as we
know, this is the first time that an inertia-coupling controller
will be applied to a real system of such complexity, utilizing
thereby a torque control interface. We emphasize thereby that
we intend to design torque control inputs for the upper body
links, that would induce minimum dynamic deflections into
the base. For treatment of a similar problem regarding static
deflections, the interested reader is referred to [8].

II. BACKGROUND AND NOTATION

We will base our derivations on the Reaction Null Space
concept developed some time ago for free-flying [14] and
flexible-base manipulators [9] in zero gravity environment.
Recently, it was also shown that the concept can be applied
to humanoid robots (nonzero gravity), for controlling the
balance via the reaction imposed on the foot [15].

The equation of motion of a rigid-body multilink robot
system comprising n-joints, mounted on a flexible base with
k flexible coordinates, can be written in the following form:

[
Hb Hbm

HT
bm Hm

] [
ν̇b

q̈

]
+

[
cb

cm

]
+

[
gb

gm

]

+
[
Dbνb

0

]
+

[
KbΔξ

0

]
=

[
0
τ

]
, (1)

where Δξ ∈ �k denotes the positional and orientational
deflection of the base from its equilibrium, νb is the twist
(velocity/angular velocity) of the base, q ∈ �n stands for
the joint coordinates of the robot links, Hb(q, Δξ), Db,
and Kb ∈ �k×k denote base inertia, damping and stiffness
matrices, respectively. Hm(q) ∈ �n×n is the inertia matrix
of the upper body and Hbm(q, Δξ) ∈ �k×n denotes the
so-called inertia coupling matrix, which plays an important
role in the following derivations. Vectors cb(q, q̇, Δξ, νb)
and cm(q, q̇, Δξ, νb) include velocity-dependent nonlinear
terms, gb(Δξ, q) and gm(Δξ, q) are the gravity forces on
the base and on the links, respectively. The vector τ ∈ �n is
the joint torque produced by the motors. No external forces
are acting neither on the base nor on the links.

Note that the above equation of motion does not include
link or joint flexibilities. In fact, the experimental robot we
intend to use, Justin, comprises joint flexibilities, as already
mentioned. It is possible, though, to treat this robot as a
rigid-joint system, under the two-time scale notation and the
singular perturbation approach [13].

For the multi-DOF case under consideration, we can
assume that n � k, which means there are abundant active
redundant DOFs. This redundancy can be used to minimize
the wrench imposed on the flexible base coordinates via the
upper body motion. Assuming a motionless base (νb = 0) at
static equilibrium (gb = −KbΔξ), from the upper part of
the last equation, we have:

q̈ = −H+
bmcb + (U − H+

bmHbm)ζ, (2)

where H+
bm ∈ �n×k denotes the Moore-Penrose generalized

inverse of the inertia coupling matrix, U is the unit matrix
of proper dimension, and ζ is an arbitrary vector having the
dimension of joint acceleration. This vector is projected via
U−H+

bmHbm onto the kernel of the inertia coupling matrix.
We refer to this kernel as the Reaction Null Space [9].

It should be apparent that the set of joint accelerations, ob-
tained from the above equation, do not contribute to dynamic
forces at the base. By inserting these joint accelerations into
the lower part of the equation of motion (1), we obtain the
respective set of joint torque:

τ = cm + gm − HmH+
bmcb + Hm(U − H+

bmHbm)ζ.
(3)

Based on this general form of the dynamics, it will be
shown in the following section how to present the dynamical
model of a multi-limb robot system, in a form suitable for
reaction minimization.

III. MODELING AND COMPENSATION SCENARIOS FOR

THE TWO-ARM ROBOT SYSTEM

The model under consideration has a tree-like structure,
comprising three branches — the torso, the right and the left
arm. The end-link of the torso is connected to the flexible
base (see Fig. 2).

Pitch

Roll

Right arm

Base

Torso

Left arm

Passive, coupled joint

Fig. 2. Model of a humanoid two-arm system on a flexible base.
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The system equation of motion is written as follows:

⎡
⎢⎢⎣

Hbb Hbr Hbt Hbl

HT
br Hrr Hrt Hrl

HT
bt HT

rt Htt Htl

HT
bl HT

rl HT
tl H ll

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ν̇b

q̈r

q̈t

q̈l

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

cb

cr

ct

cl

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

gb

gr

gt

gl

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

Dbνb

0
0
0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

KbΔξ
0
0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
τ r

τ t

τ l

⎤
⎥⎥⎦ , (4)

where subscripts b, t, r and l stand for base, torso, right
arm and left arm, respectively. Notations for the vectors
and matrices have the same meaning as those in (1). The
double subscripts in the inertia matrix signify inertia coupling
properties, e.g. Hbr is the inertia coupling matrix between
base and right arm, Htl is that between torso and left arm,
and so on.

One can think of several strategies for compensation con-
trol, depending on the task. There is a class of applications
that would require just a single-arm motion. Then, one can
assign the desired motion for that arm (e.g. the right arm)
in the usual way, and use the other arm (the left arm) for
compensation, leaving the torso thereby ideally motionless.
Another possibility is to use the links of the torso and that of
the left arm for compensation. In other cases, it will be more
important to assign a desired motion to the torso, and use
both arms for compensation. There is also a dual-arm motion
scenario, when both arms hold an object and compensation is
done through arm redundancy (if available) [10], and through
the torso. In short, because of the abundant DOF’s, there are
many combinations, and the envisioned controller should be
flexible enough to cover all practically valuable scenarios.

Below, we consider two representative cases whereby the
right arm is executing a specified task, while compensation
is done either by the left arm only, or by the left arm and the
torso. In either case, we will use the term “driven arm” for
the right arm and “compensating subsystem” for the rest.

Consider first the simplest case, when only the left arm is
compensating. Since the torso remains motionless, the rows
and columns containing subscript t can be taken out of the
equation of motion (4), provided the inertial parameters are
properly adjusted:

⎡
⎣Hbb Hbr Hbc

HT
br Hrr Hrc

HT
bc HT

rc Hcc

⎤
⎦

⎡
⎣ν̇b

q̈r

q̈c

⎤
⎦ +

⎡
⎣cb

cr

cc

⎤
⎦ +

⎡
⎣gb

gr

gc

⎤
⎦

+

⎡
⎣Dbνb

0
0

⎤
⎦ +

⎡
⎣KbΔξ

0
0

⎤
⎦ =

⎡
⎣ 0
τ r

τ c

⎤
⎦ , (5)

where subscript c stands for “compensating.” Under the
assumption of reactionless motion and stationary base at
static equilibrium, the dynamic base constraint is obtained
from the first row of the above equation, as:

Hbrq̈r + Hbcq̈c + cb = 0. (6)

With the help of this constraint, we will eliminate the com-
pensating (left arm) joint acceleration q̈c from the equation
of motion. From the last equation, we have:

q̈c = −H+
bc(Hbrq̈r + cb) + (U − H+

bcHbc)ζc, (7)

where the first term on the r.h.s. denotes compensating accel-
eration (for the reaction from the right arm and for nonlinear
coupling), while the second term stands for acceleration from
the kernel of the inertia coupling matrix of the left arm. The
latter acceleration will not contribute to base disturbance.
Henceforth, we will make use just of the compensating
acceleration, assuming the arbitrary vector ζc = 0.

The joint acceleration from the last equation is substituted
into the second and third rows of the equation of motion (5).
Then, the joint torque of each arm becomes a function of the
joint acceleration of the driven arm (the right arm). Thus, the
right-arm joint torque is:

τ r = H̃rrq̈r + c̃r + gr, (8)

where H̃rr ≡ (Hrr − HrcH
+
bcHbr) and c̃r ≡ cr −

HrcH
+
bccb). The left arm (the compensating arm) joint

torque is:

τ c = H̃
T

rcq̈r + c̃c + gc, (9)

where H̃
T

rc ≡ (HT
rc − HccH

+
bcHbr) and c̃c ≡ cc −

HccH
+
bccb.

Next, consider the case when compensation is done also
with the torso, in addition to the left arm. Referring to (4),
we introduce the following notation:

Hcc ≡
[
Htt Htl

HT
tc H ll

]
, qc ≡

[
qt

ql

]
, τ c ≡

[
τ t

τ l

]
,

cc ≡
[
cT

t cT
l

]T
, gc ≡

[
gT

t gT
l

]T
,

Hbc ≡
[
Hbt Hbc

]
, Hrc ≡

[
Hrt Hrc

]
.

With this notation, we can again represent the original
equation of motion (4) in the reduced form (5).

IV. CONTROL LAW FORMULATION

We assume that the driven arm (right arm) tracks an arbi-
trary trajectory (qd

r , q̇
d
r , q̈

d
r), assigned in joint coordinates1.

During path tracking, a nonzero wrench will be then imposed
on the base from the right arm. In order to minimize the total
reaction at the base, this wrench will be compensated by a
wrench generated by the compensating subsystem.

This strategy will be realized with the help of a torque
controller having the capability to deal with dynamic mo-
tions. We employ a model-based approach, whereby the
compensating wrench is generated via a desired torque
component. This component is obtained, in turn, from the

1Superscript (◦)d denotes a desired value.
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joint acceleration of the compensation subsystem, as given
in (7):

q̈d
c = −H+

bc(Hbrq̈
d
r + cb). (10)

In addition to the desired acceleration q̈d
c , we assign a

stationary final state for the compensating subsystem: q̇d
c = 0

and qd
c is any constant configuration. One reasonable choice

for the constant configuration is the initial one. Hence,
a regulator-type configuration controller with feedforward
component will be obtained. Other choices for the behav-
ior of the compensatory subsystem are also possible, e.g.
assigning a desired path for its CoM, such that gravity based
disturbance wrenches will be compensated, in addition to the
dynamic ones envisioned here.

Further on, we set the desired motion of the base to be
stationary, for achieving reactionless motion, i.e. ν̇d

b , νd
b and

Δξd are all zeros.
A reasonable choice for a joint-space dynamic trajectory

tracking controller is the augmented PD controller [16].
The joint damping and stiffness torque components of this
controller can then be matched with those of the original
controller of Justin, used for adjusting the joint impedance.

The augmented PD controller is written as:

τ d = H(q)q̈d + c(q, q̇, q̇d) + g(q) − Kdė − Kpe, (11)

where

q =

⎡
⎣Δξ

qr

qc

⎤
⎦ , τ =

⎡
⎣ 0
τ r

τ c

⎤
⎦ , g =

⎡
⎣gb

gr

gc

⎤
⎦ , e =

⎡
⎣eb

er

ec

⎤
⎦ ,

the inertia matrix H contains 3 × 3 submatrices, as those
shown in (5), Kp and Kd denote positive definite feedback
gain matrices, the nonlinear term c(q, q̇, q̇d) is of the form
C(q, q̇)q̇d [16], and the errors are eb = Δξ, ei = qi −
qd

i , i ∈ {r, c}. The closed-loop equation is:

H(q)ë + C(q, q̇)ė + Kdė + Kpe = 0. (12)

It should be noted that, when a regulator-type configuration
controller for the compensating subsystem is employed, an
additional term should appear in the above equations, stem-
ming from the nonzero desired acceleration (10). This term
can be regarded as a disturbance, which will be compensated
by the feedback control torque, in addition to other sources
of disturbance, e.g. residual joint friction.

The linearizing control joint torque for the right arm is
obtained from (11) in the following form:

τ d
r = H̃rrq̈

d
r + c̃r + gr − Δdr(Kd, ė) − Δpr(Kp, e)

(13)

and that for the compensating subsystem, as:

τ d
c = H̃

T

rcq̈
d
r + c̃c + gc − Δdc(Kd, ė) − Δpc(Kp, e).

(14)

The Δ terms are linear in the errors, and can be computed in
a straightforward manner. The ˜(◦) quantities have the same
meaning as in (8) and (9).

It is seen that the two control joint torques are linear
functions of the desired joint acceleration of the driven arm.
Comparing these control torques with the joint torques (8)
and (9), respectively, it becomes apparent that the feedback
error Δ terms will induce some base disturbance. This
disturbance will be small, though, as long as the errors
remain small. This can be ensured by appropriate feedback
gain selection. As noted in [16], gain selection for the
augmented PD controller requires some care, especially in
the case of trajectory tracking, i.e. for the right arm in our
case. We will come back to this problem in the following
section, which discusses implementation issues. What should
be mentioned here is that, intuitively, the feedback gains
for the right arm should have higher values for achieving
best trajectory tracking performance, while that for the
compensating subsystem should have smaller values, to avoid
interference with the compensating, feedforward component,
as much as possible.

Another important point is related to the specific feed-
forward acceleration component of the compensating sub-
system, given in (10). Because of this component, the ˜(◦)
quantities are all functions of the pseudoinverse of the inertia
coupling matrix Hbc. Hence, any rank-deficiency of this
matrix should be avoided. In other words, well-conditioned
inertia coupling is a necessary condition for this controller
to work appropriately.

V. EXPERIMENTAL VERIFICATION WITH JUSTIN

The kinematic structure of Justin is the one shown in
Fig. 2. Justin has two seven-DOF arms, attached to a torso
with four joints. The torso has only three DOFs, though,
since the motion in the joint closest to the arms, is not inde-
pendent [11]. Justins’s body is mounted on a sophisticated
mobile base, with four wheels attached to extendable legs.
The legs are connected via four sliding joints, comprising
spring/dampers, to the base of the torso. Thus, the torso
base has three DOFs for motion in the plane, plus four
active DOFs for extending/retracting the legs, in parallel with
four spring/dampers [12]. In our experiments, though, the
base is modeled just as a passive structure with two angular
deflections, denoted as “roll” and “pitch”, which contribute
to torso base rotation within the frontal and the sagittal plane,
respectively (cf. Fig. 2). Altogether, our model has 17 joint-
DOF and 2 flexible coordinates.

We have integrated the augmented PD motion controller
(11) from the previous section into Justin’s control structure.
As already noted, Justin can be treated as a rigid-joint
manipulator under the singular perturbation assumption and
the fast inner-loop joint torque feedback controller [13].
Hence, our augmented PD controller is applicable. The PD
feedback gains are set according to the requirements of
Justin’s original controller, such that the damping feedback
gain matrix Kd is configuration dependent, calculated via
the system inertia matrix [13], while the P feedback gain
matrix Kp is a constant diagonal matrix. All configuration-
dependent quantities in the control law (the inertia sub-
matrices and the gravity vectors) are calculated using the
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Fig. 3. The initial configuration of Justin during the experiments.

measured values of the joint coordinates. The nonlinear terms
are represented as vectors c(◦) and calculated via measured
joint angles and desired joint angular velocities, therefore.

TABLE I

CONSTANT P FEEDBACK GAINS [Nm/rad] ×100

right arm torso left arm

5, 5, 4, 3, 2, 2, 2 5, 5, 5 0.3, 0.3, 0.3, 0.3, 0.12, 0.12, 0.12

We performed three sets of experiments, as follows:

1) compensating subsystem: left arm and torso, with
system P feedback gains as shown in Table I;

2) compensating subsystem: left arm only, with system P
feedback gains as shown in Table I;

3) same as 2) above, only the P feedback gains of the left
arm were decreased by a factor of 10.

Two experiments were performed for each set, to obtain
data for comparing results with and without compensation.
The initial configuration of Justin is symmetrical, with
both arms almost fully extended along the horizontal (cf.
Fig. 3). The desired motion is a rotation in the second
joint of the right arm (the driven arm), of 30 deg for about
0.7 s, with third-order spline interpolation. The peak speed
achieved thereby is 1.2 rad/s. Positive/negative rotations were
executed, leading to prevailing vertical downward/upward
acceleration of the arm CoM. The generated disturbance
wrench has torque components around base roll and base
pitch. This wrench is evaluated with the force sensors of
the base, integrated into the spring/damper assemblies of the
four wheel extension/retraction legs. The desired state of the
compensating subsystem equals the initial one.

In all three sets of experiments we obtained almost
identical results. Figure 4 shows data from the first set of
experiments, as a representative example. The desired joint
torque data plots of the right arm are displayed in Fig. 4a.
The largest contribution is that of joint 2, which is the driven
joint. The initial and final jumps due to the acceleration
feedforward component are clearly seen. After the jumps,
the curves are rounded, which is due to the contribution of
the relatively high-gain P feedback components. The desired
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Fig. 4. Downward right-arm motion compensated with left arm and torso
motion: (a), (b) — desired joint torque; (c), (d) — joint error norm; (e),
(f) — base disturbance torque; red (dashed) — without compensation, blue
(solid) — with compensation.

motion is tracked faithfully, as seen also from the joint error
norm plots in Fig. 4c.

Next, Fig. 4b shows the desired joint torque plots from the
left arm, which has dominant contribution for the compen-
satory motion. This is especially true for the motion in joint
2, which should be expected, since the initial configuration is
symmetric. The triangular shape of the feedforward compo-
nent, corresponding to the cubic interpolation, can be clearly
recognized. It looks undistorted, because of the relatively low
P feedback gains. It can be also seen that the rest of the joints
contribute to the feedforward compensating motion as well.
This is in contrast with the right arm motion, where the rest
of the joints contribute to feedback components only. From
the respective error plot — the solid blue graph in Fig. 4d
— it is seen that the arm configuration changes thereby only
slightly.

Figures 4e and 4f show the plots of the base disturbance
moments τb for roll and pitch, respectively. During the
acceleration phase (the first 0.35 s), disturbances are induced
in both the compensated and uncompensated case. On the
other hand, during deceleration, it is clearly seen that base
reactions are successfully minimized when compensation is
applied (the solid blue graph). Indeed, without compensation
(red dashed graph), large peaks are observed after 0.7 s
in both base torque components. This is actually the main
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Fig. 5. Base disturbance torque components for upward motion: red
(dashed) — low gain, blue (solid) — high gain, black (dash-dot) —
uncompensated.

result of this study. The reason why the disturbance remains
uncompensated during the acceleration phase will be investi-
gated in future. This might be due to a translational vertical
disturbance, which was left uncompensated in this study.

In fact, for upward motion, the disturbance capability is
most evident during the acceleration phase. This can be
inferred from the plots in Fig. 5, where large peaks in the
base torque components are observed for the uncompensated
case (black dash-dotted line). The data shown compares also
the performance of left arm compensation with high gains
(experiment set 2, blue solid line)), with that of low gain
compensation (experiment set 3, red dashed line)).

VI. CONCLUSIONS

We applied a model-based control method for dynamic
reaction minimization via inertia coupling to DLR’s exper-
imental dual-arm robot Justin — a system comprising 17
actively controlled DOFs in the two arms and the torso plus
two passive DOFs (roll and pitch) in its flexible mobile base.
We designated a particular subsystem of the robot, e.g. one of
the arms, as the driven subsystem, performing a given task in
the conventional way, while the rest of the links, constituting
the compensating subsystem, were minimizing the reaction
via a feedforward term. In the same time, an augmented
PD feedback regulator ensured that the configuration of the
compensating subsystem changed only slightly, and returned
to the initial state after task completion.

Our experiments have shown that the dynamic base reac-
tion wrench can be significantly reduced, especially during
the acceleration/deceleration phases of the motion. Thus,
the method has the potential of increasing the orientation
accuracy of the system while performing dynamic motions.
In addition, intuitively, the motion obtained looked quite
natural. Indeed, humans also use similar counterbalancing
techniques for fast motions. These effects can be observed
in the video clip accompanying this paper.

Improvements can be made in the following directions.
First, it is necessary to evaluate all parameters. In the
experiments, the parameters of Justin’s arms were fairly well
known. For the base, however, only approximate parameters
were used. Also, the experiments were conducted with hands
and head attached, but only a simplified model of them was
used in the implementation.

Second, the desired configuration for the compensating
subsystem should be selected eventually to compensate for
any static deflections in the base, after completing the dy-
namic reaction minimization phase. Also, careful P feedback
gain selection for the compensating subsystem is needed.

Third, the contribution of some unmodeled dynamic ef-
fects, e.g. nonlinear forces and velocity-dependent forces,
including residual joint friction not fully compensated by
the joint torque controller, should be examined as well. We
have observed that, for motions with higher peak velocity, the
compensation capability degrades. A possible reason might
be unmodeled joint flexibilities as well as flexibilities in the
tendons of the torso.
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