
  

  

Abstract— Many motion support robots of the elderly and 
disable were studies all over the world. We have developed the 
rollover support system, which is one of the ADL. Our ultimate 
goal is to develop an effective rollover support system for 
patients with cancer bone metastasis. The core of this system is a 
pneumatic rubber muscle that is operated by EMG signals from 
the trunk muscle. A Time Delay Neural Network (TDNN) is the 
traditional method for recognizing EMG signals. However, 
response delay and false recognition are the problem of the 
traditional neural network. We previously proposed a new 
neural network, called the Micro-Macro Neural Network 
(MMNN), to recognize the rollover movement earlier and with 
more accuracy than is possible with TDNN. MMNN is composed 
of a Micro Part, which detects rapid changes in the strength of 
the EMG signal, and a Macro Part, which detects the tendency 
of the EMG signal to continually increase or decrease. However, 
the methodology to determine the structure of the MMNN was 
not established. In this paper, the optimal structure of the 
MMNN is determined. A comparison of each of the 360 sets of 
test times of MMNN versus TDNN was done. These results 
showed that recognition using MMNN is 40 (msec) (S.D. 49) 
faster than recognition using TDNN. Additionally, the number 
of false recognitions using MMNN is one-third of that using 
TDNN. By comparing the output using only the Micro part and 
Macro part in MMNN, it was found that the combination of 
quick response of the Micro part and stable recognition of the 
Macro part are advantages of MMNN. In the future, we plan to 
test the effectiveness of the total system in clinical tests with 
cancer patients in terminal care. 

I. INTRODUCTION 

A. Rollover support system 
HE wearable robots to support many kinds of movements 
of the elder and disabled people have been developed all 
over the world [1]-[3], because we are facing the elder 

dominated society. A surface ElectroMyoGram (EMG) signal, 
which is measured a little before the start of the movement, is 
expected as the trigger signal of movement support. 

We have also been developing an EMG controlled 
intelligent trunk corset, shown in Fig. 1, to support rollover 
movement, since it is one of the most important activities of  
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Fig. 1 Intelligent Trunk Corset 

 
daily living (ADL). Especially the  rollover movement of 
bone cancer metastasis patients is focused on as the target 
movement. The bone cancer metastasis patient feels severe 
pain when they conduct the rollover movement. 

The core of the intelligent trunk corset system is a 
pneumatic rubber muscle that is operated by EMG signals 
from the trunk muscle. In this project we first analyzed the 
EMG signal [4] that is used as the input signal for the 
intelligent corset to recognize a rollover movement. Second, 
we proposed an original neural network algorithm to 
recognize the rollover quickly and with high accuracy [5]. 
Finally, we developed the mechanisms of the intelligent 
corset [6]. 

The previously proposed neural network, called the Micro 
Macro Neural Network (MMNN), is a complex structure. The 
optimal structure for improved recognition results was not yet 
known.In this paper, the methodology to determine the 
optimal structure of the MMNN is established and an optimal 
structure to recognize the rollover quickly with high accuracy 
is proposed. The recognition rate and false recognition are 
evaluated at the optimal condition. 

B. Neural network to recognize movement using EMG 
Since the recognition of rollover is based on noisy and 

complex EMG signals, a highly robust system that is 
unaffected by the possible misalignment of electrodes, 
individual differences, or surrounding electrical conditions is 
necessary to recognize EMG signals accurately. A Neural 
Network (NN) is one of the learning machines that use EMG 
signals to recognize movement [7]-[12]. NN is capable of 
nonlinear mapping, generalization, and adaptive learning. 
There are two kinds of NN that recognize a time series-signal. 
One is the Time Delay Neural Network (TDNN) [13], in 
which a delay is introduced in the network and past data (the 
data collected before the current measurement point) is set as 
the input signal of the network. The other is the Recurrent 
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Neural Network (RNN) [14] [15], which uses feedback from 
the output signal of the output layer as the input signal of the 
input layer. To avoid needless time-stretch properties and to 
reduce calculation amounts and costs, we selected TDNN as 
the base neural network for the work reported here.  

Many researchers have used TDNN to recognize 
movements from EMG signals. For example, Hincapie et al. 
[16] estimated the movement of the affected side of a patient 
by using EMG data of the unaffected side in their 
development of a prosthetic upper limb. Hirakawa et al. [17] 
and Farry et al. [18] recognized movement using frequency 
domain information of the EMG signal. Huang et al. [19] 
proposed the feature vector, composed of an integrated EMG, 
Zero Crossing and variance, to recognize eight-finger 
movement. Finally, Nishikawa et al. [20] recognized ten 
kinds of movements using a Gabor-transformed EMG signal. 

However, all of these related research efforts share a 
common problem, which is slow response time and incorrect 
recognition of the movement. Consequently, we previously 
proposed the original algorithm called the Micro-Macro 
Neural Network (MMNN), composed of the Micro Part, 
which detects a rapid change in the strength of the EMG 
signal, and the Macro Part, which detects the tendency of the 
EMG signal toward a continuing increase or continuing 
decrease, to improve the response time and accurate 
recognition of the rollover movement based on the EMG 
signal as input. However, the methodology to design or 
optimize the structure of the MMNN is not established, 
because there are many parameters to determine the structure 
of the MMNN. 

This paper is organized as follows. Section II discusses the 
TDNN and MMNN structures, Section III establishes the 
methodology to determine the optimal structure of MMNN, 
and the rollover recognition result using the optimal MMNN 
is compared with that using traditional TDNN. Section IV 
presents a summary and future work. 

II. MICRO-MACRO NEURAL NETWORK 

A. Traditional Time Delay Neural Network 
For the learning machine in this research, we selected the 

three-layer feed-forward type of Time Delay Neural Network 
(TDNN) and the back propagation method with a momentum 
term, which is a standard neural network to recognize 
time-series signals. In addition, we selected the sequential 
adjustment method to modify the weight and threshold of 
each unit. The relations between each pair of units in the 
TDNN are shown in (1), (2), and (3). 
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where m = 2,3, i = 1,…,nm, nm is the number of the mth layer 
unit, m

ijω  is the weight between the (m-1)th layer’s ith unit and 

the mth layer’s jth unit, m
ix  is the output of the mth layer’s ith 

unit, m
iθ  is the threshold in the mth layer’s ith unit, and u0 is the 

constant to decide the gradient of the sigmoid function. 
In this study, the number of input layer units was typically 

75, and the input of the input layer was EMG signals, semg 
(t-i) (i=0,1,...,74). In other words, the time it took the TDNN 
system to recognize the rollover movement from the inputted 
EMG data was 0.075 (msec) [12]. 

B. Concept of Micro-Macro Neural Network 
Using TDNN, previous researchers focused on upper limb 

movement, which is a relatively fast movement. Since the 
movement takes only a short time, less time-series EMG data 
is inputted into the system. The advantage of this short data 
length is that there are fewer calculations to be done and, 
therefore, less cost; the disadvantage is that less input data 
means more false recognitions. 

We focused on the rollover movement, which is a 
relatively slower movement than upper limb or finger 
movement which were focused in the related studies. Since 
the movement takes a relatively long time, it is possible to 
have more time-series EMG data inputted into the system. 

We checked the impact of past time-series EMG data using 
TDNN on the recognition result. The structure of TDNN was 
as follows: the number of input layer units was 1700, the 
number of hidden layer units was 850, and the number of 
output layer units was 1. We determined the number of input 
units as 1700 based on our EMG experiment [4], which 
showed that the shortest time spent on rollover was 1.7 (sec) 
without taking into account the time for any previous rollover 
movement. 

To check the importance of each unit in TDNN, the 
contribution rate of the weight of each input unit was 
calculated by (4). 
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where Rcontribution(i) is the contribution rate of the weight of 
input unit i, whose data is the EMG data of i (msec) before the 
current measured point, N = 1700, m = 2. 

 
As a result, it was found that the weight contribution of 

units in the range of -1 to -10 (msec) were higher than those 
of the other units in TDNN (See Fig. 2). It is natural that the 
EMG data nearest to the time of measurement has a large 
impact on the recognition result. However, it is worth noting 
that the contribution rate of the inputted EMG data before -10 
(msec) is almost constant. Even though the importance of 
data from 10-75 (msec) before is the same as that of data from 
76-1700 (msec) before, the latter data was not used to 
recognize the rollover movement in the traditional TDNN 
(See Section II A). Therefore, in the traditional TDNN, 
whose input unit number was 75 (msec), a later response and 
a higher incidence of false recognition were evident.  
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Fig. 2 Contribution rate as a function of input unit 

 
When long past time-series EMG data is used in TDNN, 

the advantage of this long data length is that more input data 
means faster response and less false recognition for the 
recognition of the rollover movement. The disadvantage is 
the large amount of calculations and their cost.  

In the proposed Micro-Macro Neural Network, some of the 
long past time-series data was compressed. Therefore, the 
amount and cost of the calculations do not increase. 

The basic concept of the Micro-Macro Neural Network is 
to use the long past time-series EMG data to discriminate the 
movement accurately and quickly without increasing the 
calculation cost by compressing some of the long past data. 

C. Structure of the Micro-Macro Neural Network 
Basically, we upgraded the traditional TDNN to MMNN 

(Fig. 3). The most important feature of MMNN is that it can 
handle an increased amount of input data to the neural 
network without increasing the number of calculations. 
Traditional TDNN is defined in our network as the Micro Part. 
As can be seen in Fig. 4, the data for -Tmicro < t < 0 is the Micro 
Part, and the data for –(Tmacro + Tmicro ) < t < -Tmicro is the 
Macro Part. In addition, the data in the Macro Part is divided 
into several TARV (msec), and the average rectified value 
(ARV) of the EMG signal among the TARV values, calculated 
by (5), is defined as the input value of the Macro Part. 
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where n = 1,2,....,Nmacro  
Therefore, the number of input units of the Macro Part is 

expressed by the following equation:  
 

ARVmacromacro TTN =  (6)

where Nmacro is the number of input units of the Macro Part. 
The relations between each pair of units in both the Macro 

Part and the Micro Part are shown in (1), (2), and (3) above. 

III. OPTIMAL STRUCTURE OF PROPOSED MMNN AND 
ROLLOVER RECOGNITION 

A. Objective 
The structure of the MMNN is complex, because many 

parameters determine the structure of the MMNN. In this sec- 
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Fig. 3 Development of MMNN algorithm from TDNN algorithm 
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Fig. 4 Micro-Macro neural network. Note that MMNN is divided into the 
Micro Part and the Macro Part. The Micro Part is TDNN using the data for 
Tmicro as the input signal. The input data of the Macro Part uses the data for 
Tmacro, which is the ARV of the EMG signal among all TARV values. 
 
tion, based on the contribution rate shown in Fig. 2 and an 
experiment about rollover recognition using MMNN, the 
optimal parameters in MMNN are determined to recognize 
rollover movement quickly with high accuracy. 

B. Methodology of rollover recognition experiment 
We defined the rollover movement as a continuous 

movement involving a deliberate change of posture from a 
supine position to a lateral or prone position. In this research, 
rollover movements were performed thirty times in advance 
by each of three young, healthy male subjects. EMG signals 
obtained from the internal oblique (IO) muscle were selected 
as the input signals based on our previous study [4]. The 
EMG signals were sampled at a rate of 1000 (Hz), rectified 
with a second-order, low-pass filter with a cut-off frequency 
of 20 (Hz), and normalized by the 100% maximal voluntary 
contraction (MVC) method [21],[22], which shows the ratio 
of muscle activity in the MVC of the IO muscle to the 
measured EMG signal [23].  

As the learning data for every rollover type, 20% of the 
data (18 out of 90 rollovers – 30 for each of the three subjects) 
was randomly selected [7], [8]. The other 80% of the data was 
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used as test data. Because the numbers of learning and test 
data were small, the k-fold cross validation estimation (k = 5) 
was used to prevent degradation of the accuracy based on the 
selection of learning data. 

The time required to recognize the rollover was measured 
using TDNN. Furthermore, by synchronizing the EMG data 
with the data of a 3D motion-capture system, the start of 
rollover movement was recognized. 

C. Evaluation indexes 
The recognition results of the test data were evaluated 

according to the response by the indexes presented below. 
The response time, tresponse, is the time from the start of the 
rollover movement to the recognition of the rollover 
movement by the neural network (Fig. 5). 

 
movementnrecognitioresponse ttt −=  (7)

where trecognition is the time when the rollover is recognized, 
and tmovement is the time when the rollover starts based on the 
3D motion-capture system. 
 

Pstart = Nbefore / Ntotal (8)
where Pstart is the ratio of Nbefore, the number of times rollover 
was recognized before the movement started to Ntotal, the total 
number of rollover movements. 
 

Nfalse is the number of times when false recognition 
occurred, that is, the times that NN recognized a rollover 
movement even though no rollover was actually conducted. 

D. Structure of TDNN and recognition results 
As stated above, for the learning machine in this research, 

we selected the three-layer feed-forward type NN and the 
back propagation method with momentum term, which is a 
standard neural network for recognizing time-series signals. 
The number of input layer units was 75. The unit numbers of 
the hidden layer and the output layer were 38 and 1, 
respectively.  

As shown in Fig. 6 (b), when TDNN was used, the 
recognition results were as follows: tresponse was -25 (S.D. 59) 
(msec), that is, the rollover movement was recognized 25 
(msec) before the movement started, Pstart was 38% (138 out 
of 360 trials), and Nfalse was 151 out of 360 trials.  

E.  Optimal structure of MMNN and recognition results 
The structure of MMNN was resolved based on many 

parameters.  
First, in the Micro Part, which is the traditional TDNN, the 

number of input layer units was fixed at 10 (Tmicro = 10 (msec) 
in Fig. 4), because the contribution rates in -1 ~ -10 (msec) are 
higher than those at other input times, as shown in Fig. 2. The 
number of hidden layer units was fixed at 5, and the number 
of output layer units was fixed at 1. The number of hidden 
layer units was determined based on the “rule of thumb” as 
follow; 

Nhidden = (Ninput + Noutput) / 2 (9)
where Nhidden, Ninput, and Noutput are the numbers of hidden 
layer, input layer and output layer units. 
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Fig. 5 Ideal vs. actual recognition of rollover. Note that tresponse is defined as 
the time from when rollover starts (tmovement) until when rollover is recognized 
(trecognition). 

TABLE 1 Results of Time Responses using MMNN. 
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Second, the optimal structure of the Macro Part was 
determined as follows. The value of TARV was changed from 5 
to 100 (TARV = 5, 10, 15,…., 100), and the value of Nmacro, the 
number of input layer units, was changed from 5 to 70 (Nmacro 
= 5, 10,15,…., 70). Additionally, according to the rule of 
thumb, the number of hidden layer units was set at Nmacro /2 (if 
Nmacro was even) or (Nmacro +1)/2 (if Nmacro was odd). Based on 
our EMG experiment [4], which showed that the shortest time 
spent on rollover was 1.7 (msec), we applied (10) when we 
calculated the response time for each rollover movement 
using MMNN, without taking into account the time for any 
previous rollover movement. 
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Table 1 shows the results of time responses using MMNN 

to determine the optimal MMNN structure with changing 
values of TARV and Nmacro. Negative values mean the rollover 
was recognized before the movement started, as observed and 
determined by the 3D motion-capture system. 

We obtained the best results for response when TARV = 40 
(sec) and Nmacro = 40. With these conditions, the average 
tresponse for MMNN was -65 (S.D. 55) (msec). The average 
tresponse for TDNN was -25 (S.D. 59) (msec). Therefore, the 
recognition time of MMNN was 40 (S.D. 49) (msec) faster 
that that of TDNN. 

Furthermore, as shown in Table 2, the Pstart was 86% (310 
out of 360 times), and Nfalse was only 50 in 360 trials. 

Figure 6 shows an example of MMNN (TARV = 40 (msec), 
Nmacro = 40). When the results of TDNN in Fig. 6(b) and the 
MMNN in Fig. 6(c) are compared, the following observations 
are clear: TDNN registers a false recognition four times, and, 
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TABLE 2   Pstart and Nfalse of TDNN and MMNN 
Neural Network Pstart  % Nfalse 

TDNN 38 51/360 
MMNN 86 150/360 
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Fig. 6(a) Input signal to NN 
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Fig. 6 (b) Output signal from the TDNN 
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Fig. 6 (c) Output signal from the MMNN 

Fig. 6 Comparison between recognition of rollover by TDNN and MMNN. 
Note that output of TDNN shown in Fig. 6 (b) fails to recognize the rollover 
at 0-2 (msec) and 5-7 (msec); moreover, it does recognize the rollover after 
the movement starts. In contrast, as shown in Fig. 6 (c), MMNN recognizes 
the rollover correctly before the movement starts. EMG signal data is 
included for reference as Fig 6(a). 
 
most importantly, the response speed in recognizing rollover 
is faster, steadier, and more accurate when MMNN is used 
than when TDNN is used. 

F. Discussion 
In Section III E, the effectiveness of MMNN in 

recognizing the rollover is shown in comparison with the 
effectiveness of TDNN.  

In this section, the output signal of not only optimal 
MMNN but also the output of the Micro part and Macro part 
in the recognition of the rollover movement is discussed to 
show the characteristics of MMNN. In other words, first, the 
number of input layer units in TDNN was 10, and the input of 
the input layer was defined to show the characteristics of the 
Micro part as EMG signals, semg (t-i) (i=0,1,..., 9). Second, 
the number of input layer units in TDNN was 40, and the 
input of the input layer was defined to show the 
characteristics of the Macro part as EMG signals, ARV (t-i) 
(i=0,1,2,…, 39). 
As shown in Table 3, the response times using only the Micro 
part and the Macro part were tresponse = -50 (S.D. 26) (msec) 
and tresponse = 1 (S.D. 55) (msec) respectively. The number of 
false recognitions using only the Micro part and only the 
Macro part was N false = 210 (in 360 times) and N false  = 56 (in 

TABLE 3  Features of TDNN, MMNN, and Micro and Macro parts of 
MMNN 

Neural Network tresponse  msec Nfalse 
TDNN -25 (S.D. 59) 150/360 
MMNN -65 (S.D. 55) 51/360 

Only Micro part in MMNN -50 (S.D. 26) 210/360 
Only Macro part in MMNN 1 (S.D. 55) 56/360 

 
360 times) respectively.  

When the input data was short past time-series data, the 
response time was short and the stability of the recognition 
was low. However, when the input data was the ARV of 40 
(msec), the response time became longer and the stability was 
improved. 

The response time tresponse did not show a significant 
difference (p < 0.05) between the optimized MMNN and 
TDNN using 10 (msec) time-series data as did the input data, 
that is, when using only the Micro part in MMNN. In addition, 
the number of false recognitions was almost the same when 
the number in the optimized MMNN was compared with that 
in TDNN using the ARV of 40 (msec), that is, when using 
only the Macro part in MMNN. Therefore, the advantages of 
quick response in the Micro part (See Fig. 7 (b)), and the 
stable recognition of the Macro part (See Fig. 7 (c)), are 
combined in the developed optimal MMNN. As a result, the 
MMNN is an NN that features quick response and little false 
recognition (See Fig. 7 (d)). 

IV. SUMMARY AND FUTURE WORK 
We have been studying patients with cancer bone 

metastasis who have a very short time to live. Specifically, we 
have developed the EMG controlled intelligent corset to 
support the rollover movement. 

In this paper, we described an original neural network that 
we developed, called the Micro-Macro Neural Network 
(MMNN), for the purpose of recognizing and responding to 
the rollover movement quickly with high accuracy based on 
inputted EMG signals. 

First, the structure of the MMNN was optimized with Nmicro 
= 10 in the Micro part and Nmacro = 40 and TARV = 40 in the 
Macro part, and then the response and accuracy of the 
MMNN were analyzed. After that, the response and accuracy 
of the optimized MMNN in recognizing the rollover 
movement were compared with those of the traditional 
TDNN. Test results showed that recognition in MMNN (-65 
(S.D. 55) (msec)) was 40 (S.D. 49) (msec), which is quicker 
than the recognition in TDNN (-25 (S.D. 59) (msec)) 
considering the 360 comparison values. Additionally, the 
number of false recognitions in MMNN was only one third of 
those in TDNN. Hence, we can verify that our MMNN is 
effective and useful in recognizing rollover based on inputted 
EMG signals, which are noisy and vary considerably from 
individual to individual. In addition, by comparing the 
recognition results of only the Micro part and only the Macro 
part, we found that the advantages of quick response in the 
Micro part and stable recognition in the Macro part are 
features of MMNN. 
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(a) Input signal to the NN 
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(b) Output from the Micro part in MMNN 
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(c) Output from the Macro part in MMNN 
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(d) Output from the MMNN 

Fig. 7. Comparison with the output of TDNN, Micro part in MMNN, Macro 
Part in MMNN and MMNN. Note that the EMG signal is included for 
reference as (a). (b) is the output of Micro part and shows the quick and 
unstable response. (c) is the output of Macro part and shows the slow and 
stable response and (d) is output of MMNN and show quick and stable 
response. 
 

In the future, we will incorporate MMNN into our rollover 
support system that uses pneumatic rubber muscles, and then 
we will test the effectiveness of the total system in clinical 
tests with cancer patients in terminal care. 
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